KOINEU Logo
Adapting Feature Attenuation to NLP

Adapting Feature Attenuation to NLP

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ์‡„ํ˜• ๊ฐ€์ •์˜ ํ•œ๊ณ„ : BERTยทGPTโ€‘2์™€ ๊ฐ™์€ ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ํ›ˆ๋ จ ์‹œ ๋ณธ ์  ์—†๋Š” ๋ผ๋ฒจ์„ ๋งŒ๋‚˜๋ฉด ๋†’์€ ํ™•์‹ ์„ ๋ณด์ด๋ฉฐ ์ž˜๋ชป๋œ ์˜ˆ์ธก์„ ํ•œ๋‹ค. ์ด๋Š” ์˜๋ฃŒยท๋ฒ•๋ฅ  ๋“ฑ ์œ„ํ—˜๋„๊ฐ€ ๋†’์€ ๋ถ„์•ผ์—์„œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋‹ค. Openโ€‘Set Recognition (OSR) : ์ž…๋ ฅ์ด ์•Œ๋ ค์ง„ ํด๋ž˜์Šค์ธ์ง€ ๋ฏธ์ง€์˜ ํด๋ž˜์Šค์ธ์ง€๋ฅผ ๋™์‹œ์— ํŒ๋‹จํ•˜๋„๋ก ์š”๊ตฌํ•œ๋‹ค. ๋น„์ „ ๋ถ„์•ผ์—์„œ๋Š” Feature Attenuation (๋ถ„๋ฅ˜ ๋ ˆ์ด์–ด ์ „ยทํ›„ ํŠน์ง•์„ ๋ชจ๋‘ ํ™œ์šฉ) ๊ฐ€์„ค์ด ์ข‹์€ ์„ฑ๊ณผ๋ฅผ ๋ณด์˜€์œผ๋‚˜, ํ…์ŠคํŠธ์—์„œ๋Š” ์•„์ง ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• โ€“ COSTA

Computer Science Machine Learning
Beyond Code Pairs: Dialogue-Based Data Generation for LLM Code Translation

Beyond Code Pairs: Dialogue-Based Data Generation for LLM Code Translation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ €์ž์› ์–ธ์–ดยทํ”„๋ ˆ์ž„์›Œํฌ ๋ฌธ์ œ : Fortran, CUDA ๋“ฑ์€ ํ•™๊ณ„ยท์‚ฐ์—…์—์„œ ์—ฌ์ „ํžˆ ํ•ต์‹ฌ์ด์ง€๋งŒ, ๊ณต๊ฐœ๋œ ๋ณ‘๋ ฌ ์ฝ”๋“œ ์ฝ”ํผ์Šค๊ฐ€ ๊ทนํžˆ ์ œํ•œ์ ์ด๋‹ค. ๊ธฐ์กด LLM์€ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๊ตฌ์กฐ์  ๋ณต์žก์„ฑ ๋•Œ๋ฌธ์— ๋ฒˆ์—ญ ์ •ํ™•๋„๊ฐ€ ๊ธ‰๊ฐํ•œ๋‹ค. ๊ธฐ์กด ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์€ โ€œ์†Œ์Šค โ†’ ํƒ€๊นƒโ€ ๋‹จ์ผ ํ๋ฆ„์— ๋จธ๋ฌผ๋ฉฐ, ์ปดํŒŒ์ผ ์˜ค๋ฅ˜ยท๋Ÿฐํƒ€์ž„ ๊ฒฐ๊ณผ์™€ ๊ฐ™์€ ์ค‘๊ฐ„ ํ”ผ๋“œ๋ฐฑ์„ ํ•™์Šต์— ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์˜ค๋ฅ˜ ๋ณต๊ตฌ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ์งˆ๋ฌธ์žโ€‘์†”๋ฒ„ ๋ชจ๋“ˆ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ๋Šฅ | | | | | Q

Data
No Image

Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ํ”Œ๋ ˆ์–ด์—์„œ ๊ฐ€์†๋œ ์ „์ž๋“ค์€ ํ•˜๋“œ Xโ€‘๋ ˆ์ด(๋ธŒ๋ ˆ๋จธ์ŠคํŠธ๋ž„๋ฃฝ)์™€ ์ฝ”ํžˆ๋ŸฐํŠธ ๋ผ๋””์˜ค(ํƒ€์ž… III) ๋ฐฉ์ถœ์„ ๋™์‹œ์— ์ผ์œผํ‚จ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ HXR์™€ ํƒ€์ž… III ์‚ฌ์ด์˜ ์‹œ๊ฐ„ยท๊ฐ•๋„ ์ƒ๊ด€๊ด€๊ณ„๋งŒ์„ ์ œ์‹œํ–ˆ์œผ๋ฉฐ, ๊ฐ€์† ์˜์—ญ์˜ ๋†’์ด์™€ ํฌ๊ธฐ ๋ฅผ ์ง์ ‘์ ์œผ๋กœ ์ถ”์ •ํ•œ ์‚ฌ๋ก€๋Š” ๋“œ๋ฌผ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‘ ๊ด€์ธก์„ ์ •๋Ÿ‰์  ์œผ๋กœ ์—ฐ๊ฒฐ์‹œ์ผœ, ๊ฐ€์† ์˜์—ญ์˜ ๋ฌผ๋ฆฌ์  ๊ทœ๋ชจ๋ฅผ ์ตœ์ดˆ๋กœ ์ถ”์ •ํ•˜๊ณ ์ž ํ•œ๋‹ค. 2. ๊ด€์ธก ๋ฐ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ | ๊ด€์ธก ๊ธฐ๊ธฐ | ํŒŒ์žฅ/์ฃผํŒŒ์ˆ˜ | ์ฃผ์š” ์—ญํ•  | | | | | | RHESSI | 20 keVโ€“200 keV (HXR) | ์ „์ž ์ŠคํŽ™

Astrophysics
Fast-weight Product Key Memory

Fast-weight Product Key Memory

1๏ธโƒฃ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์—ฐ๊ด€ ๊ธฐ์–ต(Associative Memory) ๊ด€์ ์—์„œ ์ตœ์‹  ํŠธ๋žœ์Šคํฌ๋จธยท๋ฆฌ๋‹ˆ์–ด ์–ดํ…์…˜์„ ์žฌํ•ด์„ํ•œ๋‹ค(DAO & GU 2024, PENG et al. 2025 ๋“ฑ). ์ €์ž๋“ค์€ 4๊ฐ€์ง€ ํ•ต์‹ฌ ์†์„ฑ ์„ ์ œ์‹œํ•œ๋‹ค: (1) ํ‚คโ€‘๊ฐ’ ์—ฐ๊ด€, (2) ๋Œ€๊ทœ๋ชจ ์ €์žฅ, (3) ์ €๋น„์šฉ, (4) ์‹ค์‹œ๊ฐ„ ๊ธฐ์–ตยท๊ฒ€์ƒ‰ . ๊ธฐ์กด ๋ชจ๋ธ์€ 1โ€‘3์€ ๋งŒ์กฑํ•˜์ง€๋งŒ 4๋ฅผ ๋†“์นœ๋‹ค. 2๏ธโƒฃ ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ PKM โ†’ FwPKM | ์š”์†Œ | PKM (๊ธฐ์กด) | FwPKM (์ œ์•ˆ) | | | | | | ๊ฐ€์ค‘์น˜ ์ข…๋ฅ˜ | Slowโ€‘weight (ํ•™์Šต ํ›„ ๊ณ ์ •

Computer Science NLP
FAST: Topology-Aware Frequency-Domain Distribution Matching for Coreset Selection

FAST: Topology-Aware Frequency-Domain Distribution Matching for Coreset Selection

1. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | | | | | โ‘  | DNNโ€‘free ์ด๋ฉด์„œ๋„ ๋ถ„ํฌ ๋งค์นญ ์„ ์ด์‚ฐ ์ฝ”์–ด์…‹ ์„ ํƒ์— ์ ์šฉํ•œ ์ตœ์ดˆ์˜ ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์‹œ. ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ํ† ํด๋กœ์ง€ ์ œ์•ฝ์„ ํ†ตํ•ด ์—ฐ์† ์ตœ์ ํ™”์™€ ์ด์‚ฐ ์ƒ˜ํ”Œ๋ง ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์›€. | | โ‘ก | CFD ๋ฅผ ์ฝ”์–ด์…‹ ์„ ํƒ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ๋„์ž…, ์ „์ฒด ํ™•๋ฅ ๋ถ„ํฌ(๋ชจ๋“  ๊ณ ์ฐจ ๋ชจ๋ฉ˜ํŠธยท์ƒ๊ด€) ์ •๋ณด๋ฅผ ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์—์„œ ์ •ํ™•ํžˆ ์ธก์ •. | | โ‘ข | Attenuated Phaseโ€‘Decoupled CFD ์„ค๊ณ„๋กœ ์ค‘ยท๊ณ ์ฃผํŒŒ ์˜์—ญ์˜ ์œ„์ƒ ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค ๋ฌธ์ œ ํ•ด๊ฒฐ, ๊ณ ์ฃผํŒŒ ๋””ํ…Œ์ผ(์—ฃ์ง€ยทํ…์Šค์ฒ˜) ๋ณด์กด. | |

First On-Orbit Demonstration of a Geospatial Foundation Model

First On-Orbit Demonstration of a Geospatial Foundation Model

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ EO ๋ฐ์ดํ„ฐ ํญ์ฆ : ์œ„์„ฑ ์ˆ˜๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ  ๊ณ ํ•ด์ƒ๋„ยท๋‹ค์ค‘ยทํ•˜์ดํผ์ŠคํŽ™ํŠธ๋Ÿผ ์ด๋ฏธ์ง€๊ฐ€ ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ๋จ. ์˜จ๋ณด๋“œ AI ์š”๊ตฌ : ์ „์†ก ๋Œ€์—ญํญยท์‹ค์‹œ๊ฐ„ ์˜์‚ฌ๊ฒฐ์ • ์ œํ•œ์œผ๋กœ, ํ˜„์žฅ(์œ„์„ฑ)์—์„œ ๋ฐ”๋กœ ๋ถ„์„ยทํŒ๋‹จํ•ด์•ผ ํ•จ. ๊ธฐ์กด ์ ‘๊ทผ ํ•œ๊ณ„ : ๊ฒฝ๋Ÿ‰ CNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ๊ณผ์ œโ€‘ํŠนํ™”์ด๋ฉฐ, ์ƒˆ๋กœ์šด ๊ณผ์ œ๋งˆ๋‹ค ์žฌํ•™์Šตยท์žฌ๋ฐฐํฌ๊ฐ€ ํ•„์š”. GeoFM์˜ ์ž ์žฌ๋ ฅ : ํ•˜๋‚˜์˜ ์‚ฌ์ „ํ•™์Šต๋œ ๋ฐฑ๋ณธ์œผ๋กœ ๋‹ค์ˆ˜ ๊ณผ์ œ ์ˆ˜ํ–‰, ๋ผ๋ฒจ๋ง ๋น„์šฉ ์ ˆ๊ฐ, ์ž‘์€ ํ—ค๋“œ๋งŒ ์ „์†ก ๊ฐ€๋Šฅ. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | |โ‘ | ์ฒซ ๋ฒˆ์งธ GeoFM ์˜จ๋ณด๋“œ ๋ฐฐ์น˜ ๋ฐ

Model
Gendered Pathways in AI Companionship: Cross-Community Behavior and Toxicity Patterns on Reddit

Gendered Pathways in AI Companionship: Cross-Community Behavior and Toxicity Patterns on Reddit

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ AIโ€‘๋™๋ฐ˜์ž์™€ ์ธ๊ฐ„ ๊ด€๊ณ„ : ReplikaยทCharacter.ai ๋“ฑ AI ์ฑ—๋ด‡์ด ๊ฐ์ •ยท์—ฐ์• ยท์„ฑ์  ๊ต๋ฅ˜๊นŒ์ง€ ํ™•์žฅ๋˜๋ฉด์„œ, ๊ธฐ์กด์˜ โ€˜๋„๊ตฌ์  ์‚ฌ์šฉโ€™์„ ๋„˜์–ด ์ •์„œ์ ยท์‚ฌํšŒ์  ์˜์กด ์ด ํ˜•์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ์„ฑ๋ณ„ยท๋…์„ฑ ๋ฌธ์ œ : ๊ธฐ์กด ๋ฌธํ—Œ์€ ์ฃผ๋กœ ๋‚จ์„ฑโ€‘์ฃผ๋„ยท์ธ์…€ ์„œ๋ธŒ๋ฌธํ™”์™€ ์—ฐ๊ณ„๋œ ๋ถ€์ •์  ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ฌ์„ฑ ์‚ฌ์šฉ์ž์˜ ๋†’์€ ์ฐธ์—ฌ ๋ฅผ ๋ฐœ๊ฒฌํ•จ์œผ๋กœ์จ ๊ธฐ์กด ํŽธ๊ฒฌ์„ ์žฌ๊ฒ€์ฆํ•œ๋‹ค. ์ƒํƒœ๊ณ„โ€‘์ˆ˜์ค€ ์ ‘๊ทผ : ๋‹จ์ผ ํ”Œ๋žซํผยท์„ค๋ฌธ์— ๋จธ๋ฌด๋ฅด๋˜ ์—ฐ๊ตฌ๋ฅผ ๋„˜์–ด, ๋ ˆ๋”ง ์ „์ฒด 2 000๊ฐœ ์„œ๋ธŒ๋ ˆ๋”ง ์„ ํฌ๊ด„ํ•˜๋Š” ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•ด ๊ต์ฐจโ€‘์ปค๋ฎค๋‹ˆํ‹ฐ

Computer Science Social Networks
MIDG: Mixture of Invariant Experts with knowledge injection for Domain Generalization in Multimodal Sentiment Analysis

MIDG: Mixture of Invariant Experts with knowledge injection for Domain Generalization in Multimodal Sentiment Analysis

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ฐ์„ฑ ๋ถ„์„(MSA) ์€ ํ…์ŠคํŠธ, ์Œ์„ฑ, ์˜์ƒ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹ ํ˜ธ๋ฅผ ๊ฒฐํ•ฉํ•ด ์ธ๊ฐ„ ๊ฐ์ •์„ ํŒŒ์•…ํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด MSA ๋ชจ๋ธ์€ IID(๋™์ผยท๋…๋ฆฝ ๋ถ„ํฌ) ๊ฐ€์ •ํ•˜์— ํ•™์Šต๋˜๋ฉฐ, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋„๋ฉ”์ธ ๊ฐ„ ๋ถ„ํฌ ์ฐจ์ด ๋กœ ์ธํ•ด ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™” ๊ธฐ๋ฒ•์€ (i) ๋ชจ๋‹ฌ ์ˆœ์ฐจ ์ฒ˜๋ฆฌ ๋กœ ์ธํ•ด ๋ชจ๋‹ฌ ๊ฐ„ ๋™์  ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•˜๊ณ , (ii) ์ง€์‹ ์ฃผ์ž…์ด ๋‹จ์ผ ๋ชจ๋‹ฌ์— ๊ตญํ•œ ๋˜์–ด ๊ต์ฐจโ€‘๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ ๊ตฌ์กฐ 2.1.

Analysis
MM-CoT:A Benchmark for Probing Visual Chain-of-Thought Reasoning in Multimodal Models

MM-CoT:A Benchmark for Probing Visual Chain-of-Thought Reasoning in Multimodal Models

1. ์—ฐ๊ตฌ ๋™๊ธฐ์˜ ์˜์˜ ์ƒ์„ฑโ€‘์ค‘์‹ฌ ํ‰๊ฐ€์˜ ํ•œ๊ณ„ : ๊ธฐ์กด VQAยทGQAยทVCR ๋“ฑ์€ ์ •๋‹ต ํ˜น์€ ์ž์œ ํ˜• ์„ค๋ช…์„ ์š”๊ตฌํ•˜์ง€๋งŒ, ๋ชจ๋ธ์ด ์‹ค์ œ๋กœ ์‹œ๊ฐ ์ •๋ณด๋ฅผ ํ™œ์šฉ ํ–ˆ๋Š”์ง€, ํ˜น์€ ์‚ฌ์ „ ํ•™์Šต๋œ ํ…œํ”Œ๋ฆฟ ์„ ๊ทธ๋Œ€๋กœ ์žฌ์ƒ์‚ฐํ–ˆ๋Š”์ง€ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ฒ€์ฆโ€‘์ค‘์‹ฌ ์ ‘๊ทผ : MMโ€‘CoT๋Š” โ€œ ์„ ํƒ โ€ ํ˜•ํƒœ๋กœ ๋ฌธ์ œ๋ฅผ ์ „ํ™˜ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์ด ๊ฐ ๋‹จ๊ณ„๋ณ„ ๊ทผ๊ฑฐ ๋ฅผ ๊ฒ€์ฆํ•˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ์ด๋Š” ์ธ๊ฐ„์ด ๋…ผ์ฆ์„ ํ‰๊ฐ€ํ•  ๋•Œ ์‚ฌ์šฉํ•˜๋Š” โ€œ์ฆ๊ฑฐ ๊ฒ€์ฆโ€ ์ ˆ์ฐจ์™€ ์œ ์‚ฌํ•ด, ์‹ค์ œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๋” ์ •ํ™•ํžˆ ์ธก์ •ํ•œ๋‹ค. 2. ๋ฒค์น˜๋งˆํฌ ์„ค๊ณ„ ๋ถ„์„ | ์š”์†Œ | ์„ค๊ณ„ ํŠน์ง• | ํ‰๊ฐ€ ํšจ๊ณผ | | | |

Model
No Image

On Unique Games with Negative Weights

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Unique Game Conjecture (UGC) ๋Š” 2002๋…„ Khot ๊ฐ€ ์ œ์‹œํ•œ ์ดํ›„, ๋‹ค์–‘ํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ๋‚œ์ด๋„ ํ•˜ํ•œ์„ ์ฆ๋ช…ํ•˜๋Š” ํ•ต์‹ฌ ๋„๊ตฌ๋กœ ํ™œ์šฉ๋ผ ์™”๋‹ค. ๊ธฐ์กด UGC๋Š” ์–‘์˜ ๊ฐ€์ค‘์น˜ ๋งŒ์„ ํ—ˆ์šฉํ•˜๋Š” ๊ทธ๋ž˜ํ”„์—์„œ ์ •์˜๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” โ€œ๋งŽ์€(๋˜๋Š” ๊ฑฐ์˜ ๋ชจ๋“ ) ์ œ์•ฝ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ผ๋ฒจ๋ง์„ ์ฐพ๋Š” ๊ฒƒ์ด ์–ด๋ ค์›€โ€์„ ์˜๋ฏธํ•œ๋‹ค. ์‹ค์ œ ์‘์šฉ(์˜ˆ: ์‹ ํ˜ธ ์ฒ˜๋ฆฌ, ๋„คํŠธ์›Œํฌ ์„ค๊ณ„)์—์„œ๋Š” ์Œ์ˆ˜ ๋น„์šฉ ํ˜น์€ ๋ณด์ƒ ์ด ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์Œ์ˆ˜๋กœ ํ—ˆ์šฉํ•˜๋Š” ์ผ๋ฐ˜ํ™”๋œ ํ˜•ํƒœ๊ฐ€ ํ•„์š”ํ–ˆ๋‹ค๋Š” ์ ์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋™

Computer Science Computational Complexity
No Image

Physical approaches to the dynamics of genetic circuits: A tutorial

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ตฌ์กฐโ€‘๊ธฐ๋Šฅ ๊ด€๊ณ„์˜ ๋ณต์žก์„ฑ : ์œ ์ „์žยท๋‹จ๋ฐฑ์งˆ ๋„คํŠธ์›Œํฌ๋Š” ์ˆ˜๋ฐฑ~์ˆ˜์ฒœ ๊ฐœ์˜ ์š”์†Œ์™€ ๋น„์„ ํ˜• ์ƒํ˜ธ์ž‘์šฉ์„ ํฌํ•จํ•ด ๋ณต์žกํ•œ ๋™์  ๊ฑฐ๋™์„ ๋ณด์ธ๋‹ค. ์ „ํ†ต์ ์ธ ์ƒ๋ฌผํ•™์  ์ ‘๊ทผ๋งŒ์œผ๋กœ๋Š” ์ด๋Ÿฌํ•œ ๋ณตํ•ฉ์„ฑ์„ ํ•ด์„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋™์ ยท๋…ธ์ด์ฆˆ ํŠน์„ฑ : ์„ธํฌ ๋‚ด ์ƒํ™”ํ•™ ๋ฐ˜์‘์€ ์ž‘์€ ๋ถ€ํ”ผ์™€ ์ ์€ ๋ถ„์ž ์ˆ˜ ๋•Œ๋ฌธ์— ๋ณธ์งˆ์ ์ธ ํ™•๋ฅ ์  ๋ณ€๋™์„ ๋™๋ฐ˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜๋…ธ์ด์ฆˆโ€™๋Š” ๋‹จ์ˆœํžˆ ๋ฐฉํ•ด ์š”์†Œ๊ฐ€ ์•„๋‹ˆ๋ผ ๊ธฐ๋Šฅ์  ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌํ•™์  ๋„๊ตฌ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ : ํ†ต๊ณ„ ๋ฌผ๋ฆฌํ•™, ๋น„์„ ํ˜• ๋™์—ญํ•™, ํ™•๋ฅ  ๊ณผ์ • ์ด๋ก  ๋“ฑ์€ ์ด๋ฏธ ๋ณต์žก๊ณ„ยท๋น„ํ‰ํ˜• ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ๊ฒ€์ฆ

Physics Quantitative Biology Nonlinear Sciences
No Image

Priority Based Dynamic Round Robin (PBDRR) Algorithm with Intelligent Time Slice for Soft Real Time Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ(RTS) ์€ ํ•˜๋“œ, ํŽŒ, ์†Œํ”„ํŠธ๋กœ ๊ตฌ๋ถ„๋˜๋ฉฐ, ์†Œํ”„ํŠธ RTS๋Š” deadline ์ดˆ๊ณผ ์‹œ ์‹œ์Šคํ…œ ๋ถ•๊ดด๊ฐ€ ์•„๋‹ˆ๋ผ ์„ฑ๋Šฅ ์ €ํ•˜๋งŒ ๋ฐœ์ƒํ•œ๋‹ค. ์ „ํ†ต์ ์ธ RR ์€ ํƒ€์ž„ ํ€€ํ…€์ด ๊ณ ์ •๋ผ ์žˆ์–ด ์ปจํ…์ŠคํŠธ ์Šค์œ„์น˜ ๊ณผ๋‹ค ์™€ ๋Œ€๊ธฐยท์‘๋‹ต ์‹œ๊ฐ„ ์ฆ๊ฐ€ ๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ(

Computer Science System Operating Systems
Reading Between the Lines: Deconfounding Causal Estimates using Text Embeddings and Deep Learning

Reading Between the Lines: Deconfounding Causal Estimates using Text Embeddings and Deep Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ต๋ž€๋ณ€์ˆ˜์™€ ํ…์ŠคํŠธ : ๋…ธ๋™์‹œ์žฅ, ์˜๋ฃŒ ๊ธฐ๋ก, ๊ธˆ์œต ๋‰ด์Šค ๋“ฑ์—์„œ ๊ฐœ์ธยท๊ธฐ์—…์˜ ์ž ์žฌ ํŠน์„ฑ(๋Šฅ๋ ฅ, ๋™๊ธฐ ๋“ฑ)์€ ํ…์ŠคํŠธ์— ๋‚ด์žฌ๋œ ์„œ์ˆ  ํ˜•ํƒœ๋กœ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๊ธฐ์กด ๊ตฌ์กฐํ™” ๋ณ€์ˆ˜๋งŒ์œผ๋กœ๋Š” ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ค์›Œ ์ธ๊ณผ ์ถ”์ •์— ํŽธํ–ฅ์ด ๋ฐœ์ƒํ•œ๋‹ค. DML์˜ ํ•„์š”์„ฑ : Double Machine Learning์€ ๊ณ ์ฐจ์› ํ†ต์ œ๋ณ€์ˆ˜๋ฅผ ๋‹ค๋ฃฐ ๋•Œ Neyman orthogonality๋ฅผ ์ด์šฉํ•ด ํŽธํ–ฅ์„ ์–ต์ œํ•œ๋‹ค. ํ•˜์ง€๋งŒ DML ์ž์ฒด๋Š” โ€œ์–ด๋–ค ํ•™์Šต๊ธฐ๋ฅผ ์“ฐ๋А๋ƒโ€์— ๋Œ€ํ•ด ์ค‘๋ฆฝ์ ์ด๋ฉฐ, ์‹ค์ œ ๊ตฌํ˜„์—์„œ๋Š” ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ๊ธฐ๋ณธ ์„ ํƒ์ด ๋œ๋‹ค.

Computer Science Learning Artificial Intelligence
Small Language Models Can Use Nuanced Reasoning For Health Science Research Classification: A Microbial-Oncogenesis Case Study

Small Language Models Can Use Nuanced Reasoning For Health Science Research Classification: A Microbial-Oncogenesis Case Study

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  AI ๊ณต๋™์—ฐ๊ตฌ์ž ๋Š” (1) ๋ฌธํ—Œ ํƒ์ƒ‰, (2) ํ•„ํ„ฐ๋ง, (3) ์‹ฌ์ธต ์ดํ•ด์˜ 3๋‹จ๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค. ํ˜„์žฌ ์ƒ์šฉ LLM์€ ๋น„์šฉยทํˆฌ๋ช…์„ฑยท์žฌํ˜„์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM, โ‰ค8B ํŒŒ๋ผ๋ฏธํ„ฐ) ์€ ๋น„์šฉยท๋ฐฐํฌ ์šฉ์ด์„ฑ์—์„œ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋ณต์žกํ•œ ๊ณผํ•™์  ๊ธฐ์ค€์„ ์ ์šฉํ•œ ๋ถ„๋ฅ˜ ๋Šฅ๋ ฅ์€ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฏธ์ƒ๋ฌผโ€‘์•” ์—ฐ๊ด€์„ฑ ์ด๋ผ๋Š” ๊ณ ๋‚œ์ด๋„ ๋ถ„์•ผ(ํŠนํžˆ HMTV/MMTVโ€‘์œ ์‚ฌ ๋ฐ”์ด๋Ÿฌ์Šค์™€ ์œ ๋ฐฉ์•”)์—์„œ SLM์˜ ์ •๋ฐ€ ๋ถ„๋ฅ˜ ๊ฐ€๋Šฅ์„ฑ์„ ์‹คํ—˜ํ•œ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• 100ํŽธ ์˜ ๋…ผ๋ฌธ(์ œ๋ชฉโ€‘์ดˆ๋ก)๊ณผ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋ถ€์—ฌ

Model
No Image

Soft and Hard X-Ray Emissions from the Anomalous X-ray Pulsar 4U 0142+61 Observed with Suzaku

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉํ‘œ AXP์™€ ๋งˆ๊ทธ๋„คํ„ฐ : 4U 0142+61๋Š” ๋Œ€ํ‘œ์ ์ธ Anomalous Xโ€‘ray Pulsar(AXP)์ด๋ฉฐ, ๊ฐ•ํ•œ ์ž๊ธฐ์žฅ(10ยนโดโ€‘10ยนโต G)์„ ๊ฐ€์ง„ ๋งˆ๊ทธ๋„คํ„ฐ ํ›„๋ณด์ด๋‹ค. ๊ธฐ์กด์— ์†Œํ”„ํŠธ Xโ€‘๋ ˆ์ด(โ‰ค10 keV)์™€ ํ•˜๋“œ Xโ€‘๋ ˆ์ด(โ‰ฅ10 keV) ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๊ฐ๊ฐ ๋‹ค๋ฅธ ์œ„์„ฑ์—์„œ ๋ณ„๋„๋กœ ์ธก์ •๋ผ, ๊ต์ฐจ ๋ณด์ •(crossโ€‘calibration)๊ณผ ๋น„๋™์‹œ์„ฑ ๋ฌธ์ œ์— ์ œ์•ฝ์„ ๋ฐ›์•˜๋‹ค. Suzaku์˜ ๊ฐ•์  : XIS(0.2โ€“12 keV)์™€ HXDโ€‘PIN/GSO(10โ€“600 keV)๋ฅผ ๋™์‹œ์— ์šด์šฉํ•จ์œผ๋กœ์จ, ํ•˜๋‚˜์˜ ๊ด€์ธก์œผ๋กœ ๊ด‘๋Œ€์—ญ ์Šค

Astrophysics
Spatio-Temporal Graphs Beyond Grids: Benchmark for Maritime Anomaly Detection

Spatio-Temporal Graphs Beyond Grids: Benchmark for Maritime Anomaly Detection

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ STโ€‘GNN์˜ ๊ธฐ์กด ์„ฑ๊ณต : ๋„๋กœยท๋Œ€์ค‘๊ตํ†ต ๋“ฑ ๊ณ ์ •๋œ ๋…ธ๋“œ(๊ต์ฐจ์ , ์ •๋ฅ˜์žฅ ๋“ฑ)๊ฐ€ ์กด์žฌํ•˜๋Š” ๋„๋ฉ”์ธ์—์„œ๋Š” ์‹œ๊ณต๊ฐ„ ๊ทธ๋ž˜ํ”„ ๊ตฌ์ถ•์ด ์ž์—ฐ์Šค๋Ÿฝ๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์˜ˆ์ธกยท์ด์ƒ ํƒ์ง€ ๋ชจ๋ธ์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋ผ ์™”๋‹ค. ๋น„๊ทธ๋ฆฌ๋“œ ๋„๋ฉ”์ธ์˜ ํ•œ๊ณ„ : ํ•ด์–‘ ๊ตํ†ต์€ ๊ณ ์ •๋œ ๊ณต๊ฐ„ ์•ต์ปค๊ฐ€ ์—†์œผ๋ฉฐ, ๊ธฐ์กด์˜ โ€œ๊ทธ๋ฆฌ๋“œํ™”โ€ ํ˜น์€ โ€œ์›จ์ดํฌ์ธํŠธโ€ ๋ฐฉ์‹์€ ์‹ค์ œ ์„ ๋ฐ•์˜ ์—ฐ์†์ ยท๋™์ ์ธ ์›€์ง์ž„์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ ์ž์ฒด๋ฅผ ์ •์˜ํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋‹ค์ค‘ ์ˆ˜์ค€ ์ด์ƒ : ์„ ๋ฐ• ํ•˜๋‚˜์˜ ๋น„์ •์ƒ์ ์ธ ํ–‰๋™(๋…ธ๋“œโ€‘๋ ˆ๋ฒจ), ๋‘ ์„ ๋ฐ• ๊ฐ„ ๋น„์ •์ƒ์ ์ธ

Detection
No Image

Strain modulated band gap of edge passivated armchair graphene nanoribbons

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ๊ทธ๋ž˜ํ•€์˜ ๋ฐด๋“œ๊ฐญ ๋ฌธ์ œ : 2โ€‘์ฐจ์› ๊ทธ๋ž˜ํ•€์€ ๋ฌด๋ฐด๋“œ๊ฐญ(๋ฐ˜๊ธˆ์†) ํŠน์„ฑ์œผ๋กœ ์ „์ž์†Œ์ž์— ์ง์ ‘ ์ ์šฉ์ด ์–ด๋ ค์›€. ๋ฐด๋“œ๊ฐญ ์—”์ง€๋‹ˆ์–ด๋ง ์ „๋žต : ์ „๊ธฐ์žฅ, ๋‹ค์ธต ๊ตฌ์กฐ, ๋‚˜๋…ธ๋ฆฌ๋ณธํ™”, ์™ธ๋ถ€ ์ŠคํŠธ๋ ˆ์ธ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ๋ผ ์™”์Œ. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฐจ๋ณ„์  : โ€œ์ŠคํŠธ๋ ˆ์ธโ€๊ณผ โ€œ๊ฐ€์žฅ์ž๋ฆฌ ํŒจ์‹œ๋ฒ ์ด์…˜โ€์ด๋ผ๋Š” ๋‘ ๋ณ€์ˆ˜์˜ ๋™์‹œ ํšจ๊ณผ๋ฅผ ์ตœ์ดˆ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ํƒ๊ตฌํ•จ์œผ๋กœ์จ, ์‹ค์ œ ๋””๋ฐ”์ด์Šค ์„ค๊ณ„ ์‹œ ํ•„์š”ํ•œ ๋‹ค์ค‘ ํŒŒ๋ผ๋ฏธํ„ฐ ์ตœ์ ํ™” ์ •๋ณด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. 2. ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•๋ก  | ํ•ญ๋ชฉ | ์ƒ์„ธ ๋‚ด์šฉ | | | | | ์ด๋ก  | Density Functional Theory

Physics Quantum Physics Condensed Matter
Theoretical analysis of beaconless geocast protocols in 1D

Theoretical analysis of beaconless geocast protocols in 1D

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋น„์ฝ˜โ€‘๋ฆฌ์Šค ์ ‘๊ทผ์˜ ํ•„์š”์„ฑ : ์ด์›ƒ ๋…ธ๋“œ์˜ ์œ„์น˜๋ฅผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๊ตํ™˜ํ•˜๋Š” ๋น„์ฝ˜์€ ๋ฉ”์‹œ์ง€ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ๊ธ‰์ฆ์‹œ์ผœ ์ค‘ยท๋Œ€๊ทœ๋ชจ ๋„คํŠธ์›Œํฌ์— ๋น„ํšจ์œจ์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋น„์ฝ˜ ์—†์ด๋„ ๋ผ์šฐํŒ…์ด ๊ฐ€๋Šฅํ•œ ํ”„๋กœํ† ์ฝœ์˜ ์„ฑ๋Šฅ์„ ์ •ํ™•ํžˆ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์‹ค์šฉ์ ์ด๋‹ค. 1์ฐจ์› ๋ชจ๋ธ์˜ ์˜์˜ : 2์ฐจ์› ์ „์ฒด ๋ณต์žก์„ฑ์„ ์™„์ „ํžˆ ํฌ์ฐฉํ•˜๊ธฐ๋Š” ์–ด๋ ต์ง€๋งŒ, 1D ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” โ€œ์ข์€ ํ†ต๋กœโ€ยทโ€œ์„ ํ˜• ๋ฐฐ์น˜โ€ ๋“ฑ ์‹ค์ œ ๋„คํŠธ์›Œํฌ์—์„œ ์ž์ฃผ ๋‚˜ํƒ€๋‚˜๋Š” ์ƒํ™ฉ์„ ๋Œ€๋ณ€ํ•œ๋‹ค. ๋˜ํ•œ 1D์—์„œ ๋“œ๋Ÿฌ๋‚˜๋Š” ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํŒŒ์•…ํ•˜๋ฉด 2D ํ™•์žฅ ์‹œ ์ค‘์š”ํ•œ ์„ค๊ณ„ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. 2. ๋ถ„์„ ๋Œ€

Analysis
No Image

Uselessness for an Oracle Model with Internal Randomness

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์˜ค๋ผํด ๋ชจ๋ธ ์€ ์–‘์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์†๋„ ํ–ฅ์ƒ์„ ์ดํ•ดํ•˜๋Š” ํ•ต์‹ฌ ํ”„๋ ˆ์ž„์›Œํฌ์ด๋ฉฐ, ์ „ํ†ต์ ์œผ๋กœ๋Š” ๊ฒฐ์ •๋ก ์  ํ•จ์ˆ˜ (f:

Model Computer Science Quantum Physics Computational Complexity
ID-PaS : Identity-Aware Predict-and-Search for General Mixed-Integer Linear Programs

ID-PaS : Identity-Aware Predict-and-Search for General Mixed-Integer Linear Programs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ MIP : ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ์—์„œ๋Š” ๋™์ผํ•œ ๊ตฌ์กฐ์˜ MIP๊ฐ€ ์ˆ˜์š”, ๋น„์šฉ, ์šฉ๋Ÿ‰ ๋“ฑ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ๋‹ฌ๋ผ์ ธ ๋ฐ˜๋ณต์ ์œผ๋กœ ํ•ด๊ฒฐ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ๋Š” ๊ณผ๊ฑฐ ์ตœ์ ยท์ค€์ตœ์  ํ•ด๋กœ๋ถ€ํ„ฐ ํŒจํ„ด์„ ํ•™์Šตํ•ด ์ƒˆ๋กœ์šด ์ธ์Šคํ„ด์Šค์˜ ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ์ถ•์†Œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด Predictโ€‘andโ€‘Search : ์ด์ง„ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ํ™•๋ฅ  ์˜ˆ์ธก์„ ๋ฐ”ํƒ•์œผ๋กœ โ€œ๊ณ ์ •โ€‘ํ”Œ๋ฆฝโ€ ์ด์›ƒ์„ ์ •์˜ํ•˜๊ณ , ์ œํ•œ๋œ ์„œ๋ธŒโ€‘MIP๋ฅผ ํ’€์–ด ๊ณ ํ’ˆ์งˆ ํ•ด๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฐพ๋Š”๋‹ค. ํ•˜์ง€๋งŒ (1) ์ผ๋ฐ˜ ์ •์ˆ˜ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ง์ ‘ ์˜ˆ์ธก์ด ์–ด๋ ค์›Œ ์ ์šฉ ๋ฒ”์œ„๊ฐ€ ์ œํ•œ๋˜๊ณ , (2) ๋ณ€์ˆ˜ ์ •์ฒด์„ฑ์„ ๋ฌด์‹œ

No Image

Improvements and simplifications in in-gel fluorescent detection of proteins using ruthenium II tris-(bathophenanthroline disulfonate): the poor mans fluorescent detection method

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜•๊ด‘ ์—ผ์ƒ‰์˜ ์žฅ์  : ๋†’์€ ๊ฐ๋„์™€ ๋„“์€ ์„ ํ˜• ๋ฒ”์œ„, ์งˆ๋Ÿ‰๋ถ„์„(MS)๊ณผ์˜ ์ง์ ‘ ํ˜ธํ™˜์„ฑ์€ ์ คโ€‘๊ธฐ๋ฐ˜ ํ”„๋กœํ…Œ์˜ค๋ฏน์Šค์—์„œ ํ•„์ˆ˜์ ์ด๋‹ค. ๋ฃจํ…Œ๋Š„โ€‘๋ฐฐ์ŠคํŽ˜๋†€๋ž€ํ‹ด ๋ณตํ•ฉ์ฒด : ์ƒ์šฉ ์‹œ์•ฝ ๋Œ€๋น„ 10โ€‘30๋ฐฐ ์ €๋ ดํ•˜์ง€๋งŒ, ๋ณตํ•ฉ์ฒด ์ œ์กฐ ์‹œ Ru(III) โ†’ Ru(II) ํ™˜์›๊ณผ ๋ฆฌ๊ฐ„๋“œ ๊ฒฐํ•ฉ์„ ๋™์‹œ์— ์ง„ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ์ ˆ์ฐจ๊ฐ€ ์‹คํ—˜์‹ค์—์„œ ์žฌํ˜„์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค. ๊ธฐ์กด ํ”„๋กœํ† ์ฝœ์˜ ํ•œ๊ณ„ : ๊ธด ์—ผ์ƒ‰ยทํƒˆ์—ผ ์‹œ๊ฐ„(์ตœ๋Œ€ 2 ์ผ)๊ณผ ์‚ฐ์„ฑ ์กฐ๊ฑด(์•„์„ธํŠธ์‚ฐ) ์‚ฌ์šฉ์œผ๋กœ ๋ฐฐ๊ฒฝ์ด ๋†’๊ณ , ์•„์„ธํŠธ์‚ฐ์— ์˜ํ•œ ๋‹จ๋ฐฑ์งˆ ์•„์„ธํ‹ธํ™” ์œ„ํ—˜์ด ์กด์žฌํ•œ๋‹ค. 2. ์ฃผ์š” ๊ฐœ์„ ์  | ๊ตฌ๋ถ„

Quantitative Biology Detection
No Image

Genetic Algorithm (GA) in Feature Selection for CRF Based Manipuri Multiword Expression (MWE) Identification

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ MWE์˜ ์ค‘์š”์„ฑ : ๊ธฐ๊ณ„ ๋ฒˆ์—ญ, ํ’ˆ์‚ฌ ํƒœ๊น…, ์ •๋ณด ๊ฒ€์ƒ‰, ์งˆ์˜์‘๋‹ต ๋“ฑ NLP ์ „๋ฐ˜์— ๊ฑธ์ณ ํ•ต์‹ฌ ์—ญํ• ์„ ํ•จ. ๋งˆ๋‹ˆํ‘ธ๋ฆฌ์–ด์˜ ํŠน์ˆ˜์„ฑ : 72๊ฐœ์˜ ์ ‘์‚ฌ(์ „ยทํ›„์‚ฌ) ์ค‘ 61๊ฐœ๊ฐ€ ์ ‘๋ฏธ์‚ฌ์ด๋ฉฐ, ๋‹จ์–ด๊ฐ€ ๋‹ค์ˆ˜์˜ ์ ‘์‚ฌ๋ฅผ ๊ฒน์ณ ๋ถ™์ด๋Š” ๊ณ ๋„๋กœ ๊ต์ฐฉ์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง. ์ด๋Š” ํ˜•ํƒœ์†Œ ๋ถ„์„๊ณผ ํŠน์ง• ์„ค๊ณ„์— ํฐ ๋‚œ๊ด€์„ ์ œ๊ณตํ•œ๋‹ค. CRF์˜ ํ•œ๊ณ„ : CRF๋Š” ํŠน์ง• ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด์ง€๋งŒ, ํŠน์ง• ์„ ํƒ์ด ์ˆ˜๋™(ํžˆํŠธโ€‘์•คโ€‘ํŠธ๋ผ์ด) ๋ฐฉ์‹์ด๋ฉด ์ตœ์  ์กฐํ•ฉ์„ ์ฐพ๊ธฐ ์–ด๋ ต๊ณ , ๊ณผ๋‹ค ํŠน์ง•์€ ๊ณผ์ ํ•ฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. 2. ์ œ์•ˆ ๋ฐฉ๋ฒ• | ๋‹จ๊ณ„ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ

Computer Science Neural Computing NLP
UW-BioNLP at ChemoTimelines 2025: Thinking, Fine-Tuning, and Dictionary-Enhanced LLM Systems for Chemotherapy Timeline Extraction

UW-BioNLP at ChemoTimelines 2025: Thinking, Fine-Tuning, and Dictionary-Enhanced LLM Systems for Chemotherapy Timeline Extraction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ž„์ƒ ๊ธฐ๋ก์˜ ๋น„์ •ํ˜•์„ฑ : ์•” ์น˜๋ฃŒ๋Š” ๋ณต์šฉ๋Ÿ‰ ๋ณ€๋™ยท์ง€์—ฐ ๋“ฑ ๋ณต์žกํ•œ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌํ•จํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ •๋ณด๋Š” ์ฃผ๋กœ ์ž์œ  ์„œ์ˆ ํ˜• ๋…ธํŠธ์— ์‚ฐ์žฌํ•œ๋‹ค. ๊ธฐ์กด ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํŒŒ์ดํ”„๋ผ์ธ์€ ๋‚ฎ์€ ์žฌํ˜„์œจ๊ณผ ๋†’์€ ์˜ค๋ฅ˜์œจ์„ ๋ณด์ด๋ฉฐ, ๋Œ€๊ทœ๋ชจ LLM ํ™œ์šฉ์ด ์ƒˆ๋กœ์šด ๋Œ€์•ˆ์œผ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค. ChemoTimelines 2025 ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ , Subtask 2 (์›์‹œ ๋…ธํŠธ๋งŒ ์‚ฌ์šฉ)์—์„œ ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ์‹œ์Šคํ…œ์˜ ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œํ—˜ํ•œ๋‹ค. 2. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก  | ์ „๋žต | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌํ˜„ ์ƒ์„ธ | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | |

System
No Image

AMAP Agentic Planning Technical Report

1๏ธโƒฃ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธฐ์กด ํˆดโ€‘ํ†ตํ•ฉ(LMโ€‘Tool) ์—ฐ๊ตฌ๋Š” ์ˆ˜ํ•™ยท์ฝ”๋“œ ๋“ฑ ์ œํ•œ๋œ ๋„๋ฉ”์ธ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์‹ค์‹œ๊ฐ„ ์ง€๋„ยท์—ฌํ–‰ ์™€ ๊ฐ™์€ ๋ณตํ•ฉ์ ์ธ ์ŠคํŽ˜์ด์‹œ์˜คโ€‘ํ…œํฌ๋Ÿด ์ž‘์—…์€ ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์ง€ ๋ชปํ–ˆ๋‹ค. ์‹ค์ œ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ๋Š” ๋‹ค์ค‘ ์ œ์•ฝยท๋‹ค์ค‘ ๋ชจ๋“œ(์ž๋™์ฐจยท์ „์ฒ ยทํ•ญ๊ณต) ๋ฅผ ํฌํ•จํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ๊ตํ†ตยท๋‚ ์”จยท๊ฐ€๊ฒฉ ๋ณ€๋™์„ ๋ฐ˜์˜ํ•ด์•ผ ํ•˜๋Š” System 2 ์ˆ˜์ค€์˜ ๊ณ ๋‚œ์ด๋„ ๋ฌธ์ œ๋‹ค. 2๏ธโƒฃ ํ•ต์‹ฌ ๊ธฐ์ˆ  | ๊ตฌ์„ฑ ์š”์†Œ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | ํˆด ํ™˜๊ฒฝ | FastMCP ๊ธฐ๋ฐ˜ ํ‘œ์ค€ํ™” + ROLL ๋น„๋™๊ธฐ์‹ ๋กค์•„์›ƒ | ํˆด ํ˜ธ์ถœ ์ง€์—ฐ ์ตœ์†Œํ™”, ๋Œ€

Computer Science Artificial Intelligence
Enhancing Automatic Speech Recognition Through Integrated Noise Detection Architecture

Enhancing Automatic Speech Recognition Through Integrated Noise Detection Architecture

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์Œ์„ฑ ์ธ์‹ ๋ถ„์•ผ์—์„œ ํฐ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋Š” selfโ€‘supervised ํ•™์Šต ๋ชจ๋ธ์ธ wav2vec2๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, ์†Œ์Œ ๊ฐ์ง€ ๊ธฐ๋Šฅ์„ ๋™์ผ ๋„คํŠธ์›Œํฌ ์•ˆ์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์‹œ์Šคํ…œ์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. wav2vec2๋Š” ๋Œ€๊ทœ๋ชจ ๋น„์ง€๋„ ์Œ์„ฑ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ•๋ ฅํ•œ ์Œํ–ฅ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๋Š”๋ฐ, ์ด ํ‘œํ˜„์„ ๊ทธ๋Œ€๋กœ ์ „์‚ฌ(head)์™€ ์†Œ์Œ ๋ถ„๋ฅ˜(head) ๋‘ ๊ฐœ์˜ ๋ณ‘๋ ฌ ๋””์ฝ”๋”์— ์ „๋‹ฌํ•œ๋‹ค๋Š” ์ ์ด ํ•ต์‹ฌ ์„ค๊ณ„์ด๋‹ค. ์ „์‚ฌ ๋””์ฝ”๋”๋Š” ์ „ํ†ต์ ์ธ CTC ํ˜น์€ seq2seq ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•™์Šต๋˜๋Š” ๋ฐ˜๋ฉด, ์†Œ์Œ ๋””์ฝ”๋”๋Š” ํ™˜๊ฒฝ ์†Œ๋ฆฌ์™€ ๋ฌด์Œ ๊ตฌ

Detection
Beyond Single-Agent Safety: A Taxonomy of Risks in LLM-to-LLM Interactions

Beyond Single-Agent Safety: A Taxonomy of Risks in LLM-to-LLM Interactions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ œ๊ธฐ ๋‹จ์ผโ€‘์—์ด์ „ํŠธ ์•ˆ์ „ ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ํ•œ๊ณ„ ๊ธฐ์กด ์•ˆ์ „ ๊ธฐ์ˆ (RLHF, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ์ถœ๋ ฅ ๋ชจ๋”๋ ˆ์ด์…˜ ๋“ฑ)์€ ์ ๋ณ„ (pointwise) ์ œ์–ด์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ด๋Š” โ€œํ•˜๋‚˜์˜ ๋ชจ๋ธ โ†” ํ•˜๋‚˜์˜ ์‚ฌ์šฉ์žโ€๋ผ๋Š” ์ด์›์ (dyadic) ์ƒํ™ฉ์„ ์ „์ œ๋กœ ํ•˜๋ฉฐ, ๋ชจ๋ธ์˜ ์ถœ๋ ฅ์ด ์™ธ๋ถ€ ์‹œ์Šคํ…œ์— ์žฌํˆฌ์ž…๋˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š”๋‹ค. LLMโ€‘toโ€‘LLM ์ƒํƒœ๊ณ„์˜ ๊ธ‰์„ฑ์žฅ AutoGen, CAMEL, SWEโ€‘agent, Voyager ๋“ฑ์—์„œ ๋ณด๋“ฏ, LLM์ด ๋„๊ตฌ, ๋ฉ”๋ชจ๋ฆฌ, ๋‹ค๋ฅธ LLM๊ณผ ์—ฐ๊ณ„๋˜๋Š” ๋ฉ€ํ‹ฐโ€‘์—์ด์ „ํŠธ ๊ตฌ์กฐ๊ฐ€ ์‹ค๋ฌด์™€ ์—ฐ๊ตฌ ๋ชจ๋‘

Dynamical modeling of nonlinear latent factors in multiscale neural activity with real-time inference

Dynamical modeling of nonlinear latent factors in multiscale neural activity with real-time inference

์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์‹ ๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋””์ฝ”๋”ฉํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํŠนํžˆ, ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์–‘ํ•œ ์‹œ๊ฐ„ ์ฒ™๋„์™€ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋ฉฐ ๋•Œ๋กœ๋Š” ๋ˆ„๋ฝ๋œ ์ƒ˜ํ”Œ์ด ์žˆ๋Š” ์—ฌ๋Ÿฌ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์˜ ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋””์ฝ”๋”ฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๊ธฐ์กด์˜ ๋น„์„ ํ˜• ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์‹ ๊ฒฝ ํ™œ๋™ ๋ชจ๋ธ๋“ค์€ ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•˜์˜€์œผ๋ฉฐ, ์ผ๋ถ€๋Š” ์‹ค์‹œ๊ฐ„ ๋””์ฝ”๋”ฉ์ด ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ ์š”์†Œ๋กœ๋Š” ๋‹ค์ค‘ ์Šค์ผ€์ผ ์ธ์ฝ”๋”์™€ ๋ฐฑ๋ณธ, ๊ทธ๋ฆฌ๊ณ  ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ณ„ ๋””์ฝ”๋”๊ฐ€ ์žˆ๋‹ค. ์ด๋“ค ๊ตฌ์„ฑ ์š”์†Œ๋Š” ๊ฐ๊ฐ ๋‹ค๋ฅธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค:

Model
Exploration vs. Fixation: Scaffolding Divergent and Convergent Thinking for Human-AI Co-Creation with Generative Models

Exploration vs. Fixation: Scaffolding Divergent and Convergent Thinking for Human-AI Co-Creation with Generative Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ƒ์„ฑํ˜• AI์˜ ๋ฏผ์ฃผํ™” ๋Š” ์ดˆ๋ณด์ž๋„ ๊ณ ํ’ˆ์งˆ ๊ฒฐ๊ณผ๋ฌผ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ฒŒ ํ–ˆ์ง€๋งŒ, โ€œ์Šฌ๋กฏ ๋จธ์‹ โ€ํ˜• ์›Œํฌํ”Œ๋กœ์šฐ (ํ”„๋กฌํ”„ํŠธ โ†’ ๊ฒฐ๊ณผ โ†’ ๋ฐ˜๋ณต) ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž๋Š” ์ดˆ๊ธฐ ๊ฒฐ๊ณผ์— ๊ธ‰์†ํžˆ ์ˆ˜๋ ดํ•˜๊ณ , ๋Œ€์•ˆ ํƒ์ƒ‰์„ ํฌ๊ธฐํ•œ๋‹ค. ์ด ํ˜„์ƒ์€ ๋ฐœ์‚ฐ ์‚ฌ๊ณ  ๊ฐ€ ์–ต์ œ๋˜๊ณ  ๋””์ž์ธ ๊ณ ์ฐฉ ์ด ๋ฐœ์ƒํ•œ๋‹ค๋Š” ๊ธฐ์กด ๋ฌธํ—Œ(์˜ˆ: 42, 47)๊ณผ ์ผ์น˜ํ•œ๋‹ค. ๋˜ํ•œ, ์‚ฌ์šฉ์ž๋Š” ๊ณ ์ˆ˜์ค€ ์˜๋„ ๋ฅผ ๊ตฌ์ฒด์ ์ธ ํ”„๋กฌํ”„ํŠธ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์—์„œ โ€œ์‹œ๊ฐํ™”์˜ ๊ฐ„๊ทน(gulf of envisioning)โ€ ์— ๋ถ€๋”ชํ˜€, ๋ฏธ์„ธ ์กฐ์ •์— ๋จธ๋ฌด๋ฅด๊ฒŒ ๋œ๋‹ค. 2. ์ด๋ก ์  ํ† ๋Œ€ โ€“ Wallas ๋ชจ

Model
No Image

LoopBench: Discovering Emergent Symmetry Breaking Strategies with LLM Swarms

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ LLM์˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธํ™” : ์ตœ๊ทผ LLM์ด ๋‹จ์ผ ์งˆ์˜์‘๋‹ต์„ ๋„˜์–ด ๋ณตํ•ฉ์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„๋˜๋Š” ์ถ”์„ธ์ด๋ฉฐ, โ€œAI ์Šค์›œโ€์ด๋ผ๋Š” ๊ฐœ๋…์ด ๋“ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค. ๋ถ„์‚ฐ ํ˜‘์—…์˜ ํ•ต์‹ฌ ๊ณผ์ œ : ์ค‘์•™ ์กฐ์ •์ž๊ฐ€ ์—†๋Š” ํ™˜๊ฒฝ์—์„œ ์—์ด์ „ํŠธ๊ฐ€ ๋Œ€์นญ ๊นจ๊ธฐ(symmetry breaking) ๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋Š” ๋ฉ”ํƒ€์ธ์ง€์  ์‚ฌ๊ณ  ๋Šฅ๋ ฅ๊ณผ ์ง๊ฒฐ๋œ๋‹ค. ํ™€์ˆ˜ ์‚ฌ์ดํด ๊ทธ๋ž˜ํ”„ : ์ƒ‰์ƒ์ด ๋ถ€์กฑํ•œ(2์ƒ‰) ํ™€์ˆ˜ ์‚ฌ์ดํด์€ ์™„์ „ ๋Œ€์นญ ์„ ์ด๋ฃจ๋ฉฐ, ๊ฒฐ์ •๋ก ์  ๋ฌดํ†ต์‹  ์—์ด์ „ํŠธ๋Š” ๋ฐ˜๋“œ์‹œ ๋ฌดํ•œ ์ง„๋™์— ๋น ์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋ฌธ์ œ๋Š” โ€œ์ข์€ ์‹œ๊ฐโ€์ด ๊ต์ฐฉ์„ ์ดˆ๋ž˜ํ•˜

A DeepSeek-Powered AI System for Automated Chest Radiograph Interpretation in Clinical Practice

A DeepSeek-Powered AI System for Automated Chest Radiograph Interpretation in Clinical Practice

์ด ๋…ผ๋ฌธ์€ Janus Pro CXR์ด๋ผ๋Š” ๊ฐ€์Šด ์—‘์Šค๋ ˆ์ด ํ•ด์„ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ฒ ์ €ํ•œ ํ‰๊ฐ€๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ DeepSeek์˜ Janus Pro ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ๋‹ค์ค‘ ์„ผํ„ฐ ์ „ํ–ฅ์  ์—ฐ๊ตฌ(NCT07117266)๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ๊ฒฐ๊ณผ๋Š” AI ์ง€์› ๋ฐฉ์‚ฌ์„  ํ•ด์„ ์‹œ์Šคํ…œ์ด ์ž„์ƒ ํ™˜๊ฒฝ์—์„œ ์‹ค์ œ์ ์ธ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค. Janus Pro CXR์€ ์ž๋™ ๋ณด๊ณ ์„œ ์ƒ์„ฑ์—์„œ ์ตœ์‹  X ray ๋ณด๊ณ ์„œ ์ƒ์„ฑ ๋ชจ๋ธ๋“ค์„ ๋Šฅ๊ฐ€ํ•˜๋ฉฐ, ํŠนํžˆ 200B ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ChatGPT 4o๋ณด๋‹ค๋„ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค

System
No Image

On modules over valuations

1. ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ‰๊ฐ€(valuation) ๋Š” ๊ณ ์ „์ ์ธ ๋ณผ๋ก๊ธฐํ•˜ํ•™ยท์ธก๋„๋ก ์—์„œ ๋ถ€๋ถ„๋‹ค์–‘์ฒด์— ๋Œ€ํ•œ ๊ฐ€๋ฒ•์  ์ˆ˜์น˜๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๊ฐœ๋…์ด๋‹ค. Alesker๋Š” ์ด๋ฅผ ๋งค๋„๋Ÿฌ์šด ๋‹ค์–‘์ฒด ์ „๋ฐ˜์— ํ™•์žฅํ•˜์—ฌ (V^{infty}(X)) ๋ผ๋Š” ํ”„๋ ˆ์…ฐ ๋Œ€์ˆ˜๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด ๋Œ€์ˆ˜๋Š” ๊ณฑ ๊ตฌ์กฐ ์™€ ์—ํ”ผ๋ชจ๋ฅดํ”ฝ ์ธ ํ‰๊ฐ€ โ†’ ๋งค๋„๋Ÿฌ์šด ํ•จ์ˆ˜ ์‚ฌ์ƒ (phimapsto

Mathematics
Statistical Arbitrage in Polish Equities Market Using Deep Learning Techniques

Statistical Arbitrage in Polish Equities Market Using Deep Learning Techniques

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ํ†ต๊ณ„์  ์ฐจ์ต๊ฑฐ๋ž˜(Statistical Arbitrage) ๋Š” ๋™์ผ ์‹œ์žฅ ๋‚ด ์ž์‚ฐ ๊ฐ„ ๊ฐ€๊ฒฉ ๋ถˆ์ผ์น˜๋ฅผ ์ด์šฉํ•˜๋Š” ์ „๋žต์œผ๋กœ, ํšจ์œจ์  ์‹œ์žฅ ๊ฐ€์„ค์„ ๋ถ€๋ถ„์ ์œผ๋กœ ์œ„๋ฐ˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๊ณ„ยท์‹ค๋ฌด ๋ชจ๋‘ ๊ด€์‹ฌ์ด ์ง‘์ค‘๋œ๋‹ค. ๊ธฐ์กด ํŽ˜์–ด ํŠธ๋ ˆ์ด๋”ฉ์€ ๊ณ ์ƒ๊ด€ ๋‘ ์ข…๋ชฉ์„ ์ง์ ‘ ๋งค์นญํ•˜์ง€๋งŒ, ๋ฆฌ์Šคํฌ ํŒฉํ„ฐ ๋ณต์ œ ๋Š” ๋ณด๋‹ค ์œ ์—ฐํ•œ โ€œ๊ฐ€์ƒ ํŽ˜์–ดโ€๋ฅผ ๋งŒ๋“ ๋‹ค. ์ด๋Š” ํŠนํžˆ ์‹œ์žฅ ๊ทœ๋ชจ๊ฐ€ ์ž‘๊ณ  ์ƒ์žฅ ETF๊ฐ€ ์ œํ•œ์ ์ธ ํด๋ž€๋“œ ์™€ ๊ฐ™์€ ์‹ ํฅ ์‹œ์žฅ์—์„œ ์œ ์šฉํ•˜๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ํ•ต์‹ฌ ๊ธฐ์ˆ  | | | | | | ๋ฆฌ์Šคํฌ ํŒฉํ„ฐ ๊ตฌ์„ฑ | PCA : ์ „์ฒด

Learning
AI-Driven Expansion and Application of the Alexandria Database

AI-Driven Expansion and Application of the Alexandria Database

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉํ‘œ ์•Œ๋ ‰์‚ฐ๋“œ๋ฆฌ์•„ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋Š” ํ˜„์žฌ ์ „ ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํฐ ๊ณต๊ฐœ DFT ๊ธฐ๋ฐ˜ ์—ด์—ญํ•™ ์•ˆ์ • ๋ฌผ์งˆ ์ปฌ๋ ‰์…˜์ด๋ฉฐ, ๊ธฐ์กด ๋ฒ„์ „์€ ์•ฝ 5.8 M ๊ตฌ์กฐยท17.5 ร— 10โด ์•ˆ์ • ๋ฌผ์งˆ์„ ํฌํ•จํ•œ๋‹ค. ๊ธฐ์กด ๊ณ ์† ํƒ์ƒ‰(HT) ๋ฐฉ์‹์€ ์„ฑ๊ณต๋ฅ  โ‰ˆ 0.1 % ์— ๋จธ๋ฌผ๋Ÿฌ, ์‹ค์ œ ์‹คํ—˜ ๊ฐ€๋Šฅํ•œ ํ›„๋ณด๋ฅผ ์ฐพ๋Š” ๋ฐ ๋น„ํšจ์œจ์ ์ด์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์„ฑ๊ณต๋ฅ  99 % (100 meV/atom ์ด๋‚ด)์™€ 3๋ฐฐ ํ–ฅ์ƒ๋œ ํšจ์œจ ์„ ๋ชฉํ‘œ๋กœ, ์ตœ์‹  ์ƒ์„ฑ ๋ชจ๋ธยท๋ณดํŽธ MLIPยท๊ทธ๋ž˜ํ”„ NN์„ ํ†ตํ•ฉํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ  ๋ฐ ์›Œํฌํ”Œ๋กœ์šฐ | ๋‹จ๊ณ„ | ์‚ฌ์šฉ ๊ธฐ

Data
Towards Efficient Hypergraph and Multi-LLM Agent Recommender Systems

Towards Efficient Hypergraph and Multi-LLM Agent Recommender Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ LLM ๊ธฐ๋ฐ˜ ์ƒ์„ฑํ˜• ์ถ”์ฒœ ์€ ์˜๋ฏธ๋ก ์  ์ดํ•ด์™€ ๋Œ€ํ™”ํ˜• ์ถ”๋ก ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ํ™˜๊ฐ(Hallucination) ๋ฌธ์ œ์™€ ๊ณ ๋น„์šฉ ์—ฐ์‚ฐ ์ด ์‹ค์šฉ์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค. ๊ธฐ์กด GNN ๊ธฐ๋ฐ˜ ์ถ”์ฒœ์€ ์ •์ ยท์Œ๋ฐฉํ–ฅ ๊ด€๊ณ„๋งŒ์„ ๋‹ค๋ฃจ์–ด, ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ๋‹ค์ค‘ ํ–‰๋™(์กฐํšŒ, ์žฅ๋ฐ”๊ตฌ๋‹ˆ, ๊ตฌ๋งค ๋“ฑ)์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ๋ฒ• | | | | | | ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ์ธ์ฝ”๋” (HGNN) | ์‚ฌ์šฉ์žยท์•„์ดํ…œยทํ–‰๋™์„ ํ•˜๋‚˜์˜ ํ•˜์ดํผ์—ฃ์ง€๋กœ ์—ฐ๊ฒฐ, ๊ณ ์ฐจ์› ์ƒํ˜ธ์ž‘์šฉ ํ•™์Šต | ๋‘ ๋‹จ๊ณ„ ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ + A

System
์ž…๋ ฅ ํฌ๊ธฐ์™€ ๋ฌด๊ด€ํ•œ ์‹œ๊ฐ ์ธ์ฝ”๋” MambaEye

์ž…๋ ฅ ํฌ๊ธฐ์™€ ๋ฌด๊ด€ํ•œ ์‹œ๊ฐ ์ธ์ฝ”๋” MambaEye

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ž…๋ ฅ ํฌ๊ธฐ ๋ถˆ๋ณ€์„ฑ ์€ ์ธ๊ฐ„ ์‹œ๊ฐ์˜ ํ•ต์‹ฌ ํŠน์„ฑ์œผ๋กœ, ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๋น„์ „ ๋ชจ๋ธ์€ ๊ณ ์ •๋œ ์ž…๋ ฅ ํ•ด์ƒ๋„์— ๋งž์ถฐ ์„ค๊ณ„๋ผ ์ด๋ฏธ์ง€ ๋ฆฌ์‚ฌ์ด์ง•ยทํฌ๋กญ์œผ๋กœ ์ธํ•œ ์ •๋ณด ์†์‹ค์ด ๋ฐœ์ƒํ•œ๋‹ค. CNN์€ ๊ณ ์ • ์ปค๋„๋กœ ์ธํ•ด ์ „์—ญ ์˜์กด์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ต๊ณ , ViT๋Š” ํŒจ์น˜ ์ˆ˜์— ๋Œ€ํ•ด ์ œ๊ณฑ ๋ณต์žก๋„ ๋ฅผ ๊ฐ€์ง€๋ฉฐ ํ•ด์ƒ๋„ ๋ณ€ํ™”์— ์ทจ์•ฝํ•˜๋‹ค. ์ตœ๊ทผ SSM ๊ธฐ๋ฐ˜ ๋ชจ๋ธ(Mamba ๋“ฑ)์€ ์„ ํ˜• ์‹œ๊ฐ„ยท์ƒ์ˆ˜ ๋ฉ”๋ชจ๋ฆฌ ์žฅ์ ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€ ์–‘๋ฐฉํ–ฅ ์ฒ˜๋ฆฌ์™€ ๊ณ ์ • ์Šค์บ” ๊ฒฝ๋กœ (์˜ˆ: raster) ์˜์กด์œผ๋กœ ์ง„์ •ํ•œ ํฌ๊ธฐ ๋ถˆ๋ณ€์„ฑ์„ ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด |

AgriRegion: Region-Aware Retrieval for High-Fidelity Agricultural Advice

AgriRegion: Region-Aware Retrieval for High-Fidelity Agricultural Advice

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM์˜ ํ•œ๊ณ„ : ์ผ๋ฐ˜ ๋ชฉ์  ๋ชจ๋ธ์€ ๋ฐฉ๋Œ€ํ•œ ์ผ๋ฐ˜ ์ง€์‹์„ ๊ฐ–์ง€๋งŒ, ๋†์—…์ฒ˜๋Ÿผ ์ง€์—ญยท์‹œ์ฆŒยท๋ฒ•๊ทœ์— ๋ฏผ๊ฐํ•œ ๋„๋ฉ”์ธ์—์„œ๋Š” โ€œ๋งฅ๋ฝ์  ํ™˜๊ฐโ€ ์œ„ํ—˜์ด ๋†’๋‹ค. RAG์˜ ๊ธฐ์กด ํ™œ์šฉ : ๊ธฐ์กด RAG๋Š” ์˜๋ฏธ์  ์œ ์‚ฌ๋„ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰์— ๋จธ๋ฌผ๋Ÿฌ, ์ง€๋ฆฌยท๊ธฐํ›„์™€ ๊ฐ™์€ ๋น„ํ…์ŠคํŠธ์  ์ปจํ…์ŠคํŠธ๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | |โ‘ | Regionโ€‘Aware Retrieval : ์ง€๋ฆฌ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๋ฌธ์„œ์— ์ฃผ์ž…ํ•˜๊ณ , ์งˆ์˜ ์‹œ ์œ„์น˜ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด ๊ฒ€์ƒ‰ยท์žฌ๋žญํ‚น ์ˆ˜ํ–‰|์ง€์—ญ ๋งž์ถคํ˜• ์กฐ์–ธ ์ œ๊ณต, ํ™˜๊ฐ ๊ฐ์†Œ |

AutoICE: Automatically Synthesizing Verifiable C Code via LLM-driven Evolution

AutoICE: Automatically Synthesizing Verifiable C Code via LLM-driven Evolution

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ž๋™ ํ˜•์‹ํ™”์˜ ํ•„์š”์„ฑ : C ์ฝ”๋“œ์™€ ACSL ์ฃผ์„์„ ๋™์‹œ์— ์ƒ์„ฑํ•ด์•ผ ํ•˜๋Š” ์ž๋™ ํ˜•์‹ํ™”๋Š” ์•ˆ์ „ยท์˜๋ฃŒยท๊ธˆ์œต ๋“ฑ ์•ˆ์ „โ€‘์ค‘์š” ๋ถ„์•ผ์—์„œ ํ˜•์‹ ๊ฒ€์ฆ ๋„์ž…์„ ์ด‰์ง„ํ•œ๋‹ค. LLM ํ™œ์šฉ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์€ (1) ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ์œผ๋กœ ์ธํ•œ ๊ตฌ๋ฌธยท์˜๋ฏธ ์˜ค๋ฅ˜, (2) ํฌ๋ฐ•ํ•œ ๊ฒ€์ฆ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•œ ์ž์ฒด ์ˆ˜์ • ์‹œ ์˜ค๋ฅ˜ ๋ˆ„์ , (3) ์•”๋ฌต ์ง€์‹(์ „์ œ, ๋ฃจํ”„ ๋ถˆ๋ณ€์‹ ๋“ฑ) ์ถ”์ถœ ๋ถ€์กฑ์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๊ตฌ์„ฑ ์š”์†Œ | ์„ค๋ช… | ์—ญํ•  | | | | | | ๋‹ค์–‘ํ•œ ์ดˆ๊ธฐ ๊ฐœ์ฒด(Di

Automated Risk-of-Bias Assessment of Randomized Controlled Trials: A First Look at a GEPA-trained Programmatic Prompting Framework

Automated Risk-of-Bias Assessment of Randomized Controlled Trials: A First Look at a GEPA-trained Programmatic Prompting Framework

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ RoB ํ‰๊ฐ€์˜ ํ•ต์‹ฌ์„ฑ : Cochrane RoB 1 ๋„๊ตฌ๋Š” ๋ฉ”ํƒ€๋ถ„์„ ์‹ ๋ขฐ์„ฑ์˜ ๊ธฐ์ดˆ์ด๋ฉฐ, 7๊ฐœ ๋„๋ฉ”์ธ ๊ฐ๊ฐ์— ๋Œ€ํ•ด โ€˜Low/High/Unclearโ€™ ํŒ๋‹จ์„ ์š”๊ตฌํ•œ๋‹ค. ์ž๋™ํ™”์˜ ์žฅ์• ๋ฌผ : ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋Š” ์ˆ˜์ž‘์—… ํ”„๋กฌํ”„ํŠธ ์— ํฌ๊ฒŒ ์˜์กดํ•ด, ํ”„๋กฌํ”„ํŠธ ์žฌํ˜„ยท๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์…‹ ์ ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ๋˜ํ•œ, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์™€์˜ ์ผ๊ด€์„ฑ ํ™•๋ณด๊ฐ€ ๋ฏธํกํ–ˆ๋‹ค. ํ”„๋กœ๊ทธ๋ž˜๋ฐ๋œ ํ”„๋กฌํ”„ํŠธ : DSPy๋Š” โ€œ์ฝ”๋“œ๋กœ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ •์˜โ€ํ•จ์œผ๋กœ์จ ๋ชจ๋“ˆํ™”ยท๋ฒ„์ „ ๊ด€๋ฆฌยท๋””๋ฒ„๊น… ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ , GEPA๋Š” ์ง„ํ™”์ (Genetic)ยท๋‹ค๋ชฉ์ (Pareto)

Framework
ReactorFold: Generative discovery of nuclear reactor cores via emergent physical reasoning

ReactorFold: Generative discovery of nuclear reactor cores via emergent physical reasoning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํƒ„์†Œ ์ค‘๋ฆฝ ๋ชฉํ‘œ์™€ SMR : ์ „ ์„ธ๊ณ„์ ์ธ ํƒ„์†Œ ์ค‘๋ฆฝ ์ถ”์ง„ ์†์—์„œ ์†Œํ˜• ๋ชจ๋“ˆ ์›์ž๋กœ(SMR)์˜ ๋น ๋ฅธ ์ƒ์šฉํ™”๊ฐ€ ์š”๊ตฌ๋˜๋ฉฐ, ํ•ต์‹ฌ ์„ค๊ณ„์ธ ์—ฐ๋ฃŒ ์–ด์…ˆ๋ธ”๋ฆฌ ์ตœ์ ํ™”๊ฐ€ ํ•ต์‹ฌ ๊ณผ์ œ๋กœ ๋ถ€๊ฐ๋œ๋‹ค. ๊ธฐ์กด ์ตœ์ ํ™” ํ•œ๊ณ„ : ๊ฒฐ์ •๋ก ์ ยท๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑยทML ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋ชจ๋‘ ๊ณ ์ •๋œ ์„ค๊ณ„ ํŒŒ๋ผ๋ฏธํ„ฐ(์˜ˆ: Gd ํก์ˆ˜๋ด‰ ์ˆ˜) ๋ฅผ ์ „์ œ๋กœ ํ•˜์—ฌ ํƒ์ƒ‰ ๋ฒ”์œ„๋ฅผ ์ œํ•œํ•œ๋‹ค. ์ด๋Š” ์ƒˆ๋กœ์šด ํ† ํด๋กœ์ง€๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์–ด๋ ค์šด ๊ตฌ์กฐ์  ์ œ์•ฝ์„ ๋งŒ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ์‹œํ€€์Šค ๋ชจ๋ธ๋ง ์ „ํ™˜ : 17ร—17 2D ๊ฒฉ์ž๋ฅผ 289๊ฐœ์˜ ํ† ํฐ ์‹œํ€€์Šค๋กœ ์ง๋ ฌํ™”ํ•˜์—ฌ, ์–ธ์–ด ๋ชจ๋ธ์ด โ€œ๋ฌธ

No Image

An Optimal Policy for Learning Controllable Dynamics by Exploration

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋งˆ์ฝ”ํ”„ ์ฒด์ธ ์€ ์ˆœ์ฐจ์  ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ์™€ ๊ฐ•ํ™”ํ•™์Šต(RL)์—์„œ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ œ์–ด์˜ ํ•ต์‹ฌ์ด๋‹ค. ํ™˜๊ฒฝ ๋ชจ๋ธ์ด ์‚ฌ์ „์— ์ฃผ์–ด์ง€์ง€ ์•Š์„ ๋•Œ ํƒ์ƒ‰์„ ํ†ตํ•œ ๋ชจ๋ธ ํ•™์Šต ์ด ํ•„์ˆ˜์ด๋ฉฐ, ์ด๋Š” ๋™๋ฌผ์˜ ํ˜ธ๊ธฐ์‹ฌ ํ–‰๋™์ด๋‚˜ ๋Šฅ๋™ ํ•™์Šต(active learning)๊ณผ๋„ ์—ฐ๊ด€๋œ๋‹ค. ๊ธฐ์กด RL ์•Œ๊ณ ๋ฆฌ์ฆ˜(Qโ€‘Learning, Dynaโ€‘Q ๋“ฑ)์€ ๋ฌดํ•œ ์‹œ๊ฐ„ ์ˆ˜ํ‰ ์„ ์ „์ œ๋กœ ํ•˜์—ฌ ์ •์ƒ(stationary) ์ •์ฑ… ์„ ๋„์ถœํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ œํ•œ๋œ ํƒ์ƒ‰ ๋‹จ๊ณ„(์œ ํ•œ horizon)์—์„œ๋Š” ์ƒํƒœ์— ๋”ฐ๋ผ ์ •์ฑ…์ด ๋‹ฌ๋ผ์ ธ์•ผ ํ•จ์„ ์ €์ž๋Š” ๊ฐ•์กฐํ•œ๋‹ค. 2. ํ•ต์‹ฌ

Learning
Remoe: Towards Efficient and Low-Cost MoE Inference in Serverless Computing

Remoe: Towards Efficient and Low-Cost MoE Inference in Serverless Computing

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ MoE์™€ ์„œ๋ฒ„๋ฆฌ์Šค์˜ ๊ถํ•ฉ : MoE๋Š” ํ† ํฐ๋‹น ๋ช‡ ๊ฐœ์˜ ์ „๋ฌธ๊ฐ€๋งŒ ํ™œ์„ฑํ™”๋˜๋ฏ€๋กœ ์—ฐ์‚ฐ๋Ÿ‰์€ ์ ˆ๊ฐ๋˜์ง€๋งŒ, ์ „์ฒด ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ๋กœ๋“œํ•ด์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ํŠน์„ฑ ๋•Œ๋ฌธ์— ์„œ๋ฒ„๋ฆฌ์Šค์˜ payโ€‘perโ€‘use ๋ชจ๋ธ์—์„œ ๋ฉ”๋ชจ๋ฆฌ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ๊ธฐ์กด ์˜คํ”„๋กœ๋“œ ํ•œ๊ณ„ : fMoE, HOBBIT ๋“ฑ์€ CPUโ€‘GPU ๊ฐ„ ๋™์  ์Šค์™€ํ•‘์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, CPU ๋ฉ”๋ชจ๋ฆฌ ํ’€์„ ์ง€์†์ ์œผ๋กœ ์œ ์ง€ํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์„œ๋ฒ„๋ฆฌ์Šค ํ™˜๊ฒฝ์—์„œ ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ๊ฐ€ ์ œํ•œ์ ์ด๋‹ค. ์ „๋ฌธ๊ฐ€ ํ™œ์„ฑํ™” ์˜ˆ์ธก์˜ ์–ด๋ ค์›€ : ๊ฒŒ์ดํŒ… ๋„คํŠธ์›Œํฌ๊ฐ€ ์ž…๋ ฅ์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•ด ์ „๋ฌธ๊ฐ€ ํ™œ์„ฑํ™”๊ฐ€ ๋น„์ •ํ˜•์ ์ด๋ฉฐ

The Wisdom of Deliberating AI Crowds: Does Deliberation Improve LLM-Based Forecasting?

The Wisdom of Deliberating AI Crowds: Does Deliberation Improve LLM-Based Forecasting?

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ธ๊ฐ„โ€‘AI ๋น„๊ต : ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์—ฌ์ „ํžˆ LLM ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์„ ์•ž์„ ๋‹ค๊ณ  ๋ณด๊ณ ํ–ˆ์œผ๋ฉฐ, ๋ชจ๋ธ ๊ทœ๋ชจยทํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„ ๋“ฑ์ด ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ํ† ๋ก (Deliberation) ๋„์ž… : ์ธ๊ฐ„ ์ง‘๋‹จ ํ† ๋ก ์ด ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋†’์ธ ์‚ฌ๋ก€๋ฅผ LLM์— ์ ์šฉํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง ๋ถ€์กฑํ–ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ โ€œ๋‹ค์ค‘โ€‘์—์ด์ „ํŠธ ํ† ๋ก โ€์„ LLM์— ์ง์ ‘ ์ ์šฉํ•ด, ๋ชจ๋ธ ๊ฐ„ ์ƒํ˜ธ ๊ฒ€ํ† ๊ฐ€ ์‹ค์ œ๋กœ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š”์ง€๋ฅผ ์ตœ์ดˆ๋กœ ์‹ค์ฆํ•œ๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ | ์š”์†Œ | ์„ค์ • | ์„ค๋ช… | | | | | | ๋ชจ๋ธ ๋‹ค์–‘์„ฑ | ๋‹ค์–‘ (GPTโ€‘

Distill, Forget, Repeat: A Framework for Continual Unlearning in Text-to-Image Diffusion Models

Distill, Forget, Repeat: A Framework for Continual Unlearning in Text-to-Image Diffusion Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฒ•์ ยท์œค๋ฆฌ์  ์••๋ ฅ : GDPRยทCCPA ๋“ฑ์—์„œ โ€œ์žŠํž ๊ถŒ๋ฆฌโ€๋ฅผ ๋ช…์‹œ, ๋Œ€๊ทœ๋ชจ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋ฐ์ดํ„ฐ ์‚ญ์ œ ์š”๊ตฌ์— ์ฆ‰๊ฐ ๋Œ€์‘ํ•ด์•ผ ํ•จ. ์žฌํ•™์Šต ๋น„์šฉ : ์ˆ˜์‹ญ์–ต ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์ˆ˜๋ฐฑ TB ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋œ ํ™•์‚ฐ ๋ชจ๋ธ์„ ์ฒ˜์Œ๋ถ€ํ„ฐ ๋‹ค์‹œ ํ•™์Šตํ•˜๋Š” ๋น„์šฉ์€ ํ˜„์‹ค์ ์œผ๋กœ ๋ถˆ๊ฐ€๋Šฅ. ์—ฐ์†์  ์‚ญ์ œ ์ƒํ™ฉ : ์‹ค์ œ ์„œ๋น„์Šค์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์–ธ์ œ๋“  ์ƒˆ๋กœ์šด ์‚ญ์ œ ์š”์ฒญ์„ ํ•  ์ˆ˜ ์žˆ์–ด, ๋‹จ์ผ ๋‹จ๊ณ„ ์–ธ๋Ÿฌ๋‹๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„์น˜ ์•Š์Œ. 2. ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ (Failure Modes) | Failure Mode | ์›์ธ | ๊ธฐ์กด ๋ฐฉ๋ฒ•์—์„œ ๊ด€์ฐฐ๋œ ํ˜„์ƒ |

Learning Framework Model
Magnification-Aware Distillation (MAD): A Self-Supervised Framework for Unified Representation Learning in Gigapixel Whole-Slide Images

Magnification-Aware Distillation (MAD): A Self-Supervised Framework for Unified Representation Learning in Gigapixel Whole-Slide Images

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ํŠน์„ฑ : ๋ณ‘๋ฆฌํ•™์ž๋Š” ์ €๋ฐฐ์œจ์—์„œ ์กฐ์ง ์ „์ฒด ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ๊ณ ๋ฐฐ์œจ์—์„œ ์„ธํฌ ์ˆ˜์ค€์˜ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ํ™•์ธํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋ธ๋„ ๋‘ ๋ฐฐ์œจ ์‚ฌ์ด์˜ ์—ฐ๊ด€์„ฑ์„ ์ดํ•ดํ•ด์•ผ ์‹ค์ œ ์ง„๋‹จ ํ๋ฆ„์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ธฐ์กด SSL ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ์ž๊ฐ€์ง€๋„ ๊ธฐ๋ฐ˜ ๋ณ‘๋ฆฌ ๋ชจ๋ธ(UNI, UNI2, Provโ€‘GigaPath ๋“ฑ)์€ ๋‹จ์ผ ๋ฐฐ์œจ(์ฃผ๋กœ 20ร—)์—๋งŒ ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๋ฐฐ์œจ ์ „์ด ์‹œ ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Magnificationโ€‘Aware Distillation (MAD) | ์š”์†Œ | ๊ธฐ์กด DINO

Learning Framework
No Image

Safe Path Planning and Observation Quality Enhancement Strategy for Unmanned Aerial Vehicles in Water Quality Monitoring Tasks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ UAV ๊ธฐ๋ฐ˜ ๊ณ ํ•ด์ƒ๋„ ์ŠคํŽ™ํŠธ๋Ÿผ ์›๊ฒฉํƒ์‚ฌ๋Š” ๊ธฐ์กด ์ˆ˜์งˆ ์กฐ์‚ฌ ๋ฐฉ์‹๋ณด๋‹ค ๋น ๋ฅด๊ณ  ๋„“์€ ์˜์—ญ์„ ์ปค๋ฒ„ํ•  ์ˆ˜ ์žˆ์–ด ํ˜„์žฌ ๊ธ‰์ฆํ•˜๋Š” ์ˆ˜์งˆ ๋ชจ๋‹ˆํ„ฐ๋ง ์ˆ˜์š”์— ๋ถ€ํ•ฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฌผ๋ฉด์˜ ๋™์  ๊ทธ๋ฆผ์žยท๊ธ€๋ฆฐํŠธ๋Š” ์ŠคํŽ™ํŠธ๋Ÿผ ์™œ๊ณก์„ ์ผ์œผ์ผœ ๋ฐ์ดํ„ฐ ๊ฐ€์šฉ์„ฑ์„ ํฌ๊ฒŒ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‚ฌํ›„ ๋ณด์ •(๋ผ๋””๋ฉ”ํŠธ๋ฆฌ ๋ณด์ •, ๊ทธ๋ฆผ์ž ๋งˆ์Šคํฌ ๋“ฑ)์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๋น„ํ–‰ ์ค‘ ์‹ค์‹œ๊ฐ„ ํšŒํ”ผ ์ „๋žต์€ ๋ฏธ๋น„ํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ ๋™์  ๊ต๋ž€ ์˜ˆ์ธก ๋ชจ๋ธ : ์‹ค์‹œ๊ฐ„ ๊ธฐ์ƒยทํƒœ์–‘ ๊ณ ๋„ยท์œ„์น˜ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด ์กฐ๋ช… ๊ต๋ž€์„ 3D ๊ฐ€์ƒ ์žฅ์• ๋ฌผ๋กœ ๋ณ€ํ™˜, โ€œ์†Œํ”„ํŠธ ์žฅ์• ๋ฌผโ€

Scalable Decision Focused Learning via Online Trainable Surrogates

Scalable Decision Focused Learning via Online Trainable Surrogates

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Predictionโ€‘Focused Learning (PFL) ์€ ์˜ˆ์ธก ์ •ํ™•๋„(์˜ˆ: ๋กœ๊ทธ์šฐ๋„)๋งŒ์„ ์ตœ์ ํ™”ํ•ด, ์˜์‚ฌ๊ฒฐ์ • ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” regret ์„ ๋ฌด์‹œํ•œ๋‹ค. Decisionโ€‘Focused Learning (DFL) ์€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ • ๋น„์šฉ์„ ์†์‹ค๋กœ ์‚ฌ์šฉํ•˜์ง€๋งŒ, NPโ€‘hard ์ˆ˜์ค€์˜ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋งค ํ•™์Šต ์Šคํ…๋งˆ๋‹ค ํ’€์–ด์•ผ ํ•˜๋ฏ€๋กœ ํ›ˆ๋ จ ์‹œ๊ฐ„ ๋ณต์žก๋„ ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ธฐ์กด DFL ๋ฐฉ๋ฒ•๋“ค์€ (i) ์„ ํ˜• ๋น„์šฉยท์ œ์•ฝ ๊ฐ€์ •, (ii) ์†”๋ฒ„ ๋‚ด๋ถ€ ์ƒํƒœ ์ ‘๊ทผ ํ•„์š”, (iii) ํŽธํ–ฅ๋œ ๋Œ€๋ฆฌ ์†์‹ค ์‚ฌ์šฉ

Learning
Software Vulnerability Management in the Era of Artificial Intelligence: An Industry Perspective

Software Vulnerability Management in the Era of Artificial Intelligence: An Industry Perspective

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ทจ์•ฝ์  ์ฆ๊ฐ€์™€ ๋Œ€์‘ ๋น„์šฉ : ๋…ผ๋ฌธ์€ SV(Software Vulnerabilities)์˜ ๊ธ‰์ฆ๊ณผ ํŒจ์น˜ ์ง€์—ฐ(์ ˆ๋ฐ˜ ์ด์ƒ์ด 1๋…„ ์ด์ƒ ์†Œ์š”)์ด๋ผ๋Š” ํ˜„์ƒ์„ ์ง€์ ํ•˜๋ฉฐ, ์ž๋™ํ™”๋œ SVM์ด ํ•„์ˆ˜์ž„์„ ๊ฐ•์กฐํ•œ๋‹ค. AIโ€‘๊ธฐ๋ฐ˜ ๋„๊ตฌ์˜ ๊ธฐ๋Œ€์™€ ํ˜„์‹ค ๊ฒฉ์ฐจ : ๋”ฅ๋Ÿฌ๋‹ยทLLM ๋“ฑ ์ตœ์‹  AI ๊ธฐ์ˆ ์ด ํ•™์ˆ ์ ์œผ๋กœ๋Š” ๋†’์€ ํƒ์ง€ยท์ˆ˜์ • ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ์„ฑ๋Šฅ ๊ธ‰๋ฝ(์ตœ๋Œ€ 95 %p) , ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•ยท์˜ค๋ฒ„ํ”ผํŒ… ๋“ฑ ์‹ค์šฉ์„ฑ ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค. 2. ์—ฐ๊ตฌ ์„ค๊ณ„ | ์š”์†Œ | ๋‚ด์šฉ | | | | | ๋ชฉํ‘œ | AIโ€‘SVM ๋„๊ตฌ์˜ ์‚ฐ์—… ํ˜„์žฅ

Unavoidable patterns and plane paths in dense topological graphs

Unavoidable patterns and plane paths in dense topological graphs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹จ์ˆœ ์œ„์ƒ ๊ทธ๋ž˜ํ”„ (simple topological graph)๋Š” ๊ฐ ๊ฐ„์„ ์ด ์„œ๋กœ ์ตœ๋Œ€ ํ•œ ๋ฒˆ๋งŒ ๊ต์ฐจํ•˜๋„๋ก ๊ทธ๋ฆฐ ๊ทธ๋ž˜ํ”„์ด๋ฉฐ, ๊ธฐํ•˜ํ•™์ ยท์กฐํ•ฉ๋ก ์  ๋ฌธ์ œ์—์„œ ํ•ต์‹ฌ ๋ชจ๋ธ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ(Pachโ€‘Solymosiโ€‘Tรณth, 2003 ๋“ฑ)๋Š” ์™„์ „ ์œ„์ƒ ๊ทธ๋ž˜ํ”„ ์—์„œ ๋ณผ๋ก ๊ธฐํ•˜ํ•™์  ๊ทธ๋ž˜ํ”„ ํ˜น์€ twisted ๊ทธ๋ž˜ํ”„ ์™€ ๊ฐ™์€ ํฐ ๊ตฌ์กฐ๊ฐ€ ๋ฐ˜๋“œ์‹œ ์กด์žฌํ•จ์„ ๋ณด์˜€์ง€๋งŒ, ์ •๋Ÿ‰์  ์ƒ์ˆ˜๊ฐ€ ๋งค์šฐ ์•ฝํ–ˆ๋‹ค. Negami(1998) ๋Š” ์ด๋ถ„ ๊ทธ๋ž˜ํ”„ ๋ฒ„์ „์„ ์ œ์‹œํ–ˆ์œผ๋‚˜, ๊ตฌ์ฒด์ ์ธ ์ •์  ์ˆ˜์— ๋Œ€ํ•œ ๋ช…์‹œ์  ์ƒํ•œ์„ ์ œ๊ณตํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ

CORE: Concept-Oriented Reinforcement for Bridging the Definition-Application Gap in Mathematical Reasoning

CORE: Concept-Oriented Reinforcement for Bridging the Definition-Application Gap in Mathematical Reasoning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ •์˜โ€‘์‘์šฉ ๊ฒฉ์ฐจ : ์ตœ์‹  LLM์€ ์ •์˜๋ฅผ ์ •ํ™•ํžˆ ์„œ์ˆ ํ•˜์ง€๋งŒ, ํ•ด๋‹น ์ •์˜๋ฅผ ์‹ค์ œ ๋ฌธ์ œ์— ์ ์šฉํ•˜๋Š” ๋ฐ ์‹คํŒจํ•œ๋‹ค๋Š” ์ง„๋‹จ์ด ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ(Yang 2024b, Guo 2025a ๋“ฑ)์—์„œ ์ œ์‹œ๋จ. RLVR์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ๊ฐ•ํ™”ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์€ ์ตœ์ข… ์ •๋‹ต์— ๋Œ€ํ•œ scalar reward๋งŒ์„ ์‚ฌ์šฉํ•ด, โ€œ์–ด๋–ค ๊ฐœ๋…์„ ์–ธ์ œ, ์–ด๋–ป๊ฒŒ ์“ฐ๋Š”๊ฐ€โ€๋ผ๋Š” ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ํŒจํ„ด ๋งค์นญ ์— ๋จธ๋ฌด๋ฅด๊ฒŒ ๋งŒ๋“ ๋‹ค. 2. CORE ํ”„๋ ˆ์ž„์›Œํฌ ํ•ต์‹ฌ ๊ตฌ์„ฑ | ๊ตฌ์„ฑ ์š”์†Œ | ๊ตฌํ˜„ ๋ฐฉ์‹ | ์—ญํ•  | | | | | | ๋ฐ์ดํ„ฐ |

< Category Statistics (Total: 2829) >

Electrical Engineering and Systems Science
100
General
731
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut