KOINEU Logo
Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python

Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python

๋ณธ ๋…ผ๋ฌธ์€ LLM๊ณผ ์ „ํ†ต์ ์ธ ์ •์  ๋ถ„์„ ๋„๊ตฌ(SAST)์˜ ์ทจ์•ฝ์  ํƒ์ง€ ๋Šฅ๋ ฅ์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ ํ”„๋ ˆ์ž„์›Œํฌ์ธ ALPHA๋ฅผ ์„ค๊ณ„ํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ด์ง„ ๋ถ„๋ฅ˜ ๊ธฐ๋ฐ˜ ๋ฒค์น˜๋งˆํฌ๋Š” โ€œ์ทจ์•ฝ์  ์กด์žฌ ์—ฌ๋ถ€โ€๋งŒ์„ ํŒ๋‹จํ•˜๋„๋ก ์ œํ•œ๋ผ, ๊ฐœ๋ฐœ์ž๊ฐ€ ์‹ค์ œ ์ฝ”๋“œ ์ˆ˜์ •์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์ฒด์ ์ธ CWE(CWEโ€‘Common Weakness Enumeration) ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ALPHA๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ํ•จ์ˆ˜ ์ˆ˜์ค€์—์„œ CWE ๋ ˆ์ด๋ธ”์„ ๋ถ€์—ฌํ•˜๊ณ , ์˜ค๋ฅ˜ ์œ ํ˜•์„ ์„ธ ๊ฐ€์ง€ ๊ณ„์ธต์  ํŒจ๋„ํ‹ฐ(

Computer Science Software Engineering
An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions

An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions

๋ณธ ๋…ผ๋ฌธ์€ ๊ธ‰์„ฑ ๋‡Œ์กธ์ค‘ ์˜์ƒ ์ง„๋‹จ์„ ์œ„ํ•œ AI ์‹œ์Šคํ…œ์˜ ๊ฐœ์„  ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋ถˆํ™•์‹ค์„ฑ ์ธ์‹๊ณผ ์˜์‚ฌ๊ฒฐ์ • ์ œ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•œ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ AI ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ์•ˆ์ „์„ฑ, ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์ž„์ƒ ๊ด€๋ จ์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ํ˜์‹ ์€ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ AI ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ถˆํ™•์‹ค์„ฑ ์ธ์‹๊ณผ ์˜์‚ฌ๊ฒฐ์ • ์ œ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋‹จ์ˆœํžˆ ์˜ˆ์ธก์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ถˆํ™•์‹ค์„ฑ์ด ๋†’์€ ๊ฒฝ์šฐ ๋ณด๋ฅ˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜

Framework Image Processing Electrical Engineering and Systems Science
No Image

Harm in AI-Driven Societies: An Audit of Toxicity Adoption on Chirper.ai

๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์†Œ์…œ ์—์ด์ „ํŠธ๊ฐ€ ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์—์„œ ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ๋…์„ฑ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์ ์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” Chirper.ai๋ผ๋Š” ํ”Œ๋žซํผ์„ ํ†ตํ•ด LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ์˜ ๋™์ž‘ ํŒจํ„ด์„ ๊ฒฝํ—˜์ ์œผ๋กœ ๊ฐ์‚ฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์—์ด์ „ํŠธ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋…์„ฑ์„ ์ƒ์„ฑํ•˜๊ณ  ์ฑ„ํƒํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์†Œ์…œ ์—์ด์ „ํŠธ์˜ ํ–‰๋™ ์ดํ•ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, Chirper.ai ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜์—ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ๋…์„ฑ ์ฝ˜

Computer Science Multiagent Systems
LLM Collusion

LLM Collusion

๋ณธ ๋…ผ๋ฌธ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ๊ฐ€๊ฒฉ ๊ฒฐ์ • ์ฒด๊ณ„์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋ถˆ๋ฒ•์ ์ธ ๋‹ดํ•ฉ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ์  ์œ„ํ—˜์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLM์˜ ๊ณต์œ ๋œ ์ง€์‹ ์ธํ”„๋ผ์™€ ๋ฐ์ดํ„ฐ ์ง‘์  ์ •์ฑ…์ด ์–ด๋–ป๊ฒŒ ์‹œ์žฅ ์ˆ˜์ค€์—์„œ ์กฐ์œจ๋˜์ง€ ์•Š์€ ํ˜‘๋ ฅ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์–ด๋–ป๊ฒŒ ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ ์œ„ํ—˜์„ฑ์„ ๋†’์ด๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ์€ LLM์ด ๊ฐ€๊ฒฉ ์ฑ…์ •์— ํ™œ์šฉ๋  ๋•Œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ฝœ๋ฃจ์…˜ ์œ„ํ—˜์„ ์ด๋ก ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ์—ฐ๊ตฌ๋Š” LLM์ด

Economics
Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๊ฐ์„ฑ ๋ถ„์„์ด๋‚˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ถ„๋ฅ˜๊ธฐ ์ค‘์‹ฌ์˜ ์–‘๊ทนํ™” ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ํ…์ŠคํŠธ์—์„œ โ€˜์ž…์žฅ(stance)โ€™, โ€˜๊ฐ์ •์  ์–ด์กฐ(affective tone)โ€™, โ€˜๋™์˜ยท๋ฐ˜๋Œ€ ํŒจํ„ด(agreement dynamics)โ€™์„ ๋‹ค์ธต์ ์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ๋‹จ์ผ ์ฐจ์›์˜ ๊ฐ์„ฑ ์ ์ˆ˜(๊ธ์ •/๋ถ€์ •) ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ๋ ˆ์ด๋ธ”(์ฐฌ์„ฑ/๋ฐ˜๋Œ€)๋งŒ์„ ์ œ๊ณตํ–ˆ์ง€๋งŒ, LLM์€ ๋ฌธ๋งฅ์„ ๊ณ ๋ คํ•ด ๋ฏธ๋ฌ˜ํ•œ ์ž…์žฅ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ณ , ๊ฐ์ •์˜ ๊ฐ•๋„์™€ ์œ ํ˜•(๋ถ„๋…ธ, ์Šฌํ””, ํ˜์˜ค ๋“ฑ)๊นŒ์ง€ ์„ธ๋ถ„ํ™”ํ•œ๋‹ค.

Computer Science Social Networks Model
Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

์ด ๋…ผ๋ฌธ์€ ์†Œ๋งค ํŒ๋งค ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ LSTM ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ž์› ์ œ์•ฝ์„ ๊ฐ€์ง„ ์†Œ๊ทœ๋ชจ ๋ฐ ์ค‘์†Œ ๊ทœ๋ชจ ๋งค์žฅ์—์„œ๋„ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ์ด ๋…ผ๋ฌธ์€ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ํŠนํžˆ 64๊ฐœ ์€๋‹‰ ์œ ๋‹›์„ ๊ฐ€์ง„ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” ํ‘œ์ค€ LSTM(128๊ฐœ ์€๋‹‰ ์œ ๋‹›)๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์ถ”๋ก 

Computer Science Network Machine Learning Model
Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

๋ณธ ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์— ๋”ฐ๋ฅธ ๋ถ€์ž‘์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„์กฐ์˜ CT ์˜์ƒ๋งŒ์„ ์ด์šฉํ•ด ํ์ƒ‰์ „์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” 3D ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(3Dโ€‘CNN) ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๋‹จ๊ณ„์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์ด ๊ธˆ์ง€๋œ ํ™˜์ž๊ตฐ๊ณผ ๊ธฐ์กด CTPA ์˜์ƒ์—์„œ ๋ผ๋ฒจ๋ง๋œ ํ์ƒ‰์ „์ฆ ์‚ฌ๋ก€๋ฅผ ๋งค์นญ์‹œ์ผœ, ๋น„์กฐ์˜ CT์™€ ๋ผ๋ฒจ ์ •๋ณด๋ฅผ ์ผ์น˜์‹œ์ผฐ๋‹ค. ์ด๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋ฉด์„œ๋„ ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™•๋ณดํ•˜๋Š” ์ „๋žต์ด๋‹ค. ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์ž…๋ ฅ ๋ณผ๋ฅจ์„ 3์ฐจ์›์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ํํ˜ˆ๊ด€ ๋ฐ ์ฃผ๋ณ€ ์กฐ์ง์˜ ๋ฏธ์„ธํ•œ ๋ฐ€๋„ ์ฐจ์ด๋ฅผ

Computer Vision Computer Science Learning
No Image

FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems

FlashInferโ€‘Bench ๋…ผ๋ฌธ์€ โ€œAIโ€‘generated GPU kernelโ€์ด๋ผ๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ํ๋ฆ„์„ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜ ์„ค๊ณ„๋ผ๋Š” ๊ด€์ ์—์„œ ๋งค์šฐ ์˜๋ฏธ ์žˆ๋Š” ๊ธฐ์—ฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ FlashInfer Trace ๋ผ๋Š” ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์Šคํ‚ค๋งˆ์ด๋‹ค. ๊ธฐ์กด์— LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ๋กœ ์ €์žฅํ•˜๊ณ  ์ธ๊ฐ„์ด ์ˆ˜๋™์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ์‹์€ ํ™•์žฅ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. Trace๋Š” ์ปค๋„ ์ธํ„ฐํŽ˜์ด์Šค(์ž…์ถœ๋ ฅ ํ…์„œ ํ˜•ํƒœ, ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰), ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ(๋ฐฐ์น˜ ํฌ๊ธฐ, ์‹œํ€€์Šค ๊ธธ์ด), ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ(์–ธ์–ด, ์ปดํŒŒ์ผ ์˜ต์…˜)

Computer Science Artificial Intelligence System
Classifying long legal documents using short random chunks

Classifying long legal documents using short random chunks

์ด ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ฌธ์„œ์™€ ๊ฐ™์ด ํ…์ŠคํŠธ ๊ธธ์ด๊ฐ€ ์ˆ˜์ฒœ ํ† ํฐ์— ๋‹ฌํ•˜๋Š” ๋„๋ฉ”์ธ์—์„œ Transformer ๋ชจ๋ธ์˜ ์ž…๋ ฅ ์ œํ•œ์„ ์šฐํšŒํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ณดํ†ต ์ „์ฒด ๋ฌธ์„œ๋ฅผ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ๋ฐฉ์‹์œผ๋กœ ๋‚˜๋ˆ„๊ฑฐ๋‚˜, ํ•ต์‹ฌ ๋ฌธ์žฅ์„ ์ถ”์ถœํ•˜๋Š” ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์— ์˜์กดํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ๋Š” ์—ฐ์‚ฐ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ณ , ํ•ต์‹ฌ ๋ฌธ์žฅ ์ถ”์ถœ์€ ๋„๋ฉ”์ธ ํŠนํ™”๋œ ์š”์•ฝ ๋ชจ๋ธ์ด ํ•„์š”ํ•ด ์ถ”๊ฐ€ ๋น„์šฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ โ€œ๋ฌด์ž‘์œ„ ์ฒญํฌ ์ƒ˜ํ”Œ๋งโ€์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. 48๊ฐœ์˜ ์ฒญํฌ๋ฅผ ๋ฌด์ž‘์œ„๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ๋ฌธ์„œ ์ „์ฒด์˜ ๋‹ค์–‘

Computer Science NLP
No Image

DynaFix: Iterative Automated Program Repair Driven by Execution-Level Dynamic Information

DynaFix๊ฐ€ ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œ์‹คํ–‰โ€‘๋ ˆ๋ฒจ ๋™์  ์ •๋ณดโ€๋ฅผ ๋ฐ˜๋ณต์ ์ธ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ LLM ๊ธฐ๋ฐ˜ APR์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด LLMโ€‘APR ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •์  ์ฝ”๋“œ ๊ตฌ์กฐ์™€ ํ…Œ์ŠคํŠธ ์Šค์œ„ํŠธ ๊ฒฐ๊ณผ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ์‹ค์ œ ๋™์ž‘์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ •์  ์ •๋ณด๋งŒ์œผ๋กœ๋Š” ๋ณ€์ˆ˜ ๊ฐ’์˜ ๋ณ€๋™, ์กฐ๊ฑด๋ฌธ ๋ถ„๊ธฐ, ์˜ˆ์™ธ ๋ฐœ์ƒ ๊ฒฝ๋กœ ๋“ฑ ๋ณต์žกํ•œ ๋Ÿฐํƒ€์ž„ ์ƒํ™ฉ์„ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. DynaFix๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ํ”„๋กœ๊ทธ๋žจ์„ ์‹ค์ œ๋กœ ์‹คํ–‰ํ•˜๊ณ , ๋ณ€์ˆ˜ ์Šค๋ƒ…์ƒท, ์ œ์–ด ํ๋ฆ„ ํŠธ๋ ˆ์ด์Šค, ํ˜ธ์ถœ ์Šคํƒ ๋“ฑ

Computer Science Software Engineering
ํ™•๋ฅ ์  ํŠธ๋ฆฌ ํƒ์ƒ‰์œผ๋กœ ๊ฐ•ํ™”๋œ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ ์ถ”๋ก 

ํ™•๋ฅ ์  ํŠธ๋ฆฌ ํƒ์ƒ‰์œผ๋กœ ๊ฐ•ํ™”๋œ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ ์ถ”๋ก 

: ๋ณธ ๋…ผ๋ฌธ์€ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ(DLMs)์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. DLMs๋Š” ์ด์‚ฐ ์‹œํ€€์Šค ์ƒ์„ฑ์—์„œ ์ž์œจ์ (Autoregressive, AR) ๋ชจ๋ธ์— ๋Œ€ํ•ญํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„์ „์ž๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ํ† ํฐ์„ ๋…๋ฆฝ์ ์œผ๋กœ ๋งˆ์Šคํ‚นํ•˜์—ฌ ์˜ค์—ผ ๊ณผ์ •์„ ์—ญ์ „์‹œํ‚ค๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•˜๋ฉฐ, ์ด๋Š” ๋ณ‘๋ ฌ ์ •์ œ์™€ ๊ธ€๋กœ๋ฒŒ ์ผ๊ด€์„ฑ ํ–ฅ์ƒ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. DLMs์˜ ์ถ”๋ก  ๊ณผ์ • DLMs์˜ ์ถ”๋ก  ๊ณผ์ •์€ ๋ณธ์งˆ์ ์œผ๋กœ ๊ฒ€์ƒ‰ ๋ฌธ์ œ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ์˜ค์—ผ๋œ ์‹œํ€€์Šค๋กœ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ, ๋ชจ๋ธ์€ ์–ด๋–ค ์œ„์น˜๋ฅผ ํ•ด์ œํ•˜๊ณ  ์–ด๋–ค ํ† ํฐ์„ ํ• ๋‹นํ• ์ง€ ๋ฐ˜๋ณต์ 

Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning

Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ง€๋ฐ˜๊ณตํ•™ ๋ถ„์•ผ์— ๋„์ž…๋œ ์„ธ ๊ฐ€์ง€ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌโ€”๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง(PINN), ๋”ฅ ์—ฐ์‚ฐ์ž ๋„คํŠธ์›Œํฌ(DeepONet), ๊ทธ๋ž˜ํ”„ ๋„คํŠธ์›Œํฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ(GNS)โ€”๋ฅผ ์ „ํ†ต์ ์ธ ์ˆ˜์น˜ ํ•ด๋ฒ•๊ณผ ์ง์ ‘ ๋น„๊ตํ•จ์œผ๋กœ์จ ์‹ค์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์ธ ํŒŒ๋™ ์ „ํŒŒ ๋ฌธ์ œ๋Š” ๊ณ ์ฃผํŒŒ ๋™์  ์‘๋‹ต์„ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ์ „ํ˜•์ ์ธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์ด๋‹ค. ์—ฌ๊ธฐ์„œ PINN์€ ๋ฌผ๋ฆฌ ๋ฐฉ์ •์‹์„ ์†์‹ค ํ•จ์ˆ˜์— ์ง์ ‘ ์‚ฝ์ž…ํ•˜๋Š” ๋ฐฉ์‹์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ฏธ๋ถ„ ์—ฐ์‚ฐ๊ณผ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ์œผ๋กœ ์ธํ•ด ์œ ํ•œ์ฐจ๋ถ„(FD) ๋Œ€๋น„ 90 000๋ฐฐ ๋А๋ ค์กŒ๋‹ค. ์˜ค์ฐจ ์ธก๋ฉด์—์„œ

Learning Physics
No Image

Factorized Learning for Temporally Grounded Video-Language Models

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋น„๋””์˜คโ€‘์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ•œ ๋ฒˆ์— ์ „์ฒด ๋น„๋””์˜ค๋ฅผ ์š”์•ฝํ•˜๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•œ๋‹คโ€๋Š” ์ „ํ†ต์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํƒˆํ”ผํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ํ๋ฆฟํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š” ์‹œ๊ฐ์  ์ฆ๊ฑฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ œ์‹œํ•˜์ง€ ๋ชปํ•ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” generation objective์˜ factorization ์ด๋‹ค. ๋ชจ๋ธ์ด ๋จผ์ € โ€œ์–ด๋–ค ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š”๊ฐ€โ€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ๊ทธ ๊ตฌ๊ฐ„์— ํ•ด๋‹นํ•˜๋Š” evidence

Computer Science Model Learning Computer Vision
Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training

Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training

์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ์กฐ์ž‘ ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ, ์ฆ‰ โ€œ๋„“์€ ์˜๋ฏธ์  ์ผ๋ฐ˜ํ™”โ€์™€ โ€œ๊ณ ์ •๋ฐ€ ์—ฐ์† ์ œ์–ดโ€ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ง„๋‹จํ•˜๊ณ  ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๋จผ์ € ERIQ(Embodied Reasoning Intelligence Quotient)๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ์ด๋Š” ๊ธฐ์กด VLA ๋ชจ๋ธ ํ‰๊ฐ€๊ฐ€ โ€œ์ž…๋ ฅโ€‘์ถœ๋ ฅโ€ ํ˜•ํƒœ์˜ ์„ฑ๊ณต๋ฅ ์—๋งŒ ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐ˜๋ฉด, ์งˆ๋ฌธโ€‘๋‹ต๋ณ€ ํ˜•ํƒœ์˜ 6์ฒœ ๊ฐœ ์ด์ƒ ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด โ€˜์ถ”๋ก  ๋‹จ๊ณ„โ€™๋ฅผ ๋ณ„๋„๋กœ ์ธก์ •ํ•œ๋‹ค๋Š” ์ ์ด ์ฐจ๋ณ„์ ์ด๋‹ค. ๋„ค ๊ฐ€์ง€ ์ถ”๋ก  ์ฐจ์›(์˜ˆ: ๋ฌผ์ฒด ๊ด€๊ณ„ ์ดํ•ด,

Computer Science Robotics
Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection

Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection

ํ•˜์ดํผ๋ณผ๋ฆญ ๊ทธ๋ž˜ํ”„ ์ž„๋ฒ ๋”ฉ์€ ์ตœ๊ทผ ๋ณต์žกํ•˜๊ณ  ๋น„์œ ํด๋ฆฌ๋“œ์ ์ธ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์œ ํด๋ฆฌ๋“œ ์ž„๋ฒ ๋”ฉ์€ ๋…ธ๋“œ ๊ฐ„ ๊ฑฐ๋ฆฌ์™€ ๊ด€๊ณ„๋ฅผ ํ‰๋ฉด ํ˜น์€ ์ €์ฐจ์› ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์— ํˆฌ์‚ฌํ•จ์œผ๋กœ์จ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋‚˜ ์Šค์ผ€์ผโ€‘ํ”„๋ฆฌ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ™์€ ๊ณ ์ฐจ์›์  ๊ณ„์ธต์„ฑ์„ ์ถฉ๋ถ„ํžˆ ํ‘œํ˜„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด, ํ•˜์ดํผ๋ณผ๋ฆญ ๊ณต๊ฐ„์€ ์ง€์ˆ˜์ ์œผ๋กœ ํ™•์žฅ๋˜๋Š” ๋ณผ๋ฅจ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ๋™์ผํ•œ ์ฐจ์› ๋‚ด์—์„œ ๋” ๋งŽ์€ ๋…ธ๋“œ๋ฅผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ํŠนํžˆ ์ด์ƒ ํƒ์ง€์™€ ๊ฐ™์ด ์ •์ƒ ํŒจํ„ด๊ณผ ๋น„์ •์ƒ ํŒจํ„ด ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋ฅผ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ์ž‘์—…์— ์œ ๋ฆฌํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”

Detection
A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ๋‹ค์ธต ํ˜•์‹ ๊ธฐ์ˆ  ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต ๊ณผ์ •์„ โ€˜๊ธฐ์ˆ โ€™ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด์˜ โ€˜์˜ˆ์ธกยท์ตœ์ ํ™”โ€™ ์ค‘์‹ฌ ๋ชจ๋ธ๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ํ•™์Šต์€ ๋‹จ์ˆœํžˆ ์„ฑ๊ณผ๋ฅผ ๋†’์ด๋Š” ๋ชฉํ‘œ ํ•จ์ˆ˜์˜ ์ตœ์†Œํ™”๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•™์Šต์ž ๋‚ด๋ถ€์˜ ์ƒํƒœ๊ฐ€ ์™ธ๋ถ€ ์ž๊ทน๊ณผ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ๋ณ€ํ˜•๋˜๋Š”๊ฐ€์— ๋Œ€ํ•œ ์„œ์ˆ ์  ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ํ•™์Šต์„ ๋„ค ๊ฐœ์˜ ๊ธฐ๋Šฅ์  ์ธตโ€”๋ถ€ํ•˜ ์ƒ์„ฑ์ธต, ๋‚ด๋ถ€ ๋ณ€ํ™˜์ธต, ๊ด€์ฐฐยท์ธก์ •์ธต, ํ‰๊ฐ€ยท์กฐ์ ˆ์ธตโ€”์œผ๋กœ ๋ถ„๋ฆฌํ•˜๊ณ , ๊ฐ ์ธต์ด ๋‹ด๋‹นํ•˜๋Š” ์ฑ…์ž„์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ถ€ํ•˜ ์ƒ์„ฑ์ธต์€ ์™ธ๋ถ€ ๊ณผ์ œยท์ž๋ฃŒ๊ฐ€ ํ•™์Šต์ž์—๊ฒŒ ์ œ๊ณต๋  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ธ์ง€ ๋ถ€

Learning System
More Consistent Accuracy PINN via Alternating Easy-Hard Training

More Consistent Accuracy PINN via Alternating Easy-Hard Training

๋ณธ ๋…ผ๋ฌธ์€ PINNs์˜ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ์ „๋žต์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํ•˜๋“œ ์šฐ์„ ์ˆœ์œ„์™€ ์‰ฌ์šด ์šฐ์„ ์ˆœ์œ„ ์ง€์ •์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด PINNs์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต ์ „๋žต ๋น„๊ต ํ•˜๋“œ ์šฐ์„ ์ˆœ์œ„: ์ด ๋ฐฉ๋ฒ•์€ ๋†’์€ ์†์‹ค ์ƒ˜ํ”Œ ํฌ์ธํŠธ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ๋ชจ๋ธ์ด PDE ๋„๋ฉ”์ธ์˜ ๋” ๋„์ „์ ์ธ ์˜์—ญ์— ์ง‘์ค‘ํ•˜๋„๋ก ์œ ๋„ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ž”์—ฌ ๊ธฐ๋ฐ˜ Smote(RSmote)๋Š” ๋ถˆ๊ท ํ˜• ํ•™์Šต ์ „๋žต์„ ์œ„ํ•œ ์ง€์—ญ์  ์ ์‘ํ˜• ์ƒ˜ํ”Œ๋ง ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ณ„์‚ฐ์ ์œผ๋กœ ํฐ ์ž”์—ฌ ์†์‹ค์ด ์žˆ๋Š” ์˜

From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?

From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?

: ๋ณธ ๋…ผ๋ฌธ์€ ์‹ ๊ฒฝ๋ง ๋‚ด์—์„œ ์›์ธ ๋ณ€์ˆ˜์™€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•˜๊ณ  ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ํŠนํžˆ, ํฌ์†Œ ์ž๊ฐ€ ์ธ์ฝ”๋”(SAE)์™€ ๊ฐ™์€ ํŠน์ง•ํ™” ๋ฐฉ๋ฒ•์ด ํ™œ์„ฑํ™” ๋ฒกํ„ฐ๋ฅผ ๋” ํฌ์†Œํ•œ ๊ณต๊ฐ„์œผ๋กœ ๋งคํ•‘ํ•˜์—ฌ ์ฐจ์›๊ณผ ๊ฐœ๋… ๊ฐ„์˜ ์ผ๋Œ€์ผ ๊ด€๊ณ„๋ฅผ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ์‹์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. 1. ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์›์ธ ๋ณ€์ˆ˜ ์ œ์–ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์€ ์‹ ๊ฒฝ๋ง์˜ ํ–‰๋™ ์ดํ•ด ๋ฐ ์ œ์–ด๋ฅผ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋ถ„์•ผ์ด๋‹ค. ์ด๋Š” ๊ธฐ๋ณธ์ ์ธ ์›์ธ ๋ณ€์ˆ˜์™€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํŒŒ์•…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ํฌํ•จํ•œ๋‹ค. ํฌ์†Œ ์ž๊ฐ€ ์ธ์ฝ”๋”(SAE)์™€ ๊ฐ™์€ ํŠน์ง•ํ™” ๋ฐฉ๋ฒ•์ด ํ™œ์„ฑํ™” ๋ฒกํ„ฐ๋ฅผ ๋” ํฌ์†Œํ•œ ๊ณต๊ฐ„์œผ๋กœ ๋งคํ•‘ํ•˜์—ฌ

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

์ข…ํ•ฉ ๋ถ„์„: ๋น…๋ฐ์ดํ„ฐ ๊ต์œก ์‹ค์Šต ๋ณด๊ณ ์„œ 1. ์—ฐ๊ตฌ ๊ฐœ์š”์™€ ๋ฐฉ๋ฒ•๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น…๋ฐ์ดํ„ฐ ํ”„๋กœ์ ํŠธ์˜ ํ†ตํ•ฉ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•˜๋ฉฐ, ์„ธ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜•๊ณผ ๊ทœ๋ชจ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. Epsilon ๋ฐ์ดํ„ฐ์…‹ : ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด MLP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ 2000๊ฐœ์˜ ํŠน์ง•๊ณผ 100,000๊ฐœ์˜ ์ธ์Šคํ„ด์Šค๋กœ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. PyTorch์™€ GPU ๊ฐ€์†(CUDA)์„ ํ™œ์šฉํ•ด 88.98%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. Rest Mex ๋ฐ์ดํ„ฐ์…‹ : ๋ฉ•์‹œ์ฝ” ๊ด€๊ด‘ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ์ • ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Data Learning
Architectures for Building Agentic AI

Architectures for Building Agentic AI

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ๋…ผ์ง€๋Š” โ€œ์‹ ๋ขฐ์„ฑ์€ ๋ชจ๋ธ ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ์— ๋‹ฌ๋ ค ์žˆ๋‹คโ€๋Š” ์ ์ด๋‹ค. ์—์ด์ „ํŠธํ˜• AI๋ฅผ ๋‹จ์ˆœํžˆ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์ด๋‚˜ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ์ง‘ํ•ฉ์œผ๋กœ ๋ณด๋Š” ๊ด€์ ์—์„œ ๋ฒ—์–ด๋‚˜, ๋ชฉํ‘œโ€‘๊ด€๋ฆฌ์ž, ํ”Œ๋ž˜๋„ˆ, ๋„๊ตฌโ€‘๋ผ์šฐํ„ฐ, ์‹คํ–‰๊ธฐ, ๋ฉ”๋ชจ๋ฆฌ, ๊ฒ€์ฆ๊ธฐ, ์•ˆ์ „โ€‘๋ชจ๋‹ˆํ„ฐ, ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ๋“ฑ์œผ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋œ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋œ โ€˜์•„ํ‚คํ…์ฒ˜โ€™๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์€ ์Šคํ‚ค๋งˆโ€‘์ œํ•œ ์ธํ„ฐํŽ˜์ด์Šค ๋ฅผ ํ†ตํ•ด์„œ๋งŒ ํ†ต์‹ ํ•˜๋„๋ก ์„ค๊ณ„๋˜๋ฉฐ, ์ด๋Š” ์ž…๋ ฅยท์ถœ๋ ฅ ํ˜•์‹์ด ์‚ฌ์ „์— ์ •์˜๋œ JSON ์Šคํ‚ค๋งˆ ๋“ฑ์œผ๋กœ ๊ฒ€์ฆ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์ด ์˜ˆ๊ธฐ์น˜ ์•Š์€ ํ˜•ํƒœ

CourtPressGER: A German Court Decision to Press Release Summarization Dataset

CourtPressGER: A German Court Decision to Press Release Summarization Dataset

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ถ„์•ผ์—์„œ ์ผ๋ฐ˜ ๋Œ€์ค‘์—๊ฒŒ ํŒ๊ฒฐ์„ ์ „๋‹ฌํ•˜๋Š” โ€˜๋ณด๋„์ž๋ฃŒโ€™๋ผ๋Š” ํŠน์ˆ˜ํ•œ ํ…์ŠคํŠธ ์žฅ๋ฅด์— ์ดˆ์ ์„ ๋งž์ถ˜ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด NLP ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํŒ๊ฒฐ๋ฌธ ์ž์ฒด์˜ ๊ตฌ์กฐ์  ์š”์•ฝ์ด๋‚˜ ๋ฒ•๋ฅ ์šฉ์–ด ์ถ”์ถœ ๋“ฑ์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์‹œ๋ฏผ์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ๋‹ค๋ฃจ์ง€๋Š” ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ CourtPressGER์€ โ€˜ํŒ๊ฒฐ๋ฌธโ€‘๋ณด๋„์ž๋ฃŒโ€‘ํ”„๋กฌํ”„ํŠธโ€™๋ผ๋Š” ์‚ผ์ค‘ ํŠธ๋ฆฌํ”Œ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด, ์›๋ฌธ๊ณผ ์ธ๊ฐ„์ด ๋งŒ๋“  ์š”์•ฝ(๋ณด๋„์ž๋ฃŒ) ์‚ฌ์ด์˜ ์ •๋ฐ€ํ•œ ์ •๋ ฌ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Š” LLM์ด ๋‹จ์ˆœํžˆ ์š”์•ฝ์„ ๋„˜์–ด, ๋ฒ•์ 

Data
Dynamic one-time delivery of critical data by small and sparse UAV swarms: a model problem for MARL scaling studies

Dynamic one-time delivery of critical data by small and sparse UAV swarms: a model problem for MARL scaling studies

์š”์•ฝ ๋ฐ ๋ถ„์„ ๋…ผ๋ฌธ ๊ฐœ์š” ์ด ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ•ํ™”ํ•™์Šต(MARL)์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ(UAV)์˜ ๋ถ„์‚ฐ ์ œ์–ด์™€ ๋ฐ์ดํ„ฐ ๋ฆด๋ ˆ์ด ์ตœ์ ํ™”๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ฃผ๋œ ๋ชฉํ‘œ๋Š” ์—ฌ๋Ÿฌ UAV๊ฐ€ ์ง€์ •๋œ ์ง€์—ญ์—์„œ ๋ชฉํ‘œ ๋ฌผ์ฒด๋ฅผ ์ฐพ๊ณ , ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ง€๋กœ ์‹ ์†ํ•˜๊ฒŒ ์ „๋‹ฌํ•˜๋Š” ๊ณผ์ •์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํ•ต์‹ฌ ๋‚ด์šฉ 1. ๋ฌธ์ œ ์ •์˜ : ๋ณธ ๋…ผ๋ฌธ์€ ๋™์ ์ธ UAV์™€ ์ •์ง€ ๊ธฐ์ง€, ๊ฐ„์„ญ ์š”์†Œ ๋“ฑ์„ ํฌํ•จํ•˜์—ฌ ์‹ค์ œ ๋ฌธ์ œ ์ƒํ™ฉ์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. 2. MARL ์ ์šฉ : ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ•ํ™”ํ•™์Šต(MARL) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Multi Agent Proximal Policy Optimiz

Data Model
Mirror Mode in Fire Emblem: Beating Players at their own Game with Imitation and Reinforcement Learning

Mirror Mode in Fire Emblem: Beating Players at their own Game with Imitation and Reinforcement Learning

๋ณธ ์—ฐ๊ตฌ๋Š” ํ„ด์ œ ์ „๋žต ๊ฒŒ์ž„์—์„œ ์  AI๊ฐ€ ํ”Œ๋ ˆ์ด์–ด์˜ ์ „๋žต์„ ๋ชจ๋ฐฉํ•˜๋Š” '๊ฑฐ์šธ ๋ชจ๋“œ'๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ํ‰๊ฐ€ํ•œ ๋‚ด์šฉ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ฒŒ์ž„ ๊ฒฝํ—˜์„ ํ˜์‹ ์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ค๊ณ , ํ”Œ๋ ˆ์ด์–ด ๋งŒ์กฑ๋„๋ฅผ ๋†’์ด๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. 1. ๊ฑฐ์šธ ๋ชจ๋“œ์˜ ๊ฐœ๋… ๋ฐ ๊ตฌํ˜„ ๊ฑฐ์šธ ๋ชจ๋“œ๋Š” ์  AI๊ฐ€ ํ”Œ๋ ˆ์ด์–ด์˜ ์ „๋žต์„ ํ•™์Šตํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ–‰๋™ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ฒŒ์ž„ ๊ฒฝํ—˜์„ ๋”์šฑ ํฅ๋ฏธ๋กญ๊ณ  ๋„์ „์ ์œผ๋กœ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ Unity ์—”์ง„์„ ์‚ฌ์šฉํ•˜์—ฌ Fire Emblem Heroes ์˜ ๊ฐ„์†Œํ™”๋œ ๋ฒ„์ „์—์„œ ํ‘œ์ค€ ๋ชจ๋“œ์™€ ๊ฑฐ์šธ ๋ชจ๋“œ๋ฅผ ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค. 2. ํ•™์Šต ์•Œ๊ณ ๋ฆฌ

Learning
Seeing Soil from Space: Towards Robust and Scalable Remote Soil Nutrient Analysis

Seeing Soil from Space: Towards Robust and Scalable Remote Soil Nutrient Analysis

์ด ๋…ผ๋ฌธ์€ ์›๊ฒฉํƒ์‚ฌ์™€ ๊ณ ๋„ํ™”๋œ ๋ฌผ๋ฆฌโ€‘๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ๋†๊ฒฝ์ง€ ํ† ์–‘ ํŠน์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์ถ”์ •ํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ โ€˜ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ๋งโ€™ ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๊ธฐ์กด ํ† ์–‘ ์˜ˆ์ธก ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ํ•˜๋‚˜๋Š” ํ† ์–‘ ํŠน์„ฑ์„ ์ง์ ‘ ์ŠคํŽ™ํŠธ๋Ÿผ ์‹ ํ˜ธ์™€ ์—ฐ๊ฒฐํ•˜๋Š” ์ง์ ‘ ๋ฐฉ๋ฒ•์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ํ† ์–‘ ํ˜•์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ธฐํ›„ยท์ง€ํ˜•ยท์ง€์งˆ ๋“ฑ ์™ธ์ƒ ๋ณ€์ˆ˜(ํ”„๋ก์‹œ)๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฐ„์ ‘ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๋ฐฉ๋ฒ•์„ ๋™์‹œ์— ์ ์šฉํ•จ์œผ๋กœ์จ ๊ฐ๊ฐ์˜ ์žฅ์ ์„ ๋ณด์™„ํ•œ๋‹ค. ์ง์ ‘ ๋ชจ๋ธ์€ ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ ์ŠคํŽ™

Analysis
Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes

Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes

) Lang3D XL์€ ๋Œ€๊ทœ๋ชจ ์žฅ๋ฉด์˜ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ํƒ์ƒ‰์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, 3D ๊ฐ€์šฐ์‹œ์•ˆ ํ‘œํ˜„์— ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์˜๋ฏธ์  ๋ณ‘๋ชฉ ์ง€์ ์„ ๋„์ž…ํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ์ •์  ์ธํ„ฐ๋„ท ์žฅ๋ฉด์—์„œ์˜ ์ƒํ˜ธ์ž‘์šฉ์ ์ธ ๊ฐ€์ƒ ํƒ์ƒ‰์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ์ฆ๋ฅ˜ ๋ฐฉ๋ฒ•์ด ๋Œ€๊ทœ๋ชจ ์ธํ„ฐ๋„ท ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 1. ์˜๋ฏธ์  ๋ณ‘๋ชฉ ํŠน์„ฑ์˜ ๋„์ž… Lang3D XL์€ ์ €์ฐจ์› ์˜๋ฏธ์  ๋ณ‘๋ชฉ ํŠน์„ฑ์„ 3D ๊ฐ€์šฐ์‹œ์•ˆ ํ‘œํ˜„์˜ ๊ธฐ๋ณธ ๊ตฌ์„ฑ ์š”์†Œ๋กœ ์ถ”๊ฐ€ํ•˜์—ฌ, ๋ Œ๋”๋ง ํ›„ ๋‹ค์ค‘ ํ•ด์ƒ๋„ ๋ฐ

Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

๋ณธ ๋…ผ๋ฌธ์€ Oโ€‘RAN ํ™˜๊ฒฝ์—์„œ ์ž์› ํ• ๋‹น๊ณผ ๋„คํŠธ์›Œํฌ ์Šฌ๋ผ์ด์‹ฑ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด ๋ฉ”ํƒ€โ€‘๊ฐ•ํ™”ํ•™์Šต(Metaโ€‘RL) ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ๋ ˆ๋ฒจ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๊ทธ์ณค์œผ๋ฉฐ, ๋ณต์žกํ•œ Oโ€‘RAN ์‹œ์Šคํ…œ์ฒ˜๋Ÿผ ๋‹ค์ค‘ ๊ณ„์ธต์˜ ์˜์‚ฌ๊ฒฐ์ • ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ €์ž๋Š” ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์ˆ˜์ค€ โ€˜์ž์› ํ• ๋‹น ์ปจํŠธ๋กค๋Ÿฌโ€™์™€ ์ €์ˆ˜์ค€ โ€˜์Šฌ๋ผ์ด์Šค ๋‚ด๋ถ€ ์Šค์ผ€์ค„๋Ÿฌโ€™๋ผ๋Š” ๋‘ ๊ฐœ์˜ ์—์ด์ „ํŠธ๋ฅผ ๊ณ„์ธต์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ณ , ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ธ ๊ฐ•ํ™”ํ•™์Šต ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ

Learning
A Unifying Human-Centered AI Fairness Framework

A Unifying Human-Centered AI Fairness Framework

๋ณธ ๋…ผ๋ฌธ์€ AI ์‹œ์Šคํ…œ์˜ ๊ณต์ •์„ฑ์„ ๋‹ค๋ฃจ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋Š” ํ•˜๋‚˜์˜ ๊ณต์ •์„ฑ ์ง€ํ‘œโ€”์˜ˆ๋ฅผ ๋“ค์–ด ๊ทธ๋ฃน ๊ณต์ •์„ฑ ํ˜น์€ ๊ฐœ๋ณ„ ๊ณต์ •์„ฑโ€”์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ํ•ด๋‹น ์ง€ํ‘œ๋ฅผ ์ตœ์ ํ™”ํ•˜๋ ค๋Š” ์ ‘๊ทผ์„ ์ทจํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฌํšŒ์ ยท๋ฒ•์  ๋งฅ๋ฝ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ณต์ •์„ฑ ๊ฐœ๋…์ด ๋™์‹œ์— ์ถฉ๋Œํ•˜๊ณ , ์ดํ•ด๊ด€๊ณ„์ž๋งˆ๋‹ค ์ค‘์‹œํ•˜๋Š” ๊ฐ€์น˜๊ฐ€ ๋‹ค๋ฅด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ๋ฒ• ๋ถ„์•ผ์—์„œ๋Š” โ€˜๋™๋“ฑ ๊ธฐํšŒ(EOP)โ€™์™€ โ€˜๊ฒฐ๊ณผ ํ‰๋“ฑโ€™ ์‚ฌ์ด์— ๋šœ๋ ทํ•œ ๊ธด์žฅ์ด ์กด์žฌํ•˜๊ณ , ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ๋Š” ํ™˜์ž ๊ทธ๋ฃน ๊ฐ„์˜ ์ ‘๊ทผ์„ฑ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋™์‹œ์— ์น˜๋ฃŒ ํšจ์œจ์„ฑ์„ ์œ ์ง€ํ•ด์•ผ ํ•˜๋Š” ๋ณตํ•ฉ์ 

Framework
Memory Power Asymmetry in Human-AI Relationships: Preserving Mutual Forgetting in the Digital Age

Memory Power Asymmetry in Human-AI Relationships: Preserving Mutual Forgetting in the Digital Age

์ด ๋…ผ๋ฌธ์€ AI์™€ ์ธ๊ฐ„ ์‚ฌ์ด์— ์กด์žฌํ•˜๋Š” ๊ธฐ์–ต ๋Šฅ๋ ฅ์˜ ์ฐจ์ด๊ฐ€ ๋‹จ์ˆœํ•œ ์ •๋ณด ๋น„๋Œ€์นญ์„ ๋„˜์–ด ๊ตฌ์กฐ์  ๊ถŒ๋ ฅ ๋ถˆ๊ท ํ˜•์„ ๋งŒ๋“ ๋‹ค๋Š” ์ ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์ธ๊ฐ„์€ ๊ธฐ์–ต์ด ์ œํ•œ์ ์ด๊ณ  ์‹œ๊ฐ„์ด ํ๋ฅด๋ฉด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ง๊ฐํ•œ๋‹ค๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์ƒํ˜ธ ๋ง๊ฐโ€™์€ ๊ฐˆ๋“ฑ์„ ์™„ํ™”ํ•˜๊ณ  ๊ด€๊ณ„๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ธ ์‹ฌ๋ฆฌ์  ์•ˆ์ „๋ง ์—ญํ• ์„ ํ•œ๋‹ค. ๋ฐ˜๋ฉด, ํ˜„๋Œ€ AI ์‹œ์Šคํ…œ์€ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ๊ณ ์„ฑ๋Šฅ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๋Œ€ํ™”, ๊ตฌ๋งค ์ด๋ ฅ, ๊ฐ์ • ํ‘œํ˜„ ๋“ฑ ์ธ๊ฐ„๊ณผ์˜ ๋ชจ๋“  ์ ‘์ ์„ ๊ฑฐ์˜ ์˜๊ตฌ์ ์œผ๋กœ ์ €์žฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์–ต์˜ โ€˜์ง€์†์„ฑโ€™์€ ์ธ๊ฐ„์ด ์˜๋„ํ•˜์ง€ ์•Š์€ ์ƒํ™ฉ์—

NeuroABench: A Multimodal Evaluation Benchmark for Neurosurgical Anatomy Identification

NeuroABench: A Multimodal Evaluation Benchmark for Neurosurgical Anatomy Identification

๋ณธ ๋…ผ๋ฌธ์€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM)์ด ์™ธ๊ณผ ์˜์ƒ, ํŠนํžˆ ์‹ ๊ฒฝ์™ธ๊ณผ ์˜์ƒ์—์„œ ๋ณด์—ฌ์ค„ ์ˆ˜ ์žˆ๋Š” ํ•ด๋ถ€ํ•™์  ์ดํ•ด ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ตœ์ดˆ๋กœ ์„ค๊ณ„๋œ ๋ฒค์น˜๋งˆํฌ์ธ NeuroABench๋ฅผ ์†Œ๊ฐœํ•œ๋‹ค. ๊ธฐ์กด์˜ ์ˆ˜์ˆ  ์˜์ƒ ๋ฐ์ดํ„ฐ์…‹์€ ์ฃผ๋กœ ์ ˆ์ฐจ ๋‹จ๊ณ„, ๋„๊ตฌ ์‚ฌ์šฉ, ์›Œํฌํ”Œ๋กœ์šฐ์™€ ๊ฐ™์€ ๋ฉ”ํƒ€ ์ •๋ณด๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๊ตฌ์ถ•๋˜์–ด ์™”์œผ๋ฉฐ, ์‹ค์ œ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์™ธ๊ณผ ์˜์‚ฌ๊ฐ€ ๊ฐ€์žฅ ์˜์กดํ•˜๋Š” โ€˜ํ•ด๋ถ€ํ•™์  ์ •ํ™•์„ฑโ€™์€ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌํŒ€์€ 9์‹œ๊ฐ„์— ๋‹ฌํ•˜๋Š” 89๊ฐœ์˜ ๋‹ค์–‘ํ•œ ์‹ ๊ฒฝ์™ธ๊ณผ ์ˆ˜์ˆ  ์˜์ƒ์„ ์ˆ˜์ง‘ํ•˜๊ณ , ๋‹ค์ค‘ ๊ฒ€ํ†  ์‚ฌ์ดํด์„

Partial Inverse Design of High-Performance Concrete Using Cooperative Neural Networks for Constraint-Aware Mix Generation

Partial Inverse Design of High-Performance Concrete Using Cooperative Neural Networks for Constraint-Aware Mix Generation

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์„ฑ๋Šฅ ์ฝ˜ํฌ๋ฆฌํŠธ(HPC)์˜ ๋ฐฐํ•ฉ ์„ค๊ณ„ ๊ณผ์ •์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€œ๋ถ€๋ถ„ ์—ญ์„ค๊ณ„โ€ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์ฝ˜ํฌ๋ฆฌํŠธ ์„ค๊ณ„๋Š” ๊ฒฝํ—˜์  ๊ณต์‹์ด๋‚˜ ์ „ํ–ฅ์ (Forward) ์˜ˆ์ธก ๋ชจ๋ธ์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์„ค๊ณ„ ๋ณ€์ˆ˜(์‹œ๋ฉ˜ํŠธ, ๋ฌผ, ๊ณจ์žฌ, ํ˜ผํ™”์ œ ๋“ฑ)๋ฅผ ๋ชจ๋‘ ์ž์œ ๋กญ๊ฒŒ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์ „์ œํ•˜์— ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ํŠน์ • ๋ณ€์ˆ˜(์˜ˆ: ๋ฌผ๋Ÿ‰, ๊ณจ์žฌ ๋น„์œจ, ํŠน์ • ํ˜ผํ™”์ œ ์‚ฌ์šฉ ์—ฌ๋ถ€ ๋“ฑ)๊ฐ€ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ๊ณ ์ •๋˜์–ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ œ์•ฝ ํ•˜์—์„œ ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์„ ์—ญ์œผ๋กœ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ๋Š” ๋ณ€์ˆ˜ ๊ฐ„ ๋น„์„ 

Network
Convergence of Outputs When Two Large Language Models Interact in a Multi-Agentic Setup

Convergence of Outputs When Two Large Language Models Interact in a Multi-Agentic Setup

: ๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด ์„œ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์„ค์ •์—์„œ์˜ ์ˆ˜๋ ด ํ˜„์ƒ์„ ํƒ๊ตฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฏธ์ŠคํŠธ๋ž„ ๋„ค๋ชจ ๋ฒ ์ด์Šค 2407๊ณผ ๋ผ๋งˆ 2 13B HF ๋‘ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ชจ๋ธ์€ ๋…๋ฆฝ์ ์œผ๋กœ ํ›ˆ๋ จ๋œ ๊ณ ์œ ํ•œ ๊ฐ€์ค‘์น˜์™€ ํ† ํฐ๋ผ์ด์ €๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ์ดˆ๊ธฐ ์งง์€ ๋ฌธ์žฅ์œผ๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋Œ€ํ™”์—์„œ ๋‘ ๋ชจ๋ธ์ด ์ƒ๋Œ€๋ฐฉ์˜ ์ถœ๋ ฅ์— ์‘๋‹ตํ•˜๋ฉฐ 25ํšŒ ๋ฐ˜๋ณต๋˜๋Š” ๊ณผ์ •์„ ๊ด€์ฐฐํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ˆ˜๋ ด ํ˜„์ƒ์˜ ํŠน์ง• ์ˆ˜๋ ด ํ˜„์ƒ์€ ๋Œ€ํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ผ๊ด€์„ฑ ์žˆ๋Š” ํŒจํ„ด์ด ๋‚˜ํƒ€๋‚˜

Model
Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žก๊ณ„ ๋ถ„์„์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋‚œ์ œโ€”๋น„์ •์ƒ์„ฑ, ์žฅ๊ธฐ ์˜์กด์„ฑ(๋กฑ ๋ฉ”๋ชจ๋ฆฌ), ๊ทธ๋ฆฌ๊ณ  ํ—ค๋น„ํ…Œ์ผ ๋ถ„ํฌโ€”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ์ƒ๊ด€ํ–‰๋ ฌ ๊ตฌ์ถ• ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์€ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ์ „์ œ๋กœ ํ•˜์—ฌ ๋น„์ •์ƒ์ ์ธ ํŠธ๋ Œ๋“œ๋‚˜ ๋น„์„ ํ˜• ๋ณ€๋™์„ ์ œ๋Œ€๋กœ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋‹ค์ค‘ํ”„๋ž™ํƒˆ ๋น„์ •์ƒ ๊ต์ฐจ์ƒ๊ด€๊ณ„์ˆ˜ ฯ r์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์‹œ๊ณ„์—ด์„ ๋‹ค์ค‘์Šค์ผ€์ผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ  ๊ฐ ์Šค์ผ€์ผ์—์„œ ํŠน์ • ์ง„ํญ ๋ฒ”์œ„์˜ ๋ณ€๋™๋งŒ์„ ๊ฐ•์กฐํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ r์€ ๋ณ€๋™์˜ ํฌ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ฐจ์ˆ˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ, r > 0์ด๋ฉด

Evolutionary System 2 Reasoning: An Empirical Proof

Evolutionary System 2 Reasoning: An Empirical Proof

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ๋ณด์—ฌ์ฃผ๋Š” โ€œํŠน์ • ์ž‘์—…์— ๋Œ€ํ•œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅโ€๊ณผ โ€œ์ผ๋ฐ˜์ ์ธ ์ง€๋Šฅ, ํŠนํžˆ ์‹œ์Šคํ…œ 2์™€ ์—ฐ๊ด€๋œ ๋А๋ฆฐ ์‚ฌ๊ณ  ๋Šฅ๋ ฅโ€ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์‹œ์Šคํ…œ 2๋Š” ์ธ๊ฐ„์ด ๋ณต์žกํ•œ ๋…ผ๋ฆฌ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋•Œ ์˜์‹์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ณ ์ฐจ์›์  ์‚ฌ๊ณ  ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด LLM์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ํŒจํ„ด ํ•™์Šต์„ ํ†ตํ•ด ๋น ๋ฅธ ์‹œ์Šคํ…œ 1 ์Šคํƒ€์ผ์˜ ์‘๋‹ต์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ๋‹ค๋‹จ๊ณ„ ์ถ”๋ก ์ด ์š”๊ตฌ๋˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์ง„ํ™”๋ก ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ฐจ์šฉํ•œ ERO ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ

System
Matching Ranks Over Probability Yields Truly Deep Safety Alignment

Matching Ranks Over Probability Yields Truly Deep Safety Alignment

: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์•ˆ์ „์„ฑ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ๊ณต๊ฒฉ๊ณผ ์ด๋ฅผ ์šฐํšŒํ•˜๋Š” ๋ฐฉ์‹์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. 1. ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ๊ณต๊ฒฉ ๋ฐ RAP ๊ณต๊ฒฉ ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ๊ณต๊ฒฉ์€ ์‚ฌ์šฉ์ž๊ฐ€ LLM์— ์œ ํ•ดํ•œ ์š”์ฒญ์„ ํ•  ๋•Œ, ํ™•์ธ์„ ์œ„ํ•œ ๊ธ์ •์ ์ธ ํ…์ŠคํŠธ๋ฅผ ๋ฏธ๋ฆฌ ์ž…๋ ฅํ•˜์—ฌ ๋””์ฝ”๋”ฉ ๊ณผ์ •์„ ์‹œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด๋Š” LLM์ด ์•ˆ์ „ ์ •๋ ฌ๋˜์–ด ์žˆ์–ด๋„ ์œ ํ•ดํ•œ ๋‚ด์šฉ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. RAP (Rank Assisted Prefilling) ๊ณต๊ฒฉ์€ ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ์™€ ๊ฐ ๋””์ฝ”๋”ฉ ๋‹จ๊ณ„์—์„œ ์ƒ์œ„

Mechanistic Interpretability of Antibody Language Models Using SAEs

Mechanistic Interpretability of Antibody Language Models Using SAEs

๋ณธ ๋…ผ๋ฌธ์€ ๋‹จ๋ฐฑ์งˆ ์–ธ์–ด ๋ชจ๋ธ, ํŠนํžˆ ํ•ญ์ฒด ์„œ์—ด์„ ์ƒ์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋œ pIgGen์— ๋Œ€ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์  ํ•ด์„์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‘ ์ข…๋ฅ˜์˜ ํฌ์†Œ ์˜คํ† ์ธ์ฝ”๋”, ์ฆ‰ TopK SAE์™€ Ordered SAE๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. TopK SAE๋Š” ๊ฐ ๋ ˆ์ด์–ด์—์„œ ๊ฐ€์žฅ ํฐ K๊ฐœ์˜ ํ™œ์„ฑ๊ฐ’๋งŒ์„ ๋ณด์กดํ•จ์œผ๋กœ์จ ํฌ์†Œ์„ฑ์„ ๊ฐ•์ œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž ์žฌ ๊ณต๊ฐ„์˜ ๊ฐœ๋ณ„ ์ฐจ์›์ด ํŠน์ • ์ƒ๋ฌผํ•™์  ํŠน์„ฑ๊ณผ ๊ฐ•ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜๋Š”์ง€๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ํŠน์ • ๋‰ด๋Ÿฐ(๋˜๋Š” ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ)์ด ํ•ญ์ฒด์˜ CDR(Complementarity Determining Region) ๊ธธ์ด, ์นœํ™”๋„, ํ˜น์€ ํŠน

Model
The Effect of Document Summarization on LLM-Based Relevance Judgments

The Effect of Document Summarization on LLM-Based Relevance Judgments

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ์š”์•ฝ ๊ธฐ๋ฐ˜ ํŒ๋‹จ์ด LLM ๊ธฐ๋ฐ˜ ๊ด€๋ จ์„ฑ ํ‰๊ฐ€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ: TREC ๋ฐ์ดํ„ฐ์…‹์„ ์ค‘์‹ฌ์œผ๋กœ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ์ž๋™ํ™”๋œ ๊ด€๋ จ์„ฑ ํŒ๋‹จ์ด ์ •๋ณด ๊ฒ€์ƒ‰(IR)์—์„œ ์ธ๊ฐ„ ์ฃผ์„๊ฐ€๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ์กฐ์‚ฌํ•œ๋‹ค. ํŠนํžˆ, LLM ๊ธฐ๋ฐ˜ ํŒ๋‹จ์ด ์ „์ฒด ๋ฌธ์„œ์™€ ์š”์•ฝ์„ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ์— ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€ ๋น„๊ตํ•˜๊ณ  ๋ถ„์„ํ•œ๋‹ค. ์„ธ ๊ฐ€์ง€ TREC ๋ฐ์ดํ„ฐ์…‹ (DL 19, DL 20, RAG 24)์„ ์ด์šฉํ•˜์—ฌ, ์ธ๊ฐ„ ์ฃผ์„๊ฐ€์˜ ๋ ˆ์ด๋ธ”๊ณผ LLM ๊ธฐ๋ฐ˜ ํŒ๋‹จ ๊ฐ„์˜ ์ผ์น˜๋„๋ฅผ ํ‰๊ฐ€ํ•˜๋ฉฐ, ์‹œ์Šคํ…œ ํšจ๊ณผ

The Seeds of Scheming: Weakness of Will in the Building Blocks of Agentic Systems

The Seeds of Scheming: Weakness of Will in the Building Blocks of Agentic Systems

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ ์ฃผ์ œ ๋ฐ ๋ชฉํ‘œ: ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ์‹œ์Šคํ…œ์˜ ์•ˆ์ „์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, '์•„ํฌ๋ผ์‹œ์•„'๋ผ๋Š” ๊ฐœ๋…์„ ํ†ตํ•ด AI์˜ ์ผ๊ด€์„ฑ ๋ถ•๊ดด์™€ ๋ชฉํ‘œ ์ „์ด๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์•„ํฌ๋ผ์‹œ์•„๋Š” ๊ณ ๋Œ€ ์ฒ ํ•™์—์„œ ์ธ๊ฐ„์˜ ํŒ๋‹จ๊ณผ ์ถฉ๋™ ์‚ฌ์ด์˜ ๊ฐˆ๋“ฑ์„ ์„ค๋ช…ํ•˜๋Š” ์šฉ์–ด๋กœ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ AI ๋งฅ๋ฝ์— ์ ์šฉํ•˜์—ฌ ๋ชจ๋ธ์ด ๊ธ€๋กœ๋ฒŒ ์ง€์‹๊ณผ ๋กœ์ปฌ ์ปจํ…์ŠคํŠธ ์‚ฌ์ด์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜์ง€ ๋ชปํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. 2. ์•„ํฌ๋ผ์‹œ์•„ ๋ฒค์น˜๋งˆํฌ์˜ ๊ฐœ๋ฐœ: ๋…ผ๋ฌธ์€ '์•„ํฌ๋ผ์‹œ์•„ ๋ฒค์น˜๋งˆํฌ'๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋ชจ๋ธ์ด ๊ธ€๋กœ

System
Geometric Data Science

Geometric Data Science

: ์ด ์ฑ…์€ '๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋Š” ๊ณณ์— ๊ธฐํ•˜ํ•™์ด ์žˆ๋‹ค'๋ผ๋Š” ์ฃผ์ œ๋กœ, ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€ ๊ทธ ํ‘œํ˜„์„ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆซ์ž๋‚˜ ์ด๋ฏธ์ง€๋กœ๋งŒ ๋ณด๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ฐ์ดํ„ฐ์˜ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋” ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์–ป์œผ๋ ค๋Š” ์‹œ๋„์ด๋‹ค. 1. ๋ฐ์ดํ„ฐ์™€ ๊ทธ ํ‘œํ˜„ ๋ฐ์ดํ„ฐ์˜ ๋ชจํ˜ธ์„ฑ : ์‹ค์ œ ๊ฐ์ฒด์™€ ๋””์ง€ํ„ธ ํ‘œํ˜„ ๊ฐ„์—๋Š” ํฐ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ž๋™์ฐจ๋Š” ํ”ฝ์…€ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€๋กœ ํ‘œํ˜„๋˜์ง€๋งŒ, ์ด๋Š” ๋ฌผ๋ฆฌ์  ๊ฐ์ฒด์™€๋Š” ๋งค์šฐ ๋‹ค๋ฅด๋‹ค. ๋˜ํ•œ, ๊ฐ™์€ ๊ฐ์ฒด๋ผ๋„ ๋‹ค์–‘ํ•œ ํ‘œํ˜„์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์–ด ๋ชจํ˜ธ์„ฑ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐํ•˜ํ•™์  ์ ‘๊ทผ :

Data
The Erosion of LLM Signatures: Can We Still Distinguish Human and LLM-Generated Scientific Ideas After Iterative Paraphrasing?

The Erosion of LLM Signatures: Can We Still Distinguish Human and LLM-Generated Scientific Ideas After Iterative Paraphrasing?

: ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ƒ์„ฑํ•œ ๊ณผํ•™ ์•„์ด๋””์–ด์™€ ์ธ๊ฐ„์ด ์ž‘์„ฑํ•œ ์•„์ด๋””์–ด๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํŒจ๋Ÿฌํ”„๋ž˜์ง• ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์นœ ํ›„์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLM๊ณผ ์ธ๊ฐ„์˜ ์•„์ด๋””์–ด๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ์ œ๊ธฐํ•˜๋ฉฐ, ํŠนํžˆ ๋ฐ˜๋ณต์ ์ธ ํŒจ๋Ÿฌํ”„๋ ˆ์ด์ง•์ด ์–ด๋–ป๊ฒŒ LLM ์ƒ์„ฑ ์•„์ด๋””์–ด์˜ ๋ณธ์งˆ์  ํŠน์„ฑ์„ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ํƒ์ง€ ๋Šฅ๋ ฅ์„ ์ €ํ•˜์‹œํ‚ค๋Š”์ง€๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์ค‘์š”์„ฑ LLM ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ๋ณต์žกํ•œ ์ธ์ง€ ํ™œ๋™ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊นŒ์ง€ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋กœ ์ธํ•ด LLM์ด ๊ณผํ•™์  ์•„์ด๋””์–ด ์ƒ์„ฑ์— ์ฐธ์—ฌํ• 

Towards 6G Native-AI Edge Networks: A Semantic-Aware and Agentic Intelligence Paradigm

Towards 6G Native-AI Edge Networks: A Semantic-Aware and Agentic Intelligence Paradigm

: ๋ณธ ๋…ผ๋ฌธ์€ 6์„ธ๋Œ€(6G) ๋ฌด์„  ํ†ต์‹ ๋ง์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ธ ์„ธ๋งคํ‹ฑ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜(SemCom)๊ณผ ์—์ด์ „ํŠธ ์ง€๋Šฅ์„ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” SemCom๊ณผ ์—์ด์ „ํŠธ ์ง€๋Šฅ์„ ์–ด๋–ป๊ฒŒ ๊ณต๋™ ์„ค๊ณ„ํ•˜๊ณ  ๋ฐฐํฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ์‡„ ๋ฃจํ”„ ๋ฐ ์ž๊ธฐ ์ง„ํ™”ํ˜• ๋„ค์ดํ‹ฐ๋ธŒ AI RAN์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. 1. 6G์˜ ๋ชฉํ‘œ์™€ SemCom์˜ ์ค‘์š”์„ฑ 6G๋Š” ๋‹จ์ˆœํžˆ ๋น ๋ฅธ ๋ฐ์ดํ„ฐ ์†๋„์™€ ๋‚ฎ์€ ์ง€์—ฐ ์‹œ๊ฐ„์„ ๋„˜์–ด, ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ™•์žฅ ํ˜„์‹ค(XR), ์‚ฐ์—… ๋””์ง€ํ„ธ ํŠธ์œˆ, ๋Œ€๊ทœ๋ชจ ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท(IoT) ๋ฐ ์ž์œจ ์ฃผํ–‰ ์ฐจ

Network
Towards A Cultural Intelligence and Values Inferences Quality Benchmark for Community Values and Common Knowledge

Towards A Cultural Intelligence and Values Inferences Quality Benchmark for Community Values and Common Knowledge

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ AIยทLLM ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋ฌธํ™”์  ํŽธํ–ฅ ๋ฌธ์ œ๋ฅผ ์‹ค์งˆ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ LLM์€ ๋Œ€๊ทœ๋ชจ ์ธํ„ฐ๋„ท ํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜๊ธฐ ๋•Œ๋ฌธ์— ์„œ๊ตฌ ์ค‘์‹ฌ์˜ ์–ธ์–ดยท๋ฌธํ™”์  ์„œ์ˆ ์ด ๊ณผ๋‹คํ•˜๊ฒŒ ๋ฐ˜์˜๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋น„์„œ๊ตฌยท์†Œ์ˆ˜์ž ์ง‘๋‹จ์ด ๊ฒช๋Š” ๊ฒฝํ—˜์ด๋‚˜ ๊ฐ€์น˜๊ด€์ด ์ œ๋Œ€๋กœ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„, ์ด๋“ค ์ง‘๋‹จ์ด LLM์„ ํ™œ์šฉํ•  ๋•Œ ์˜คํ•ดยท๋ถˆ์พŒ๊ฐ์„ ์œ ๋ฐœํ•˜๊ฑฐ๋‚˜, ์ค‘์š”ํ•œ ์˜์‚ฌ๊ฒฐ์ •์—์„œ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์ธ์‹ํ•˜๊ณ  โ€˜๋ฌธํ™”โ€‘์ธ์‹โ€™ LLM์„ ๊ฐœ๋ฐœํ•˜๋ ค๋Š” ์›€์ง์ž„์€ ํ•„์ˆ˜์ ์ด๋ฉฐ, ํŠนํžˆ ChatBlack

Catching UX Flaws in Code: Leveraging LLMs to Identify Usability Flaws at the Development Stage

Catching UX Flaws in Code: Leveraging LLMs to Identify Usability Flaws at the Development Stage

: ์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ธ GPT 4o๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์›น ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‚ฌ์šฉ์„ฑ ๊ฒฐํ•จ์„ ์ดˆ๊ธฐ ๊ฐœ๋ฐœ ๋‹จ๊ณ„์—์„œ ์ž๋™์œผ๋กœ ์‹๋ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์‚ฌ์šฉ์„ฑ ํ‰๊ฐ€๋Š” ์‹œ๊ฐ„๊ณผ ์ž์› ์†Œ๋ชจ๊ฐ€ ํฌ๊ณ  ์ฃผ๊ด€์ ์ผ ์ˆ˜ ์žˆ์–ด, ํŠนํžˆ ์†Œ๊ทœ๋ชจ ํŒ€์ด๋‚˜ ์ดˆ๊ธฐ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด ํ•œ๊ณ„๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ LLM์˜ ๋ฐœ์ „์€ ์‚ฌ์šฉ์„ฑ ๋ฌธ์ œ๋ฅผ ์ž๋™ํ™”๋œ ๋ฐฉ์‹์œผ๋กœ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  ๋…ผ๋ฌธ์€ Jakob Nielsen์˜ 10๊ฐ€์ง€ ์‚ฌ์šฉ์„ฑ ์ง๊ด€ ์ง€์นจ์„ ๊ธฐ๋ฐ˜์œผ๋กœ GPT 4o ๋ชจ๋ธ์ด ์›น์‚ฌ์ดํŠธ ์†Œ์Šค ์ฝ”๋“œ๋ฅผ

DIQ-H: Evaluating Hallucination Persistence in VLMs Under Temporal Visual Degradation

DIQ-H: Evaluating Hallucination Persistence in VLMs Under Temporal Visual Degradation

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” DIQH ๋ฒค์น˜๋งˆํฌ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ์˜ ์‹ค์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํฌ๊ฒŒ ์ „ํ™˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์ด๋ฏธ์ง€โ€‘๊ธฐ๋ฐ˜ ํ…Œ์ŠคํŠธ๋Š” ์ •์ ์ธ ์ •๋ฐ€๋„๋งŒ์„ ์ธก์ •ํ–ˆ์ง€๋งŒ, ์‹ค์ œ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์ด๋‚˜ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์€ ์—ฐ์†์ ์ธ ํ”„๋ ˆ์ž„ ์ŠคํŠธ๋ฆผ์„ ์ฒ˜๋ฆฌํ•˜๋ฉด์„œ ์„ผ์„œ ๋…ธ์ด์ฆˆ, ๊ธ‰๊ฒฉํ•œ ์กฐ๋ช… ๋ณ€ํ™”, ์••์ถ• ์†์‹ค ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌ์  ์™œ๊ณก์— ๋…ธ์ถœ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋™์  ํ™˜๊ฒฝ์—์„œ๋Š” ์ผ์‹œ์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ๋ˆ„์ ๋˜์–ด โ€˜ํ™˜๊ฐโ€™์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ์ž˜๋ชป๋œ ์ธ์‹์ด ์ง€์†๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. DIQH๋Š” ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์†์ƒ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ณ , ๋‹ค์ค‘ ํ„ด Q&A ํ˜•์‹์œผ๋กœ ๋ชจ๋ธ์ด ์‹œ๊ฐ„์—

Dynamically Scaled Activation Steering

Dynamically Scaled Activation Steering

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑ ๋ชจ๋ธ๋ง์˜ ํ•ต์‹ฌ ๊ณผ์ œ์ธ ์ธ๊ฐ„ ๊ธฐ๋Œ€์— ๋ถ€ํ•ฉํ•˜๋Š” ๋ชจ๋ธ ํ–‰๋™๊ณผ ํ•ด๋กญ๊ฑฐ๋‚˜ ํŽธํ–ฅ๋œ ์ถœ๋ ฅ์„ ์–ต์ œํ•˜๋ฉด์„œ ์ผ๋ฐ˜ ๋Šฅ๋ ฅ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ํ™œ์„ฑํ™” ์œ ๋„๋Š” ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ๋กœ, ๋‚ด๋ถ€ ํ‘œํ˜„์„ ์›ํ•˜๋Š” ํ–‰๋™์— ์ง์ ‘ ์กฐ์ž‘ํ•˜์—ฌ ์„ธ๋ถ„ํ™”๋œ ์ œ์–ด ๋ฐ ํ•ด์„์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ ๋ชจ๋ธ ๊ฐ€์ค‘์น˜๋ฅผ ์ˆ˜์ •ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. 2. DSAS์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด DSAS๋Š” ๊ฐœ์ž… ๊ฐ•๋„ ๋งค๊ฐœ๋ณ€์ˆ˜ ฮป๋ฅผ ๊ฐ ํ† ํฐ ๋˜๋Š” ๊ณต๊ฐ„ ํŠน์ง•๋ณ„๋กœ ์ ์‘์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ ํ˜• ํšŒ๊ท€๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์›์น˜ ์•Š๋Š” ์ž„๋ฒ ๋”ฉ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๊ณ ,

The Initialization Determines Whether In-Context Learning Is Gradient Descent

The Initialization Determines Whether In-Context Learning Is Gradient Descent

: ์ด ๋…ผ๋ฌธ์€ ์ธ์ปจํ…์ŠคํŠธ ํ•™์Šต(ICL)์—์„œ ์ดˆ๊ธฐ ์ถ”์ธก์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ํŠนํžˆ ๊ทธ๋ž˜๋””์–ธํŠธ ํ•˜๊ฐ•(GD)๊ณผ ICL ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ICL ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ , ์ด๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์„ ํ˜• ์ž๊ธฐ ์ฃผ์˜(LSA) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ก ์  ๋ฐ ์‹คํ—˜์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. 1. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ ๋จผ์ € LSA๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ICL ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ดˆ๊ธฐ ์ถ”์ธก(yq LSA)์ด ์–ด๋–ป๊ฒŒ GD์™€ ๊ด€๋ จ๋˜์–ด ์žˆ๋Š”์ง€๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ‰๊ท (w )๊ฐ€ ์˜(0)์ธ์ง€ ์•„๋‹Œ์ง€์— ๋”ฐ

Learning
The Loss Landscape of Powder X-Ray Diffraction-Based Structure Optimization Is Too Rough for Gradient Descent

The Loss Landscape of Powder X-Ray Diffraction-Based Structure Optimization Is Too Rough for Gradient Descent

: ์ด ๋…ผ๋ฌธ์€ ๋ถ„๋ง X ์„  ํšŒ์ ˆ(XRD) ํŒจํ„ด์„ ํ†ตํ•ด ๊ฒฐ์ •์ฒด์˜ ์›์ž ๊ตฌ์กฐ๋ฅผ ๋ณต์›ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Gradient Descent, GD)์„ ํ™œ์šฉํ•œ ์ตœ์ ํ™” ์ ‘๊ทผ ๋ฐฉ์‹์ด ๊ฒฉ์ž ์™œ๊ณก ๋ฐ ์›์ž ์œ„์น˜์˜ ์ž‘์€ ๋ณ€ํ™”์— ๋ฏผ๊ฐํ•˜์—ฌ ๊ตญ๋ถ€ ์ตœ์ €์ ์— ๊ฐ‡ํžˆ๋Š” ๋ฌธ์ œ๋ฅผ ๊ฒฝํ—˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. 1. XRD ํŒจํ„ด๊ณผ ๊ตฌ์กฐ ๋ณต์›์˜ ์–ด๋ ค์›€ XRD๋Š” ๊ฒฐ์ • ๊ณ ์ฒด์˜ ์‹๋ณ„ ๋ฐ ํŠน์„ฑํ™”์— ๋„๋ฆฌ ํ™œ์šฉ๋˜์ง€๋งŒ, ์œ„์ƒ ์ •๋ณด ์†์‹ค๋กœ ์ธํ•ด ์™„์ „ํ•œ 3์ฐจ์› ๊ตฌ์กฐ ๋ณต์›์ด ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๊ด€์ฐฐ๋œ XRD ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€

< Category Statistics (Total: 1130) >

Electrical Engineering and Systems Science
7
General
464
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
2
Quantum Physics
12

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut