Untitled
"...one-loop self-energy, as follows:
The Feynman rules and gauge-fixing (Feynman gauge) we use are consistent with Ref.[1], [2], [3]. Only the two Feynman diagrams in Figure can contribute to the one-loop self-energy,
as follows:
(p; M_0(a); g_0; a)
=
g_0^2 a R(N_c) X
Z+d k ()
P
i
sin(ap + k )
+
aM_0
P
sin(
k
)
..."
한글 요약은 다음과 같습니다.
중간에 끊어진 텍스트는 Feynman 규칙과 게이지 不정 (Feynman 게이지)를 사용하는 것을 포함하고 있으며, 반전성 자가상자에 대한 한-loop 계산에서만 기여할 수 있는 두 개의 피니만 도형을 포함합니다. 이중 도형은 다음 표기법으로 표시됩니다.
(p; M_0(a); g_0; a)
=
g_0^2 a R(N_c) X
Z+d k ()
P
i
sin(ap + k )
+
aM_0
P
sin(
k
)
이러한 도형은 반전성 자가상자의 한-loop 계산에서만 기여할 수 있습니다. 이중 도형의 표현식은 색수에 대한 독립적이며, N_c (색의 수)를 나타냅니다. R(N_c) 은 다음과 같이 정의됩니다.
R(N_c)
=
\frac{N_c^2-1}{2N_c}
이러한 표현식을 사용하여 반전성 자가상자의 한-loop 계산을 수행할 수 있습니다.
Untitled
hep-lat/9310018 18 Oct 1993CU-TP-0QuarkMassRenormalizationontheLatticewithStaggeredFermionsWeonjongLeeDepartmentofPhysicsPupinPhysicsLaboratoriesColumbiaUniversityNewYork,N.Y.00,U.S.A.Oct.,AbstractTheQCDlightquarkmassrenormalizedataGeVscaleintheMSschemeisobtainedfromthenumericalresultsofthelatticeQCDsimulationwithstaggeredfermions.Theprimaryemphasisisgiventotheconnectionbetweenthelatticeandcontinuumparameters.TheresultsarecomparedwiththosefromtheQCDsumrule.
IntroductionAconnectionbetweenlatticeandcontinuumrenormalizedparametersisnecessarytocomparethelatticeobservableswiththecontinuumobservables(orexperimentaldata)andtocheckwhetherthenumericalsimulationoflatticeQCDmakesphysicalsense.ThebridgefortheQCDcouplingbetweenthelatticeandthecontinuumwasdonethroughtheweakcouplingexpansiontoone-looporder[,,,].ThebridgefortheQCDquarkmasswith-avorstaggereddynamicalfermionswasdoneinRef. [,].Buildingonthatwork,wewillattempttorelatethebare,lightquarkmassof.MeVobtainedfrom-avorstaggeredfermionsimulations[,,]withtherenormalizedlightquarkmassofbetween.andMeVdenedataGeVscaleintheMSschemeanddeducedfromtheQCDsumrules[0].Inordertomakethiscomparisonwemustassumethatthecouplingconstantusedinthelatticecalculation(==g=:)iswithintheper-turbativeregion[,].Weuseandcompareanumberofpossibleperturbativeapproachesin-cludingthemeaneldmethod(tadpoleimprovement)suggestedbyLepageandMackenzie.LatticeQCDwithStaggeredFermionsLatticeQCDhasalotofdicultiesinimplementingquarkavordy-namics.Therearetwopopularmethodstoputthefermionsonthelattice:oneistheWilsonfermionformalismandtheotherthestaggeredfermionformalism[].Inthelimitofzeroquarkmass,thestaggeredfermionschemehasremnantsofchiralsymmetryandmaybepreferredforthenumericalcalculationofthemesonandhadronspectrum..LatticeQCDActionThecurrentnumericalsimulationoflatticeQCDisbasedonthefollowingaction[,,].S=Xx;(x)(x)Uy(x)(x+a)(x+a)U(x)(x)
maXx(x)(x)+Sgluon=Xt(D=+ma)X+Sgluon()whereSgluon=X(Nc)ReTrUandthedenitionof(x)isgiveninRef. [,].Thecurrentapproachtoavordynamicsisasfollows:hOi=Rd[U]Oexp(Sgluon)[det(D=+ma)]NfRd[U]exp(Sgluon)[det(D=+ma)]Nf()forNfdegenerateavorsofmassm.Itisimportanttonoticethatmisthebarequarkmassandaninputparametricmassforthenumericalsimulation.Wewillletm=M0(a)representthephysicalvalueforthisbarelatticequarkmassforagivenvalueofthelatticespacinga..BareQuarkMassontheLatticeFromthenumericalresults[],at=:,Ma=0:0()+:()ma(=:)Ma=0:()+:()ma(=0:0)MNa=0:()+:0(:)ma(=:)fa=0:0()()Wecanchooseourconventionsinthefollowingway.ThelatticeQCDscaleisobtainedsuchthatMhasthephysicalvalueinthelimitofm!0.Thebarequarkmass,M0(a)isobtainedsuchthattheratio,MMhasthephysicalvalueinthelimitofm!M0(a).At=:,a=M0:=:GeVM0=0::aMM=:MeV()
SinceMN=M=:inthecalculationofRef. [],wewillgetdierentvaluesof=aandM0(a)ifwechooseMNtosetthescale;a=MN0:=:00GeVM0=0::aMMN=:MeV()Wemayalsochooseftosetthescale=a.a=f0:0=:GeV()MassRenormalizationintheContinuumThemostcommonrenormlizationschemeincontinuumQCDistheMSschemeinFeynmanngauge.Usingdimensionalregularization,theone-loopself-energycontributioncanbecalculatedasfollows:(p;M0;g0;)=g0R(Nc)Zddk()di(p=+k=)+M0k=ip=+M0()andd=;whereM0andg0arethebarequarkmassandcouplingrespectively.Therenormalizedcouplingsarerelatedasfollows:g0== msexp(E=)p!=ZmsggmsZmsg=gmsNfThequantitiesinEq.
()aregivenbyR(Nc)=NcNc=gmsR(Nc) Z0dx(x)ln[ms]! ()
=gmsR(Nc) Z0dxln[ms]! ()=x(x)p+xM0:(0)Therenormalizedquarkpropagator,Gisrelatedtothebarequarkpropaga-tor,G0asfollows:G(p;Mms;gms;ms)=Zms G0(p;M0;g0;)jM0=ZmsmMms;g0==msZmsggms()whereG0(p;M0;g0;)=ip=+M0+(p;M0;g0;)()IntheMSscheme[],therenormalizationconstantsZms andZmsmaregiventothelowestorderingmsbyZms =gmsR(Nc)Zmsm=gmsR(Nc);sotherenormalizedquarkpropagatorforNc=isG(p;Mms;gms;ms)= gms"Z0dx(x)ln(ms)#!
ip=+Mms"gms Z0dx(+x)ln(ms)+!#! ()Inperturbationtheory,weinterpretthelocationofthepoleintherenor-malizedquark-propagatorasthephysicalmassoftheparticle,regardlessoftherenormalizationscheme[0].Soifwedenethepolelocationasp=Mphy,Mphyshouldsatisfythefollowingcondition.Mphy=Mms"gms Z0dx(+x)ln(ms)+!#p=Mphy()Sincethepolelocationisindependentoftherenormalizationscheme,itwillbeimportantforconnectingthecontinuumandlatticeschemesbelow.
MassRenormalizationontheLatticeSincetheultra-violetdivergencesarealreadyregularizedbythelattice,onlyasubtractionprescriptionisneededforrenormalization.OneofthemostimportantcharacteristicscommontobothMSandMSschemesisthattherenormalizationconstantsareindependentofanydimensionfulla-grangianparameterssuchasthemass[].Wewillfollowasimilarprocedureindeningarenormalizationschemeonthelattice,choosingrenormalizationconstantsinthelattice-regularizationformalismthatareindependentofanydimensionfullagrangianparameterssuchasthemass..RenormalizationPrescriptionInordertoimplementtheminimalsubtractionideainthelatticeregu-larizedtheory[,],onlydivergenttermssuchas(ln[aL]Constant)iwithinwillbesubtractedconsistentlyinthelatticeregularizedFeynmanndiagramsofgnLorder.Thearbitraryconstantwillbechoseninaphysicallyreasonableway,asisdescribedindetaillater.Insuchaminimally-subtractedtheory,itiswellknownthattherenormalizationgroupfunctions,(g)andm(g)areindependentofthecovariantgaugechoice[].Lettherenormalizationconstants,ZLg,ZLmandZL bedenedasfollows[]:g0(a)=ZLg(t;gL(L))gL(L)()M0(a)=ZLm(t;gL(L))ML(L)() 0(a)=qZL (t;gL(L)) L(L)()wheret=ln(aL)andListhelatticerenormalizationscaleintroducedbyoursubtraction.Forthecouplingconstantrenormalization,wechooseaprescriptionsothatL,givenbytheconventionalformula[,,]L=aexp 0g0(a)! [0g0(a)]0f+O(g0(a))g;canbeexpressedbytheidenticalformulawheng0(a)isreplacedbygL(L).
ThisrequiresthatourchoiceofZLgsatisfy:ZLg(t=0;gL(L=a))=:()Eq.()insuresthattherenormalizedcoupling,gL(L)andthebarecoupling,g0(a)agreeforL==aL.Bychoosingtheprescriptionasabove,wehavedenedLintheconventionalway[,,].HavingmadeachoiceforLasabove,weknowthattheratio,L=msisequaltoL=msinordertokeepthecouplingcommoninbothrenor-malizationschemes.Inthissense,arenormalizationscaleonthelattice,L==aGeV(Eq.(),Eq.()andEq. ())correspondstoaboutms0GeV[]forthe=:numericalsimulations[,,].ThenaturalquestioniswhatchoiceofLisbesttodoperturbation.Experimentsuggeststhattheperturbativeexpansionconvergesmostrapidlyifwechoosetherenormalizationscaleequaltotheenergy-momentumoftheactualphysicalprocessintheMSschemeratherthaninotherschemes(ms=ps[0]).Henceweknowthatms=physicalenergy-momentumintheMSschemeisthebesttodoperturbation[0].Whenworkingwiththisquarkmassparameter,M0(a)initiallydenedatthelatticescalea,itisreasonabletousems==atosetthephysicalenergyscale.SomsGeVischosen,whichcorrespondstoL0MeVonthelattice.Thepointisthatitisbettertochoosems==athanL==ainordertoimprovetheconvergenceoftheperturbationseries.Forthemassandwavefunctionrenormalizationconstants,wewillleaveourprescriptionquiteexiblerequiringonly:ZLm(t=C;gL)=;ZL (t=C;gL)=()wheretheuncertainties,nowtransferredtoCandCwillbedeterminedlaterinSection..One-LoopSelf-EnergyandMassRenormalizationTheFeynmannrulesandgauge-xing(Feynmangauge)weusearecon-sistentwithRef.
[,,].OnlythetwoFeynmanndiagramsinFigurecancontributetotheone-loopself-energy,asfollows:(p;M0(a);g0;a)
=g0aR(Nc)XZ+dk()(+cos(ap+k))Pisin(ap+k)+aM0Psin(k)g0aR(Nc)Xisin(ap)Z+dk()Psin(k)=XipL+M0(a)L(0)HereNcisthenumberofcolorsandR(Nc)isgiveninSection.ThearethenormalEuclideanDiracmatricesandtheexpressioninEq.(0)isindependentofcolorandavor.ItisthesameforNf=asthepropagatorderivedinRef.[].LandLinEq. (0)areL=g0R(Nc) ln(aL)Z0dx(x)ln"L#!+O(a)()L=g0R(Nc) ln(aL)Z0dxln"L#!+O(a)()and=0:0;=0:[]:Intheaboveone-loopcalculation,itisassumedthat=ap.AsinEq.()andEq.
(),therenormalizedpropagator,GLisrelatedtothebarepropagator,G0,asfollows:GL(p;ML;gL;L)=ZL G0(p;M0;g0;a)jM0=ZLmML;g0=ZLggL()whereG0(p;M0(a);g0;a)=Xip+M0(a)+(p;M0(a);g0;a)()Fromthepresciptionsinsection.,wecandeterminetherenormalizationconstantsuptogLorder,asfollows:ZL =+gLR(Nc)ln(aL)+CZLm=+gLR(Nc)ln(aL)+C;()sothattherenormalizedquarkpropagatorforNc=isGL(p;ML;gL;L)=(+gL +CZ0dx(x)ln"L#!)
ip=+ML(+gL ()+CZ0dx(+x)ln"L#! )!Ifwesupposethatthepoleislocatedatp=Mphy,Mphyshouldsatisfythefollowingcondition:Mphy=ML(+gL ()+CZ0dx(+x)ln"L#!)()where=(p=Mphy):Eq.
()willbeusedlatertorelateMLandMmsdenedinthetwodierentschemes.ConnectionbetweentheLatticeandCon-tinuumParametersThebridgeconditionwillbeconstructed,exploitingthesimilarformtherenormalizationgroupequationstakeinthetwoschemesthroughone-looporderandchoosingthesamepolestructureforthequarkparpagatorinbothschemes..TheBridgeConditionIntheframeworkofamass-independentrenormalizationscheme,therenormalizationgroupdeterminestherenormalizedcouplingasafunctionofonly=andtherenormalizedmassastheproductoftherenormaliza-tiongroupinvariantmass,Mandafunctionofonly=[0],whereisanintegrationconstantchosenbystandardconvention.Thenthefollowingtwoconditionscanbechosen:Couplingrelation:Therenormalizedcouplingsarethesamefortheintroducedrenormalizationscales.Forexample,gL(L)=gms(ms)=g()LL=msms()becauseusingtheconventionaldenitionoftheparameterinbothschemeswehavegL(L)=f(LL)andgms=f(msms);
forthesamefunctionf()throughtwoloops.Massrelation:Therenormalizationgroupinvariantmassiscommontoanyrenormalizationschemethatisindependentofdimensionfulla-grangianparameters.Forexample,LL=msmsandcommonM()ML(L;M)=Mms(ms;M)()againbecauseML(L;M)=Mh(LL)andMms(ms;M)=Mh(msms);throughone-looporder.Inparticular,for(g)=0ggg,itisawell-knownfactthatthersttwocoecients(0and)areindependentoftherenormal-izationschemewhilealltheothercoecientsdependontherenormalizationscheme.Howeverform(g)=0g+g+,onlytherstcoecient0isindependentoftherenormalizationscheme[0].Intheframeworkofthebridgecondition,onlythescheme-independentpartsoftheandmfunc-tionsareconsideredandthescheme-dependentpartsignoredsothatf()andh()areuniversali.e.independentoftherenormalizationschemeuptotheorderofourpresentcalculation.TheconstantCintroducedinEq.()willbedeterminedonlyuptoone-looporder.Lmsisestimateduptoone-looporder[,,]andhasnohigherordercorrections[].Thelocationofthepoleinthetwo-pointGreen'sfunctionshouldbeindependentoftherenormalizationscheme[]anddeterminesthephysicalmassoftheparticle.Thelocationofthepoleinthequarkpropagatorisindependentoftherenormalizationscheme.TheconstantCcanbechosenexplicitlytoconformtotheconventionsofEq.(),bydemandingthatthepolelocationinthequarkpropagatoristhesameforbothMSandlatticerenormalizationscheme.ThereforefromEq.(),Eq.(),Eq.()andEq. (),ML(L;M)Mms(ms;M)=gms ()++C+ln"Lms#!=;soC=()+lnmsL;()
whereandaregiveninEq.().VariousvaluesofCforNf=0,,,,,and,aregiveninTable..RenormalizedCouplingConstantThereareanumberofwaystoobtaintherenormalizedcouplingcon-stant,g().OnceweknowtheQCDparameter,weknowthecouplingconstantg().Forexample,onemayusetheexperimentalvalueoftheparameterintheMSscheme[].Foragivenrenormalizationscalems,wecanobtaintherenormalizedcouplingconstant,gL(L)sincetheratio,L=MSiswell-known[,,,].Anothermethodusesthebarecouplingonthelatticeinordertoobtaintherenormalizedcoupling.Inthisarticle,thelattermethodischoseninordertodoeverythingconsistentlyintermsofthelatticeparametersandthelatticeobservables.FromEq. (),therenormalizationgroupequationcanbederived,asfollows: @@t+(gL)@@gL!gLZLg(t;gL)=0(0)where(g)=0gg::::and0=(Nf);=(0Nf)Eq.(0)canbesolved,withEq.()asaboundarycondition[],uptotheleadingorderingL,ZLg(t;gL)=q+t0gLgms(ms)=gL(L)=g0(a)t0g0(a)()wheret=ln(aL)=[ln(ams)+lnLms]()FromEq.
(),forvariousNfandms,gmscanbeobtained.0
.RenormalizedMassWehavealreadyobtainedanexpressionforthemassrenormalizationconstant,ZLminEq.().Thusthenaiverelationshipbetweentherenormal-izedquarkmassinMSandthebarequarkmassinthelatticeformulationfollowsfromEq.(),Eq.(),Eq.(),Eq.()andEq. ():Mms(ms)=ML(L)=ZLmM0(a)Mms(ms)="gLln(ams)+lnLms+C#M0(a)Mms(ms)="gms ln(ams)+()!#M0(a)()Asdescribedinsection.,itisreasonabletousems==aasconditionfortheoptimalperturbativeexpansion.FromEq.
(),Mms(=a)="gms ()!#M0(a)()Solvingtherenormalizationgroupequation,wecanobtaintherenormalizedquarkmassatanyotherscaleinthefollowingway.m(g)=ms@ln(Mms)@ms=0g+g+::::()where0=WecansolveEq.()suchthattherenormalizationscalerunsfrom=atoanarbitraryscale,ms.ThenthesolutiontoEq. ()isMms(ms)= gms(ms)gms(=a)!00Mms(=a)= gms(ms)gms(=a)!00"gms ()!#M0(a)()OtherauthorsquotevaluesforMms(ms)evaluatedatms=GeV.FromEq.
(),wecanobtaintherenormalizedquarkmassatthatGeVscalein
theMSscheme(Table),althoughweareenteringaregionwhereperturba-tionisunlikelytobeaccurate.Equation()isjustthelowestorderrelationshipandcanbeimprovedthroughleadinglogarithmicapproximation.FromEq. (),therenormaliza-tiongroupequationisderivedasfollows: @@t+(gL)@@gLm(gL)!ZLm(t;gL)=0()ThesolutionofEq.()withEq.()asaboundaryconditionis,uptotheleadingorderingL[],ZLm(t;gL)=h+0gL(tC)i00andfromEq.(),Eq.()andEq.(),ML:L:A:ms(ms)=ZLmM0(a)=[+0gms(tC)]00M0(a)()wheretherenormalizedcouplingandtcanbeobtainedfromEq.()andEq.().Asonecanseeintheabove,uptogmsorder,Eq.()isidenticaltoEq.().FromEq.()andEq.(),forvariousNf,for=:andforms=GeV,MmsandML:L:A:msaregiveninTable..RenormalizationGroupInvariantMassUsingtheconventionsofRef.[0]andexpandingthefunction,m(g),therenormalizationgroupinvariantmassisdened,uptoleadingorderingL,byM=ML(0gL)00:()FromEq.(),Eq.(),Eq.(),Eq.()andEq.
(),MisrelatedtoM0(a),asfollows:M= 0g0(a)C!00M0(a)(0)
Eq.(0)isindependentoftherenormalizationscale,Lorms,whichmeansthatMislesssensitivetotherenormalizationscheme.Itisreasonabletochoosetherenormalizationgroupinvariantmassasthephysicalquantitytoextractfromalatticecalculation,sincewedon'tneedtointroducetherenormalizationscale,Lorms.TherenormalizationgroupinvariantquarkmassisgiveninTable,fromEq.(0)..LightQuarkMassforNf=;=:Inthissection,itisexplicitlyexplainedhowtherenormalizedmassatthegivenscale(GeVinMSscheme)andtherenormalizationgroupinvariantmass[0]canbeestimatedinthemannerdescribedaboveusingthenumericalresultsofthelatticeQCDsimulation.Letusstartwiththerenormalizedcoupling,gms(ms)orgL(L).Weknowthat=:correspondstothebarecouplingconstant,g0(a)=:0sinceg0(a)==.FromRef.[]andTable,itisknownthatL=ms=0:0forNf=.SinceL=(L=ms)ms,weknowthatms=GeVcorrespondstoL=0:0GeV.FromEq.(),Eq.(),Eq()andRef.[],a=.GeVandt=ln(aL)=:0.ForNf=,0=,whichisdenedinEq.(0).Sinceweknowg0(a),tand0,therenormalizedcouplingconstantatascaleofGeVisfromEq.(),gms(ms=GeV)=gL(L=MeV)=::()Inasimilarway,wecanobtaintherenormalizedcouplingconstantatascaleof=a:gms(ms==a)=gL(L=MeV)=:0:()Nowletusgoaheadtoobtaintherenormalizedlightquarkmassatascaleof=a.Weknowgms(=a)and()fromEq.().ThebarequarkmassM0(a)=:MeVatmostfromEq.(),Eq.()andRef.[,].Sotherenormalizedlightquarkmassatascaleof=aisnaively,fromEq. (),Mms(=a)M0(a)=:Mms(=a)=ML(MeV)=:MeV:()
WecanalsoobtaintherenormalizedquarkmassatascaleofGeVfromEq.(),Eq.()andEq.().Mms(GeV)M0(a)=:Mms(GeV)=ML(MeV)=:MeV:()TherenormalizedlightquarkmassatascaleofGeV,improvedbyleadinglogarithmicapproximationis,fromEq.(),ML:L:A:ms(GeV)=ML:L:A:L(MeV)=:M0(a)=:MeV:()Nowletusobtaintherenormalizationgroupinvariantmass.KnowingL=ms=0:0fromTableandRef.[],wecandetermineC=:0fromEq.().Sinceweknow0,0,g0(a)andC,therenormalizationgroupinvariantmassis,fromEq.(0),M=:M0(a)=:MeV:()Eq.()isjustacruderesultofone-looprenormalization,whileEq.(0)ismorereliablesinceitincludesalltheleadinglogarithmiccontributionsandisindependentofalltherenormalizationscalesintroduced,whichmeanslessdependenceontheconventions.The0%dierencebetweenthenumbersinEq.()andEq. ()suggeststhesizeoftheomittedhigherordercorrections.MeanFieldTheoryLepageandMackenzieshowedthattadpolediagramsarethemainsourceofthelargedierencebetweenthebarelatticecoupling,g0(a)andtherenor-malizedcoupling,gMS(MS=a)[].Theysuggestameaneldmethodforremovingthedominanteectoftadpolediagrams.Hereweapplytheirmean-eldmethodtothestaggeredfermionformalism,inordertoimprovetheestimationoftherenormalizedquarkmassonthelatticenon-perturbatively..TadpoleImprovementfortheCouplingConstantThematchingoflatticeoperatorswithcontinuumoperatorsisbasedontheexpansionU(x)eiagA(x)!+iagA(x)()
whenthelatticespacingaissmall.ButhigherordertermsintheexpansionofUcontainaddtionalfactorsofagAandthecontractionofA(x)'switheachothergeneratesultra-violetdivergence(i.e./an)whichcanceltheaddionalpowersofa(i.e./an).Thesetermsareoftheorderofgn,notsuppressedbythepowersoflatticespacinga,andareverylarge.ThesearecalledtheQCDtadpolecontributions[].TheselargetadpolecontributioncausespoorperturbativeexpansioninlatticeQCD.LepageandMackenziesuggestedthemeaneldmethod[]inordertorenenaiveperturbativeexpansionbyremovingtadpolecontribu-tion.Theynoticedthatthevacuumexpectationvalueofthelinkmatrixissmallerthan.TheysuggestedthattheappropriateconnectionwiththecontinuumgaugeeldisU(x)!u0(+iagA(x))()whereu0representsthemeanvalueofthelink.Theychooseu0inagaugeinvariantway:u0Re
[]isRe
WecanrelategMFtog0perturbativelyasfollows:gMF=g0(a)Re
where~ZmZmu0.FromEq.(),Eq.(),Eq.(),Eq.()andEq. (),theperturbativeexpansionof~Zmcanbeobtainedasfollows:~Zm((ams;gMF)=Zm(ams;gms(ms))u0="gms ln(ams)+()!#gms=gMF+O(gMF)gMF="gMF ln(ams)+()+!#(0)Thenumericaldataforu0isobtainedbytheColumbialatticegroupat=:forNf=[]:u0=Re
()inthesection..Thisgoodagreementmeansthatinfactthroughperturbativeex-pansionwithrespecttogms(=a),onecanremovethetadpolecontributions,whichisverylargewhenonedoesthepertubativeexpansionwithrespecttothelatticebarecoupling,g0.LightQuarkMassfromQCDsumruleTherearevariousmethodstodeterminethelightquarkmassincontin-uumQCD[0,,,].Theactualdeterminationofthelightquarkmass
intheframeworkofQCDcanbedonereasonablythroughtheQCDsumruleformalismbyShifman,VoloshinandZakharov(S.V.Z. )[,].Inthatformalism,theystudythetwopointcorrelationfunctionofthedivergenceoftheaxialcurrent(isospinsector).Theydeterminetherunningquarkmassat.GeVscalewithNf=i.e.threedynamicalquarksmovingaround.IntheMSscheme,theychooserenormalizationscalemstobethesameastheenergy-momentumscaleofthephysicalprocess.Theirchoice,ms=:GeVmeansphysicallythatthecharmandbottomquarksaredecoupled[0]andthatonlythreelightquarkscontributetothedynamicsoftheQCD.Inotherwords,atms=:GeV,wecannotdecouplethestrangequarkfromthedynamicsoftheQCD.NowwehaveaproblemthatlatticeQCDissimulatednumericallywithdynamicalquarksbuttheQCDsumruleassumesdynamicalquarks.Fromtherecentexperimentaldata[],wehavethefollowingQCDparameter:ms(Nf=)=00MeVwheretheerrorispartlyacombinationofstatistialandsytematicerrorsandpartlyduetothescaleuncertainty.Weshouldusems(Nf=)atthescalebelowthecharmquarkmass.Usingms(Nf=)=00MeV,theQCDsumrulegivesthefollowinglightquarkmass[0].ForNf=,Mms(ms=GeV)=Mu+Md=::0MeVM=:0:0MeV;wherethelargervaluecorrespondstothesmallerms<0MeVandthesmallervaluecorrespondstothelargerms>00MeV.TheQCDsumrulestakeintoconsiderationtheresonancecontributionbutnotthecontinuumcontributiontotheimaginarypartofthetwopointcorrelationfunctionoftheaxialcurrentdivergence.Omittingthiscontin-uumcontributionfromthenon-perturbativelow-energyregioncanintroducearound0%errorstotheaboveexpectationvalueofthelightquarkmass[].Eventhoughthereisadierenceinthenumberofdynamicalquarks,thelatticeQCDexpectationvalueofthequarkmasswithNf=giveninSection.agreeswiththatoftheS.V.Z.QCDsumrulewithNf=intheabove.
Butinordertodotheexactcomparison,thelatticeQCDsimulationwiththreedynmicalquarks(threeseaquarks:oneofthemis00timesheavierthantheothertwolightseaquarks)isnecessarysincethestrangequarkcannotbedecoupledfromtheQCDdynamicsattheenergy-momentumscaleofGeV[0].ConclusionTheQCDdynamicalquarkmassisrenormalizedintwodierentrenor-malizationschemes(MSandlattice-regularizedminimalsubtraction).Thebridgeconditionsarechosentomakeconnectionbetweenthetwoschemes.TheratiosofthecontinuumrenormalizedquarkmasstothelatticebarequarkmassaregiveninTable.Ref.[]containsanearlierattempttocomputetherenormalizedquarkmass.Theirvalueof.MeVissomewhatdierentfromthatofthisarti-cle(.MeV).Fukugitaetal.usetheone-looprenormalizationandEq.(.)inRef.[]isthesameasEq.()exceptforthecouplingconstantthatap-pears.This%dierencecomesfromthedierentchoiceofthecoupling:thebarecouplingonthelatticeisusedinRef. []whiletherenormalizedcouplingisusedinthisarticle.Ithasbeenpointedoutthatthelatticebarecouplingconstantmaybeapoorchoiceasanexpansionparameterandthattheuseoftheimprovedcouplingconstantincludingrenormalizationduetogluontadpolecontributionsimprovesthereliabilityofthelatticeperturba-tiveexpansion[].UsingthemeaneldmethodsuggestedbyLepageandMackenzie,thetadpole-improvedrenormalizedquarkmassisobtained,whichisextremelyclosetothatobtainedbytheuseoftherenormalizedcouplingintheMSschemeatascale.Ithasbeenproposedinothercontexts[0]tousetherenormalizedcoupling(intheMSschemewiththerenormalizationscaleequaltothephysicalenergy-momentum)insteadofthebarecoupling.Attheleast,thedierencesbetweentheresultsobtainedhereandthoseofFukugitaetal.representthesizeoftheperturbativeerrors.TheQCDsumrulepredictsthattherenormalizedquarkmass(ataGeVscaleintheMSscheme)is::0MeVandthattherenormalizationgroupinvariantmassis:0:0MeVforNf=,with0%uncertainty[0,,].Therenormalizedquarkmass(ataGeVscaleintheMSscheme)obtainedfromthelatticeQCDsimulationis.MeVandthe
renormalizationgroupinvariantmass.MeVforNf=.Thedierencebetween-avordynamicsand-avordynamicswithoneofthethreeavorsmuchheaviermaybepresumedtobesosmallthatthecomparisonbetween-avorand-avordynamicsmaymakephysicalsense.TherearetwoothersourcesoferrorinthelatticeQCDsimulation:oneisnite-temperatureeectandtheothernite-volumeeect.Inthehadronmasscalculationson,andshowsapproximately0%eect[].Thesesmalleectsarecompletelyneglectedinthisarticle.Butthesystematicanalysisofnitesizeeectsshouldbedonetolookintophysicsonthelatticemoreprecisely.AcknowledgementsIamindebtedalottoProf.NormanH.Christ.Thisworkcouldnothavebeendonewithouthisconsistenthelpandencouragement.HelpfulconversationswithProf.R.Friedberg,Prof.RobertD.Mawhinney,Prof.A.MuellerandProf.V.P.Nairareacknowledgedwithgratitude.0
References[]A.HasenfratzandP.Hasenfratz,Phys.Lett.B(0).[]A.HasenfratzandP.Hasenfratz,Nucl.Phys.B()0.[]W.CelmasterandR.Gonsalves,Phys.Rev.D0,()0.[]H.S.Sharatchandra,H.J.ThunandP.Weisz,Nucl.Phys.B()0.[]M.F.L.GoltermanandJ.Smit,Nucl.Phys.B().[]M.F.L.GoltermanandJ.Smit,Phys.Lett.0B().[]M.Fukugita,N.Ishizuka,H.Mino,M.OkawaandA.Ukawa,KEK-TH-0()[]FrankR.Brown,etal.,Phys.Rev.Lett.()0.[]HongChen,ColumbiaPh.D.Thesis()[0]J.GasserandH.Leutwyler,Phys.Rep.C().[]G.WestLA-UR--0[]a)G.Parisi,inHighEnergyPhysics-0,proceedingsoftheXXin-ternationalConference,Madison,Wisconsin,L.DurandandL.G.Pon-drom,editors,AmericanInstituteofPhysics()b)P.LepageandP.Mackenzie,NSF-ITP-0-()c)A.PatelandS.Sharpe,CEBAF-TH--0()d)N.IshizukaandY.Shizawa,UTHEP-()e)N.Ishizukaetal.,Nucl.Phys.B(Proc.Suppl.)0()[]FrankR.Brown,etal.CU-TP-[]S.Gottliebetal.,PhysRev.D().[]C.P.vandenDoelandJ.Smit,Nucl.Phys.B(). []W.E.CaswellandF.Wilzek,Phys.Lett.B().
[]ThisiscalledKallen-LehmanSpectralRepresentation.[]JohnCollins,Renormalization(CambridgeUniversityPress)()[]S.Weinberg,Phys.Rev.D()[0]a)GuidoAltarelli,Phys.Rep.,No.()b)Bardeen,W.A.,Buras,A.J.,Duke,D.W.,&MutaT.Phys.Rev.D()c)alsoinRef.[][]ThisisdiscussedinRef.[],inRef.[]andinQuantumFieldTheoryandtheCriticalPhenomenabyZinn-Justin,.[]andareobtainednumericallyandconsistentwithRef.[].ButEq.()isdierentfromEq.(0c)inRef.[].[]Theconversionoftherunningcouplingscalecanbedone,asfollows:ms=(ms=L)LforNf=,wherems=LisgiveninTableandRef.[].[]Thisscalemustbebiggerthanthepionmassandsmallerthantheheavymesonmass(forexample,charmedmeson).Andthehadronandmesonspectrumissupposedtobegeneratedatthescaleofms=:GeVintherunningcouplingsensethroughthispaper.Thedeterminationoftheeectivescaleoftherenormalizationisalsodiscussedinthedierentcontext[].[]S.Weinberg,AFestschriftforI.I.Rabied.L.Molz(NewYorkAcademyofSciences)()[]a)Y.NambuandG.Jona-Lasinio,Phys.Rev.()b)S.P.Klevansky,Rev.Mod.Phys.Vol.No.()[]J.GasserandH.Leutwyler,Nucl.Phys.B()[]A.I.Vainstein,M.B.Voloshin,V.I.Zakharov,V.A.Novicov,L.B.OkunandM.A.Shifman,Sov.J.Nucl.Phys. ()[]M.A.Shifman,A.I.Vainstein,andV.I.Zakharov,Nucl.Phys.B(),,
[0]a)T.AppelquistandJ.Carazzone,Phys.Rev.D()b)B.OvrutandH.Schnitzer,Phys.Rev.D(0),Nucl.Phys.B(),Nucl.Phys.B()0c)W.BernreutherandW.Wetzel,Nucl.Phys.B()[]a)ReviewofParticleproperties,Phys.Rev.DPart(June)b)ParticlePropertiesDataBooklet(A.I.P.)(June)[]U.HellerandF.Karsch,Nucl.Phys.B()[]a)WendySchaer,Nucl.Phys.B(Proc.Suppl.)0()0b)M.Fukugitaetal.,Nucl.Phys.B(Proc.Suppl. )0()
NfLmsCMms(=a)M0Mms(GeV)M0ML:L:Ams(GeV)M0MM000.0-.....0.0-.....0.0-.00....0.0-.0....0.00-.0....0.000-....0.0.00-0....0.Table:Hereweuse=:,a=:GeV.Theratio,L=msisobtainedfromRef. [].
(a)(b)Figure:One-LoopContributiontotheSelf-Energy(a)gluonexchagedia-gram(b)gluonbubblediagram
출처: arXiv:9310.018 • 원문 보기