KOINEU Logo
No Image

3D Gaussian Modeling and Ray Marching of OpenVDB datasets for Scientific Visualization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ OpenVDB ๋Š” Sparse Voxel Grid๋ฅผ ์ด์šฉํ•ด ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ ํฌ๋งท์œผ๋กœ, ์ตœ๊ทผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ยท๋ Œ๋”๋ง ๋ถ„์•ผ์—์„œ ํ‘œ์ค€์œผ๋กœ ์ž๋ฆฌ ์žก์•˜๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด ๋ณผ๋ฅ˜๋ฉ”ํŠธ๋ฆญ ๋ Œ๋”๋ง์€ ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์— ์˜์กดํ•ด ๊ณ ํ•ด์ƒ๋„ ๋ฐ์ดํ„ฐ์—์„œ ๋…ธ์ด์ฆˆ์™€ ๋†’์€ ์—ฐ์‚ฐ ๋น„์šฉ์ด ๋ฌธ์ œ์˜€๋‹ค. ๊ฐ€์šฐ์‹œ์•ˆ ๋ชจ๋ธ๋ง ์€ ์—ฐ์†์ ์ธ ํ™•๋ฅ  ๋ฐ€๋„ ํ•จ์ˆ˜๋ฅผ ์ œ๊ณตํ•ด, ์ด์‚ฐ์ ์ธ Voxel ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ€๋“œ๋Ÿฌ์šด ํ•จ์ˆ˜ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด๋Š” ๋ ˆ์ด ๋งˆ์นญ ์‹œ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ ๊ณผ ์Šค๋ฌด๋”ฉ ํšจ๊ณผ ๋ฅผ ์ œ๊ณตํ•ด, ์‹œ๊ฐ์  ํ’ˆ์งˆ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ๋‹จ๊ณ„

Model Data
No Image

A Definition of AGI

1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ AGI๋Š” ํ˜„์žฌ์˜ ์ข์€ ์ธ๊ณต์ง€๋Šฅ(Narrow AI)๊ณผ ๊ตฌ๋ณ„๋˜๋Š”, ์ธ๊ฐ„ ์ˆ˜์ค€ ํ˜น์€ ๊ทธ ์ด์ƒ์˜ ์ผ๋ฐ˜์  ํ•™์Šตยท์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๋ช…ํ™•ํ•œ ์ •์˜๊ฐ€ ์—†์œผ๋ฉด ์—ฐ๊ตฌ ๋ชฉํ‘œ ์„ค์ •, ์„ฑ๊ณผ ํ‰๊ฐ€, ์œค๋ฆฌยท๋ฒ•์  ๋…ผ์˜๊ฐ€ ํ˜ผ๋ž€์Šค๋Ÿฌ์›Œ์ง€๋ฏ€๋กœ, ์ •์˜ ์ž์ฒด๊ฐ€ ํ•™๋ฌธ์ ยท์‚ฐ์—…์  ๊ธฐ๋ฐ˜์„ ํ˜•์„ฑํ•ฉ๋‹ˆ๋‹ค. 2. ๊ฐ€๋Šฅํ•œ ์ •์˜ ์ ‘๊ทผ๋ฒ• ๊ธฐ๋Šฅ์  ์ •์˜ : โ€œ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์—์„œ ์ธ๊ฐ„๊ณผ ๋™๋“ฑํ•˜๊ฑฐ๋‚˜ ๊ทธ ์ด์ƒ์˜ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ํ•™์Šตยท์ถ”๋ก ยท๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅโ€์œผ๋กœ ์ •์˜. ๊ตฌ์กฐ์  ์ •์˜ : โ€œ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์ž…๋ ฅ์„ ํ†ตํ•ฉํ•˜๊ณ , ์ž๊ธฐ ๊ฐœ์„ (selfโ€‘improvement) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„

No Image

A GPU-based Compressible Combustion Solver for Applications Exhibiting Disparate Space and Time Scales

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์••์ถ•์„ฑ ์—ฐ์†Œ์˜ ๋ณต์žก์„ฑ : ๊ณ ์† ํ๋ฆ„, ์ถฉ๊ฒฉํŒŒ, ๊ธ‰๊ฒฉํ•œ ์˜จ๋„ยท์••๋ ฅ ๋ณ€ํ™”๊ฐ€ ๋™์‹œ ๋ฐœ์ƒํ•˜๋Š” ์••์ถ•์„ฑ ์—ฐ์†Œ๋Š” ์ „ํ†ต์ ์ธ ์ €์†ยท๋น„์••์ถ•์„ฑ ๋ชจ๋ธ๋กœ๋Š” ์ •ํ™•ํžˆ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‹ค์ค‘ ์Šค์ผ€์ผ ๋ฌธ์ œ : ์—ฐ์†Œ ํ”Œ๋ ˆ์ž„์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ(ยตm~mm)์™€ ์ „์ฒด ์—”์ง„ยทํญ๋ฐœ์‹คํ—˜(10 cm~1 m) ์‚ฌ์ด์˜ ๊ทœ๋ชจ ์ฐจ์ด, ๊ทธ๋ฆฌ๊ณ  ํ™”ํ•™ ๋ฐ˜์‘ ์‹œ๊ฐ„(ยตs)๊ณผ ์œ ๋™ ์‹œ๊ฐ„(ms~s) ์ฐจ์ด๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์„ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. GPU ํ™œ์šฉ์˜ ๊ฐ€๋Šฅ์„ฑ : ํ˜„๋Œ€ GPU๋Š” ์ˆ˜์ฒœ ๊ฐœ์˜ ์ฝ”์–ด์™€ ๋†’์€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ด, ๋Œ€๊ทœ๋ชจ 3โ€‘D ๋ฉ”์‰ฌ์™€ ๋ณต์žกํ•œ ํ™”ํ•™์‹์˜ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ์— ์ตœ

No Image

A Memory Efficient Adjoint Method to Enable Billion Parameter Optimization on a Single GPU in Dynamic Problems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋™์  ๋ฌธ์ œ์™€ ๋Œ€๊ทœ๋ชจ ํŒŒ๋ผ๋ฏธํ„ฐ : ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์—ฐ์† ์ œ์–ด, ์œ ์ฒดยท๊ตฌ์กฐ ์—ฐ๋™ ๋“ฑ์—์„œ๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ์ƒํƒœ์™€ ์ˆ˜์‹ญ์–ต ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋™์‹œ์— ์กด์žฌํ•œ๋‹ค. ๊ธฐ์กด ์–ด๋“œ์กฐ์ธํŠธ์˜ ํ•œ๊ณ„ : ์ „ํ†ต์ ์ธ ์–ด๋“œ์กฐ์ธํŠธ(๋˜๋Š” ์—ญ์ „ํŒŒ) ๋ฐฉ๋ฒ•์€ ๋ชจ๋“  ์ค‘๊ฐ„ ์ƒํƒœ๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜๊ฑฐ๋‚˜, ์žฌ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋„ˆ๋ฌด ์ปค ์‹ค์ œ GPU ๋ฉ”๋ชจ๋ฆฌ(โ‰ค80 GB)์—์„œ ์‹คํ–‰์ด ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. Chunkโ€‘Based Checkpointing ์ „์ฒด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์—ฌ๋Ÿฌ โ€œ์ฒญํฌโ€๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ์ฒญํฌ์˜ ์‹œ์ž‘/๋ ์ƒํƒœ๋งŒ ์ €์žฅํ•œ๋‹ค. ์ฒญํฌ ๋‚ด๋ถ€

No Image

A note comprising a negative resolution of the Efficient Market Hypothesis

1. ์—ฐ๊ตฌ ์•„์ด๋””์–ด์™€ ์‹คํ—˜ ์„ค๊ณ„ 1. ํ•ต์‹ฌ ์•„์ด๋””์–ด ์‹œ์žฅ์ด โ€œ์ •๋ณด๋ฅผ ์™„์ „ํ•˜๊ฒŒ ๊ฐ€๊ฒฉ์— ๋ฐ˜์˜ํ•œ๋‹ค๋ฉดโ€ 300์ผ ๋™์•ˆ ์ ์ง„์ ์œผ๋กœ ๊ณต๊ฐœ๋˜๋Š” ์†Œ์ˆ˜์˜ ์ž๋ฆฌ์ˆ˜์™€ ์ตœ์ข… ์Šน์ž ์ฝ”๋“œ๊ฐ€ ์•Œ๋ ค์ง€๋ฉด, ์ฃผ๊ฐ€๊ฐ€ ์ฆ‰์‹œ ์ƒ์Šนํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฐ€์ •. ๊ทธ๋Ÿฌ๋‚˜ ์ธ์ˆ˜๋ถ„ํ•ด๋Š” ํ˜„์žฌ์˜ ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์œผ๋กœ๋Š” 600์ž๋ฆฌ ์ˆ˜๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ’€ ์ˆ˜ ์—†์œผ๋ฏ€๋กœ, ์ •๋ณด๊ฐ€ ์™„์ „ ๋ฐ˜์˜๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋…ผ์ฆ. 2. ์‹คํ—˜ ์ ˆ์ฐจ ์š”์•ฝ ํŽ€๋“œ ์กฐ์„ฑ : 10์–ต ๋‹ฌ๋Ÿฌ๋ฅผ 300๊ฑฐ๋ž˜์ผ ํ›„์— ์ง€๊ธ‰. ๋Œ€์ƒ ์ฃผ์‹ ์„ ์ • : ์‹œ๊ฐ€์ด์•ก 5์ฒœ๋งŒ ๋‹ฌ๋Ÿฌ ์ดํ•˜ ๋งˆ์ดํฌ๋กœ์บก 1,000์ข…๋ชฉ์„ ๋ฒˆํ˜ธํ™”. ๋น„๋ฐ€ ๋ณ€์ˆ˜ ์ƒ์„ฑ : ์Šน์ž ๋ฒˆํ˜ธ W์™€ 300์ž๋ฆฌ

Quantitative Finance
A Tutorial on Cognitive Biases in Agentic AI-Driven 6G Autonomous Networks

A Tutorial on Cognitive Biases in Agentic AI-Driven 6G Autonomous Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ KPI ์ค‘์‹ฌ ์ž๋™ํ™”์˜ ํ•œ๊ณ„ : TM Forum ๋ ˆ๋ฒจ 1โ€‘3์€ KPI ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์ง€๋งŒ, KPI๋Š” ๋„คํŠธ์›Œํฌ์˜ ๋ณตํ•ฉ์  ๋ชฉํ‘œ(์—ฐ๊ฒฐ์„ฑ, ๊ณต์ •์„ฑ ๋“ฑ)๋ฅผ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์—์ด์ „ํŠธํ˜• AI์˜ ๋“ฑ์žฅ : LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ ์ธ์‹ยท๊ธฐ์–ตยท์ถ”๋ก ยทํ˜‘์ƒยทํ–‰๋™์„ ํ•˜๋‚˜์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ†ตํ•ฉํ•ด โ€œํ™˜๊ฒฝ์„ ์žˆ๋Š” ๊ทธ๋Œ€๋กœ ์ธ์‹โ€ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ์ธ์ง€ ํŽธํ–ฅ ๋ฌธ์ œ : ์ธ๊ฐ„ ์„ค๊ณ„์ž๊ฐ€ ๋งŒ๋“  ํ”„๋กฌํ”„ํŠธ, ๋ณด์ƒ ๊ตฌ์กฐ, ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๋ฐฉ์‹ ๋“ฑ์— ์ธ๊ฐ„์˜ ์ธ์ง€ ํŽธํ–ฅ์ด ๊ทธ๋Œ€๋กœ ์ „์ด๋ผ ์—์ด์ „ํŠธ์˜ ์˜์‚ฌ๊ฒฐ์ •์— ์™œ๊ณก์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š”

Network
No Image

Additive properties of even perfect numbers

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์™„์ „์ˆ˜ ๋Š” ๊ณ ๋Œ€๋ถ€ํ„ฐ ์ˆ˜ํ•™์ž๋“ค์˜ ๊ด€์‹ฌ์„ ๋ฐ›์•„์˜จ ๊ฐ์ฒด์ด๋ฉฐ, ์ง์ˆ˜ ์™„์ „์ˆ˜๋Š” ์œ ํด๋ฆฌ๋“œโ€‘์˜ค์ผ๋Ÿฌ ์ •๋ฆฌ (n 2^{pโ€‘1}(2^{p}โˆ’1), 2^{p}โˆ’1์ด ์†Œ์ˆ˜)๋กœ ์™„์ „ํžˆ ํŠน์ง•์ง€์–ด์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์™„์ „์ˆ˜์˜ ๊ฐ€์‚ฐ์  ์„ฑ์งˆ (ํŠน์ • ์ •์ˆ˜๋ฅผ ์•ฝ์ˆ˜๋“ค์˜ ํ•ฉ์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ ์—ฌ๋ถ€)์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์—†์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ โ€œ๋ชจ๋“  m โ‰ค n์„ ์•ฝ์ˆ˜ ํ•ฉ์œผ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋А๋ƒโ€๋ผ๋Š” ์งˆ๋ฌธ์„ ํ†ตํ•ด ์™„์ „์ˆ˜์˜ ์ƒˆ๋กœ์šด ๊ตฌ์กฐ์  ํŠน์„ฑ์„ ํƒ๊ตฌํ•œ๋‹ค. 2. ์ฃผ์š” ๊ฒฐ๊ณผ ์š”์•ฝ | ์ •๋ฆฌ | ๋‚ด์šฉ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | | | | | | ์ •๋ฆฌ 1 (๊ธฐ์กด) | ์ง์ˆ˜

Mathematics
No Image

An AutoML Framework using AutoGluonTS for Forecasting Seasonal Extreme Temperatures

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธฐํ›„ ๋ณ€ํ™”์™€ ๊ทนํ•œ ์˜จ๋„ : ์ตœ๊ทผ ๊ธฐํ›„๋ณ€๋™์œผ๋กœ ์ธํ•ด ์ผ์ผยท์›”๋ณ„ ์ตœ๊ณ ยท์ตœ์ € ์˜จ๋„์™€ ๊ฐ™์€ ๊ทนํ•œ ๊ธฐํ›„ ํ˜„์ƒ์ด ๋นˆ๋ฒˆํ•ด์ง€๊ณ  ์žˆ์–ด, ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ์žฌ๋‚œ ๋Œ€๋น„ยท์—๋„ˆ์ง€ ๊ด€๋ฆฌยท๋†์—… ๋“ฑ์— ํ•„์ˆ˜์ ์ด๋‹ค. ๊ณ„์ ˆ์„ฑ(Timeโ€‘Series Seasonality) : ์˜จ๋„ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ•ํ•œ ๊ณ„์ ˆ์„ฑ์„ ๋ ๋ฉฐ, ์ „ํ†ต์ ์ธ ์‹œ๊ณ„์—ด ๋ชจ๋ธ(ARIMA, SARIMA ๋“ฑ)๋งŒ์œผ๋กœ๋Š” ๋น„์„ ํ˜• ํŒจํ„ด์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. AutoML์˜ ๋ถ€์ƒ : ๋ชจ๋ธ ์„ ํƒยทํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์— ์†Œ์š”๋˜๋Š” ์ธ์ ยท์‹œ๊ฐ„ ๋น„์šฉ์„ ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด AutoML์ด ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์‹œ๊ณ„์—ด

Framework
No Image

Analog In-memory Training on General Non-ideal Resistive Elements: The Impact of Response Functions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ธโ€‘๋ฉ”๋ชจ๋ฆฌ ์ปดํ“จํŒ… ์€ ๋ฐ์ดํ„ฐ ์ด๋™ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ค„์—ฌ ๋”ฅ๋Ÿฌ๋‹ ๊ฐ€์†์— ์œ ๋งํ•˜์ง€๋งŒ, ์‹ค์ œ ๊ตฌํ˜„์—์„œ๋Š” ์†Œ์ž ์ˆ˜์ค€์˜ ๋น„์ด์ƒ์„ฑ์ด ํฐ ์žฅ์• ๋ฌผ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ด์ƒ์ ์ธ ์„ ํ˜• ์ €ํ•ญ ํ˜น์€ ์ •๋ฐ€ํ•˜๊ฒŒ ๋ณด์ •๋œ ์†Œ์ž ๋ฅผ ์ „์ œ๋กœ ํ•˜์—ฌ, ์‹ค์ œ ์ œ์กฐ ๊ณต์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์„ ํ˜•์„ฑ, ์˜จ๋„ยท๊ณต์ • ๋ณ€๋™, ๋ˆ„์„ค ์ „๋ฅ˜ ๋“ฑ์„ ๋ฌด์‹œํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋น„์ด์ƒ ์ €ํ•ญ ์†Œ์ž๋ฅผ ๊ทธ๋Œ€๋กœ ํ™œ์šฉํ•  ๊ฒฝ์šฐ ํ•™์Šต ์˜ค์ฐจ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ , ์ˆ˜๋ ด์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ 1. ์‘๋‹ต ํ•จ์ˆ˜ ๋ชจ๋ธ๋ง ์ €ํ•ญ ์†Œ์ž์˜ ์ „์••โ€‘์ „๋ฅ˜ ๊ด€๊ณ„๋ฅผ ์ผ๋ฐ˜์ ์ธ ๋น„์„ ํ˜• ํ•จ์ˆ˜ (์˜ˆ

Carbon Trapping Efficiency of Hydropower Reservoirs under the Influence of a Tropical Climate

Carbon Trapping Efficiency of Hydropower Reservoirs under the Influence of a Tropical Climate

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํƒ„์†Œ ํšŒ๊ณ„์˜ ์‚ฌ๊ฐ์ง€๋Œ€ : ์ „ํ†ต์ ์ธ ํƒ„์†Œ ํšŒ๊ณ„์—์„œ๋Š” ์ˆ˜๋ ฅ๋ฐœ์ „์ด โ€˜์ฒญ์ • ์—๋„ˆ์ง€โ€™๋กœ ๋ถ„๋ฅ˜๋˜์ง€๋งŒ, ์ €์ˆ˜์ง€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฉ”ํƒ„ยท์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐฐ์ถœ์ด ์ „์ฒด ์˜จ์‹ค๊ฐ€์Šค ๊ฐ์ถ• ํšจ๊ณผ๋ฅผ ์ƒ์‡„ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ํŠนํžˆ ์—ด๋Œ€ ์ง€์—ญ์€ ๋†’์€ ์˜จ๋„์™€ ํ’๋ถ€ํ•œ ์œ ๊ธฐ๋ฌผ ๊ณต๊ธ‰์œผ๋กœ ๋ฉ”ํƒ„ ๋ฐฐ์ถœ ์œ„ํ—˜์ด ํฌ๋‹ค. ์—ด๋Œ€ ๊ธฐํ›„ ํŠน์„ฑ : ์—ฐํ‰๊ท  ๊ธฐ์˜จ 25 ยฐC ์ด์ƒ, ์—ฐ๊ฐ•์ˆ˜๋Ÿ‰ 2000 mm ์ด์ƒ์ธ ์—ด๋Œ€ ์ง€์—ญ์€ ๋ฏธ์ƒ๋ฌผ ํ™œ๋™์ด ํ™œ๋ฐœํ•ด ํƒ„์†Œ ๋ถ„ํ•ด๊ฐ€ ๊ฐ€์†ํ™”๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋™์ผํ•œ ์ €์ˆ˜์ง€๋ผ๋„ ์˜จ๋Œ€ยทํ•œ๋Œ€์™€๋Š” ๋‹ค๋ฅธ ํƒ„์†Œ ๋™ํƒœ๋ฅผ ๋ณด์ผ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. 2. ์—ฐ๊ตฌ ๋ชฉํ‘œ 1. ์—ด๋Œ€

No Image

CBIL: Collective Behavior Imitation Learning for Fish from Real Videos

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ง‘๋‹จ ํ–‰๋™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์€ ๊ฒŒ์ž„ยท์˜ํ™”ยท๊ณผํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋“ฑ์—์„œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด์ง€๋งŒ, ๊ธฐ์กด ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ(Boids ๋“ฑ)์€ ์ธ๊ฐ„์ด ์„ค๊ณ„ํ•œ ๊ทœ์น™์— ์˜์กดํ•ด ๋‹ค์–‘ํ•˜๊ณ  ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„์„ ์žฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ฐฉ ํ•™์Šต ์€ ์‹ค์ œ ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€ 3D ํŠธ๋ž˜ํ‚น ๋ฐ์ดํ„ฐ๊ฐ€ ์ „์ œ๋ผ ์žˆ์–ด ์ดฌ์˜ ํ™˜๊ฒฝยท์žฅ๋น„์— ํฐ ์ œ์•ฝ์ด ์žˆ๋‹ค. ํŠนํžˆ ๋ฌผ์†์—์„œ ๊ณ ๋ฐ€๋„ ๊ตฐ์ง‘์„ ์ •ํ™•ํžˆ ํŠธ๋ž˜ํ‚นํ•˜๋Š” ๊ฒƒ์€ ํ˜„์žฌ ๊ธฐ์ˆ ๋กœ๋Š” ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅ์— ๊ฐ€๊น๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. ์˜์ƒ ์ž์ฒด๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ โ€“ MVAE๋ฅผ ํ†ตํ•ด ๋ผ๋ฒจ์ด ์—†๋Š” ์›

Learning
No Image

Cell2Text: Multimodal LLM for Generating Single-Cell Descriptions from RNA-Seq Data

1๏ธโƒฃ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹จ์ผ์„ธํฌ ์ „์‚ฌ์ฒด(RNAโ€‘Seq) ๋ฐ์ดํ„ฐ ๋Š” ์ˆ˜์ฒœ~์ˆ˜๋งŒ ๊ฐœ์˜ ์„ธํฌ๋งˆ๋‹ค ์ˆ˜์ฒœ ๊ฐœ์˜ ์œ ์ „์ž ๋ฐœํ˜„๊ฐ’์„ ํฌํ•จํ•˜๋Š” ๊ณ ์ฐจ์›, ๊ณ ๋ณต์žก๋„ ๋ฐ์ดํ„ฐ์ด๋ฉฐ, ์ด๋ฅผ ํ•ด์„ํ•˜๋ ค๋ฉด ์ „๋ฌธ์ ์ธ ์ƒ๋ฌผ์ •๋ณดํ•™ ์ง€์‹์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์€ ์‹œ๊ฐํ™”(UMAP, tโ€‘SNE) , ํด๋Ÿฌ์Šคํ„ฐ๋ง , ๋งˆ์ปค ์œ ์ „์ž ํƒ์ƒ‰ ๋“ฑ ๊ธฐ์ˆ ์ ์ธ ๋‹จ๊ณ„์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ์–ด, ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ ์ง๊ด€์ ์œผ๋กœ ์ดํ•ดํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ง€์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ณต์žกํ•œ ์ •๋ณด๋ฅผ ์ž์—ฐ์–ด๋กœ ์š”์•ฝยท์„ค๋ช…ํ•˜๋Š” ๋Šฅ๋ ฅ์ด ์ž…์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ˜•

Data
No Image

Chain of Time: In-Context Physical Simulation with Image Generation Models

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ฐฐ๊ฒฝ ์ธ์ง€ ๊ณผํ•™๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์˜ ๊ต์ฐจ์  : ์ธ๊ฐ„์€ ์ƒํ™ฉ์„ ๋จธ๋ฆฟ์†์—์„œ ๋‹จ๊ณ„๋ณ„๋กœ โ€œ์žฌ์ƒโ€ํ•˜๋ฉฐ ๋ฌผ๋ฆฌ ํ˜„์ƒ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์ด์™€ ์œ ์‚ฌํ•˜๊ฒŒ, ๋Œ€ํ˜• ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ(์˜ˆ: Diffusion, GAN)๋„ ๋‚ด๋ถ€์ ์œผ๋กœ ์—ฐ์†์ ์ธ latent ๋ณ€ํ™”๋ฅผ ๊ฑฐ์น˜๋ฉฐ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ธ๊ฐ„์˜ ์ •์‹  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ชจ๋ธ์˜ ์ธโ€‘์ปจํ…์ŠคํŠธ ์ถ”๋ก ๊ณผ ์—ฐ๊ฒฐ์‹œ์ผœ, โ€œ์‹œ๊ฐ„์˜ ์‚ฌ์Šฌโ€์ด๋ผ๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด ๋ฌผ๋ฆฌ ์ถ”๋ก  ํ‰๊ฐ€์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ๋ฌผ๋ฆฌโ€‘์–ธ์–ด ๋ชจ๋ธ ํ‰๊ฐ€๋Š” ์ •๋‹ต/์˜ค๋‹ต ํ˜น์€ ์ •๋Ÿ‰์  ์˜ค๋ฅ˜๋งŒ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฌผ๋ฆฌ ํ˜„์ƒ์˜ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ ์„ ์ง์ ‘

Model
No Image

Checking and producing word attractors

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹จ์–ด ์–ดํŠธ๋ž™ํ„ฐ ๊ฐœ๋… : 2018๋…„ KempaยทPrezza๊ฐ€ ์ œ์•ˆํ•œ ๋‹จ์–ด ์–ดํŠธ๋ž™ํ„ฐ๋Š” โ€œ๋ชจ๋“  ๊ณ ์œ  ๋ถ€๋ถ„๋ฌธ์ž์—ด์ด ์–ดํŠธ๋ž™ํ„ฐ์— ํฌํ•จ๋œ ์ตœ์†Œ ์œ„์น˜ ์ง‘ํ•ฉโ€์ด๋ผ๋Š” ์ •์˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด๋Š” LZ77, runโ€‘length BWT ๋“ฑ ๊ธฐ์กด ์••์ถ• ๊ธฐ๋ฒ•๊ณผ ๋™์ผํ•œ ์••์ถ• ํ•œ๊ณ„๋ฅผ ๊ณต์œ ํ•˜๋ฉด์„œ๋„, ๋ณด๋‹ค ์ผ๋ฐ˜์ ์ธ ๋ฌธ์ž์—ด ๊ตฌ์กฐ๋ฅผ ํฌ์ฐฉํ•œ๋‹ค. ๋ฌธ์ œ ์ •์˜ : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์–ดํŠธ๋ž™ํ„ฐ์˜ ์กด์žฌ์™€ ์ตœ์†Œ ํฌ๊ธฐ์— ๋Œ€ํ•œ ์กด์žฌ๋ก ์  ๊ฒฐ๊ณผ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์‹ค์ œ๋กœ ์–ดํŠธ๋ž™ํ„ฐ๋ฅผ ๊ฒ€์ฆ(check) ํ•˜๊ฑฐ๋‚˜ ์ƒ์„ฑ(produce) ํ•˜๋Š” ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ถ€์กฑํ–ˆ๋‹ค. ํŠนํžˆ, ๋Œ€๊ทœ๋ชจ ํ…์Šค

CheMatAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning

CheMatAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM(Large Language Model)์˜ ํ•œ๊ณ„ : ํ˜„์žฌ์˜ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์€ ํ™”ํ•™ยท์žฌ๋ฃŒ ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ๋ณต์žกํ•œ ๊ตฌ์กฐยท๋ฐ˜์‘ ์˜ˆ์ธก, ์‹คํ—˜ ์„ค๊ณ„ ๋“ฑ์— ํ•„์š”ํ•œ ์ •๋ฐ€ํ•œ ๋„๋ฉ”์ธ ์ง€์‹์„ ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์ง€ ๋ชปํ•œ๋‹ค. ์ „๋ฌธ ํˆด ์—ฐ๋™์˜ ํ•„์š”์„ฑ : ์–‘์žํ™”ํ•™ ๊ณ„์‚ฐ, ๋ถ„์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์žฌ๋ฃŒ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์กฐํšŒ ๋“ฑ ์ „๋ฌธ ์†Œํ”„ํŠธ์›จ์–ด์™€์˜ ์›ํ™œํ•œ ์—ฐ๋™์ด ์—ฐ๊ตฌ ์ƒ์‚ฐ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ธ๋‹ค. ํŠธ๋ฆฌโ€‘์„œ์น˜(Treeโ€‘Search) ์ ‘๊ทผ : ํƒ์ƒ‰ ๊ณต๊ฐ„์ด ๋ฐฉ๋Œ€ํ•œ ๊ณผํ•™์  ๋ฌธ์ œ(์˜ˆ: ๋ฐ˜์‘ ๊ฒฝ๋กœ ํƒ์ƒ‰, ์žฌ๋ฃŒ ์„ค๊ณ„)์—์„œ ํšจ์œจ์ ์ธ ํƒ์ƒ‰ ์ „๋žต์ด ์š”๊ตฌ๋œ๋‹ค. ํŠธ๋ฆฌโ€‘์„œ์น˜๋Š”

Learning
No Image

Effect of Multiple Scattering on the Critical Electric Field for Runaway Electrons in the Atmosphere

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ๋Ÿฌ๋„ˆ์›จ์ด ์ „์ž ๋Š” ๊ฐ•ํ•œ ์ „๊ธฐ์žฅ ํ•˜์—์„œ ์—๋„ˆ์ง€๋ฅผ ์ง€์†์ ์œผ๋กœ ์–ป์–ด ๋Œ€๊ธฐ ์ค‘์—์„œ ๊ณ ์—๋„ˆ์ง€ ์ „์ž ๋น”์„ ํ˜•์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ ๋ฒˆ๊ฐœ, ํŠธ์œ„์Šคํ„ฐ, ์ง€๊ตฌ ๋Œ€๊ธฐ ๋ฐฉ์‚ฌ์„ (TER) ๋“ฑ ๋‹ค์–‘ํ•œ ์ž์—ฐ ํ˜„์ƒ๊ณผ ์—ฐ๊ด€๋œ๋‹ค. ๊ธฐ์กด์˜ ๋ถ„๋ฆฌ์„ (separatrix) ์—ฐ๊ตฌ๋Š” ์ „์ž ์—๋„ˆ์ง€์™€ ์†์‹ค(๋˜๋Š” ๊ฐ€์† ์ „๊ธฐ์žฅ) ์‚ฌ์ด์˜ ๊ด€๊ณ„๋งŒ์„ ๊ณ ๋ คํ–ˆ์œผ๋ฉฐ, ๋‹ค์ค‘ ์ฟ ๋ก  ์‚ฐ๋ž€ ์„ ๋ฌด์‹œํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฐ๋ž€์€ ์ „์ž์˜ ์ง„ํ–‰ ๋ฐฉํ–ฅ์„ ๋ฌด์ž‘์œ„๋กœ ๋ฐ”๊พธ์–ด ๊ฐ€์† ํšจ์œจ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ์‚ฐ๋ž€์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํฌํ•จ ํ•œ ์ƒˆ๋กœ์šด ๋ถ„๋ฆฌ์„ ์„ ์ œ์‹œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด โ€œ๋Œ€๋ถ€

Physics
No Image

Empirical Analysis Of Heuristic and Approximation Algorithms for the The Mutual-Visibility Problem

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ Mutualโ€‘Visibility Problem (MVP) ์€ ๊ทธ๋ž˜ํ”„ ํ˜น์€ ํ‰๋ฉด ์ƒ์˜ ์ •์ (๋˜๋Š” ์žฅ์• ๋ฌผ) ์ง‘ํ•ฉ์—์„œ, ๋‘ ์ •์  ์‚ฌ์ด์— ๋‹ค๋ฅธ ์ •์ ์ด ๊ฐ€๋กœ๋ง‰ํžˆ์ง€ ์•Š์„ ๋•Œ โ€œ์„œ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹คโ€๊ณ  ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ๊ฐ์‹œ, ๋กœ๋ด‡ ๊ฒฝ๋กœ ๊ณ„ํš, ๋ฌด์„  ๋„คํŠธ์›Œํฌ ๋ฐฐ์น˜ ๋“ฑ ์‹ค์‹œ๊ฐ„ ๊ฐ€์‹œ์„ฑ ํ™•๋ณด๊ฐ€ ์ค‘์š”ํ•œ ๋ถ„์•ผ์— ์ง์ ‘์ ์ธ ์‘์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. MVP๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ NPโ€‘hard ๋กœ ์•Œ๋ ค์ ธ ์žˆ์–ด, ์ •ํ™•ํ•œ ํ•ด๋ฅผ ๊ตฌํ•˜๊ธฐ๋ณด๋‹ค๋Š” ํœด๋ฆฌ์Šคํ‹ฑ(Heuristic) ๊ณผ ๊ทผ์‚ฌ(Approximation) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‹ค์šฉ์ ์ธ ๋Œ€์•ˆ์ด ๋ฉ๋‹ˆ๋‹ค. 2. ๋…ผ๋ฌธ

Analysis
Enhancing Adversarial Transferability in Visual-Language Pre-training Models via Local Shuffle and Sample-based Attack

Enhancing Adversarial Transferability in Visual-Language Pre-training Models via Local Shuffle and Sample-based Attack

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ VLP ๋ชจ๋ธ์˜ ์ทจ์•ฝ์„ฑ : CLIP, BLIP, Flamingo ๋“ฑ ์ตœ์‹  VLP ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ๋™์‹œ์— ํ•™์Šตํ•ด ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„๋ ฅ์„ ๊ฐ–์ง€๋งŒ, ์ ๋Œ€์  ๊ณต๊ฒฉ์— ๋Œ€ํ•œ ๋‚ด์„ฑ์ด ๋‚ฎ์•„ ๋ณด์•ˆยท์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ ์œ„ํ—˜์ด ์กด์žฌํ•œ๋‹ค. ๊ธฐ์กด ์ „์ด ๊ณต๊ฒฉ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ๋‹ค์ค‘๋ชจ๋‹ฌ ์ „์ด ๊ณต๊ฒฉ์€ ํ•œ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ(์˜ˆ: ์ด๋ฏธ์ง€)์—์„œ ๋งŒ๋“  ์ ๋Œ€์  ์‹ ํ˜ธ๋ฅผ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ(์˜ˆ: ํ…์ŠคํŠธ)๋กœ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ์‹์— ์˜์กดํ•œ๋‹ค. ์ด๋•Œ ์ž…๋ ฅ ๋‹ค์–‘์„ฑ ๋ถ€์กฑ ๊ณผ ๋ชจ๋‹ฌ ๊ฐ„ ๊ณผ์ ํ•ฉ ์ด ๋ฐœ์ƒํ•ด, ๊ณต๊ฒฉ์ด ํŠน์ • ๋ชจ๋ธ์—๋งŒ ๊ตญํ•œ๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ LSS

Model
No Image

Extracting Information About Publication Venues Using Citation-Informed Transformers

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ•™์ˆ  ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ž๋™ํ™” : ๋…ผ๋ฌธ ๊ฒ€์ƒ‰ยท์ถ”์ฒœ ์‹œ์Šคํ…œ, ์—ฐ๊ตฌ ํ‰๊ฐ€, ํ•™์ˆ  ํŠธ๋ Œ๋“œ ๋ถ„์„ ๋“ฑ์— ์ถœํŒ venue ์ •๋ณด๋Š” ํ•ต์‹ฌ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ์ด๋‹ค. ๊ธฐ์กด ํ•œ๊ณ„ : ๊ทœ์น™ ๊ธฐ๋ฐ˜ : ์ •๊ทœํ‘œํ˜„์‹ยท์‚ฌ์ „ ๋งค์นญ์— ์˜์กด, ์ƒˆ๋กœ์šด venue ๋“ฑ์žฅ ์‹œ ์ฆ‰์‹œ ๋Œ€์‘ ๋ถˆ๊ฐ€. ์ „ํ†ต ML : ํ”ผ์ฒ˜ ์„ค๊ณ„์— ํ•œ๊ณ„, ๋„๋ฉ”์ธ ๊ฐ„ ์ผ๋ฐ˜ํ™” ์–ด๋ ค์›€. ํ…์ŠคํŠธ๋งŒ ํ™œ์šฉ : โ€œProceedings of โ€ฆโ€, โ€œIn: โ€ฆโ€ ๋“ฑ ๋‹ค์–‘ํ•œ ํ‘œ๊ธฐ๋ฒ•์œผ๋กœ ์ธํ•ด ์ •ํ™•๋„ ์ €ํ•˜. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด Citationโ€‘Informed : ์ธ์šฉ ๊ด€๊ณ„๋Š” ๋…ผ๋ฌธ์ด ์–ด๋””์— ์‹ค๋ ธ๋Š”์ง€๋ฅผ ์•”๋ฌต์ ์œผ๋กœ

No Image

First-Order Representation Languages for Goal-Conditioned RL

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ชฉํ‘œ ์กฐ๊ฑด๋ถ€ RL ์€ โ€œ์–ด๋–ค ๋ชฉํ‘œ๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ์ตœ์  ์ •์ฑ…์„ ์ฐพ๋Š”โ€ ๋ฌธ์ œ๋กœ, ๋กœ๋ด‡ ์กฐ์ž‘, ๊ฒŒ์ž„, ๋„ค๋น„๊ฒŒ์ด์…˜ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ์ฃผ๋กœ ๊ณ ์ •๋œ ๋ฒกํ„ฐ ํ‘œํ˜„ (์˜ˆ: ์ด๋ฏธ์ง€, ์ƒํƒœ ๋ณ€์ˆ˜)์ด๋‚˜ ์ž„๋ฒ ๋”ฉ ์— ์˜์กดํ•ด ๋ชฉํ‘œ์™€ ์ƒํƒœ๋ฅผ ๋งคํ•‘ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณตํ•ฉ์ ์ธ ๊ด€๊ณ„(์˜ˆ: โ€œA์™€ B๊ฐ€ ๋™์‹œ์— ์กด์žฌํ•œ๋‹คโ€, โ€œC๋Š” D ์œ„์— ์žˆ๋‹คโ€)๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 1์ฐจ ๋…ผ๋ฆฌ ๋Š” ๋ณ€์ˆ˜์™€ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ๊ตฌ์กฐ์ ยท๊ด€๊ณ„์  ์ •๋ณด๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๊ธฐ์ˆ ํ•  ์ˆ˜ ์žˆ์–ด, ๋ณตํ•ฉ ๋ชฉํ‘œ์™€ ํ™˜๊ฒฝ ๊ทœ์น™์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์„œ์ˆ ํ•œ๋‹ค. 2.

No Image

From Faraday and Maxwell to Quantum Physics. The later story of the Electromagnetic Vector Potential

1. ์„œ๋ก  โ€“ โ€œ๋ณด์ด์ง€ ์•Š๋Š” ํž˜โ€์˜ ๋“ฑ์žฅ ํŒŒ๋ผ๋ฐ์ด(1821โ€‘1865) : ์ „์ž๊ธฐ ์œ ๋„ ํ˜„์ƒ์„ ์‹คํ—˜์ ์œผ๋กœ ๋ฐœ๊ฒฌํ•˜๋ฉด์„œ ์ „์ž๊ธฐ์žฅ์˜ โ€œ์ž ์žฌ์ โ€ ์„ฑ๊ฒฉ์„ ์ œ์‹œ. ์ „์ž๊ธฐ ์œ ๋„ ๋ฒ•์น™(โˆ‡ร—E โ€“โˆ‚B/โˆ‚t)์—์„œ ์ „๊ธฐ์žฅ์€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ์ž๊ธฐ์žฅ์— ์˜ํ•ด ์œ ๋„๋œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋‚˜์ค‘์— ๋ฒกํ„ฐ ํฌํ…์…œ A ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ๋งฅ์Šค์›ฐ(1831โ€‘1899) : 1865๋…„ โ€œ์ „๊ธฐยท์ž๊ธฐ์žฅ ๋ฐฉ์ •์‹โ€์„ ์™„์„ฑํ•˜๋ฉด์„œ A ์™€ ์Šค์นผ๋ผ ํฌํ…์…œ ฯ† ๋ฅผ ๋„์ž…, B โˆ‡ร—A , E โ€“โˆ‡ฯ† โ€“ โˆ‚A/โˆ‚t ๋กœ ์ „์ž๊ธฐ์žฅ์„ ์žฌํ‘œํ˜„. ์ด๋•Œ A๋Š” ๊ฒŒ์ด์ง€ ์ž์œ ๋„ (์ž„์˜์˜ ๊ทธ๋ผ๋””์–ธํŠธ ์ถ”

From Pixels to People: Satellite-Based Mapping and Quantification of Riverbank Erosion and Lost Villages in Bangladesh

From Pixels to People: Satellite-Based Mapping and Quantification of Riverbank Erosion and Lost Villages in Bangladesh

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐฉ๊ธ€๋ผ๋ฐ์‹œ์˜ ์ง€ํ˜•ยท์‚ฌํšŒ์  ํŠน์„ฑ : ๋ฐฉ๊ธ€๋ผ๋ฐ์‹œ๋Š” ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ๊ฐ•๋ณ€ ์นจ์‹ ์œ„ํ—˜์ด ๋†’์€ ๊ตญ๊ฐ€ ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ, ์ธ๊ตฌ ๋ฐ€๋„๊ฐ€ ๋†’์€ ์ €์ง€๋Œ€์— ๋‹ค์ˆ˜์˜ ๋†์ดŒ ๋งˆ์„์ด ์ง‘์ค‘๋ผ ์žˆ๋‹ค. ๊ฐ•๋ณ€ ์นจ์‹์€ ํ† ์ง€ ์†์‹ค, ๋†์—… ์ƒ์‚ฐ์„ฑ ์ €ํ•˜, ์ธ๊ตฌ ์ด๋™ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์‚ฌํšŒยท๊ฒฝ์ œ์  ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ํ˜„์žฅ ์กฐ์‚ฌ์™€ ์ €ํ•ด์ƒ๋„ ์ง€๋„์— ์˜์กดํ•œ ์—ฐ๊ตฌ๋Š” ๊ณต๊ฐ„ยท์‹œ๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ๋‚ฎ์•„ ์ •ํ™•ํ•œ ์†์‹ค ๊ทœ๋ชจ ํŒŒ์•…์— ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์œ„์„ฑ ๋ฐ์ดํ„ฐ์™€ ์ž๋™ํ™”๋œ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•จ. 2. ๋ฐ์ดํ„ฐ ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„

From Reality to Virtual Worlds: The Role of Photogrammetry in Game Development

From Reality to Virtual Worlds: The Role of Photogrammetry in Game Development

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ํฌํ† ๊ทธ๋ž˜๋ฉ”ํŠธ๋ฆฌ ๋Š” ์‚ฌ์ง„์„ ์ด์šฉํ•ด ์‹ค์ œ ๋ฌผ์ฒด์˜ 3D ํ˜•์ƒ์„ ๋ณต์›ํ•˜๋Š” ๊ธฐ์ˆ ๋กœ, ์ตœ๊ทผ GPU ๊ฐ€์†๊ณผ AI ๋ณด์กฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋•๋ถ„์— ์‹ค์‹œ๊ฐ„์— ๊ฐ€๊นŒ์šด ์ฒ˜๋ฆฌ ์†๋„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. RealityCapture ๋Š” ์ด๋Ÿฌํ•œ ํ๋ฆ„์„ ์„ ๋„ํ•˜๋Š” ์ƒ์šฉ ํˆด๋กœ, ํŠนํžˆ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ์™€ ๋ณต์žกํ•œ ํ…์Šค์ฒ˜๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ฒŒ์ž„ ๊ฐœ๋ฐœ์ž๋“ค์˜ ๊ด€์‹ฌ์„ ๋Œ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” VR ๊ฒŒ์ž„ ๊ฐœ๋ฐœ ์ด๋ผ๋Š” ๊ตฌ์ฒด์  ๋งฅ๋ฝ์—์„œ RealityCapture์˜ ํšจ์œจ์„ฑ, ์ •ํ™•๋„, ์—”์ง„ ํ†ตํ•ฉ์„ฑ ์„ ๊ฒ€์ฆํ•˜๊ณ , ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋„ ๊นŒ์ง€ ํฌํ•จํ•œ ์ข…ํ•ฉ์ ์ธ ํ‰๊ฐ€๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. 2. ๋ฐฉ๋ฒ•

No Image

Generative human motion mimicking through feature extraction in denoising diffusion settings

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ธ๊ฐ„ ๋™์ž‘ ์ƒ์„ฑ ์€ ์• ๋‹ˆ๋ฉ”์ด์…˜, ๊ฐ€์ƒ ํ˜„์‹ค(VR), ๋กœ๋ด‡ ์ œ์–ด, ์Šคํฌ์ธ  ๊ณผํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ ์— ์˜์กดํ•˜๊ฑฐ๋‚˜ GANยทVAE ์™€ ๊ฐ™์€ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ๋…ธ์ด์ฆˆ์™€ ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋กœ ํ˜„์‹ค๊ฐ ์žˆ๋Š” ๋™์ž‘์„ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์› ๋‹ค. ์ตœ๊ทผ ๋””๋…ธ์ด์ง• ๋””ํ“จ์ „ ๋ชจ๋ธ(Denoising Diffusion Probabilistic Models, DDPM) ์ด ์ด๋ฏธ์ง€ยท์Œ์„ฑ ๋ถ„์•ผ์—์„œ ๋›ฐ์–ด๋‚œ ํ’ˆ์งˆ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ(ํŠนํžˆ ์ธ๊ฐ„ ๋™์ž‘)์—๋„ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ œ๊ธฐ๋˜๊ณ  ์žˆ๋‹ค. 2. ํ•ต์‹ฌ

No Image

Genetic Algorithms for multiple objective vehicle routing

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ๋Š” ํ•˜๋‚˜ ์ด์ƒ์˜ ์ƒ์ถฉ๋˜๋Š” ๋ชฉํ‘œ๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ํ˜„์‹ค์ ์ธ ๋ฌธ์ œ์— ํ•„์ˆ˜์ ์ด๋‹ค. ํŠนํžˆ VRP with Time Windows ๋Š” ๋ฌผ๋ฅ˜ยท์šด์†ก ๋ถ„์•ผ์—์„œ ๋น„์šฉ, ์„œ๋น„์Šค ์ˆ˜์ค€, ์‹œ๊ฐ„ ์ œ์•ฝ ๋“ฑ์„ ๋™์‹œ์— ์ตœ์†Œํ™”ํ•ด์•ผ ํ•˜๋Š” ์ „ํ˜•์ ์ธ ์‚ฌ๋ก€์ด๋‹ค. ๊ธฐ์กด ๋‹ค๋ชฉ์  GA๋Š” ๊ฐ€์ค‘ํ•ฉ ์ด๋‚˜ Paretoโ€‘ranking ๋“ฑ์œผ๋กœ ์ ํ•ฉ๋„๋ฅผ ์ •์˜ํ–ˆ์ง€๋งŒ, ๋ณผ๋กํ•˜๊ฒŒ ์ง€๋ฐฐ๋˜๋Š” ํ•ด (์˜ˆ: ํšจ์œจํ•˜์ง€๋งŒ ๊ฐ€์ค‘ํ•ฉ์—์„œ๋Š” ๋‚ฎ์€ ์ ์ˆ˜๋ฅผ ๋ฐ›๋Š” ํ•ด)๋ฅผ ๋†“์น˜๊ธฐ ์‰ฝ๋‹ค. ์ด๋Š” ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ • ์ƒํ™ฉ์—์„œ ์ค‘์š”ํ•œ ๋Œ€์•ˆ์„ ๊ฐ„๊ณผํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ์š”์†Œ

Computer Science Artificial Intelligence
High-throughput viscometry via machine-learning from videos of inverted vials

High-throughput viscometry via machine-learning from videos of inverted vials

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ ๋„ ์ธก์ •์˜ ํ•œ๊ณ„ : ์ „ํ†ต์ ์ธ ํšŒ์ „ ์ ๋„๊ณ„, ์บก๋ฆด๋Ÿฌ๋ฆฌ ์ ๋„๊ณ„ ๋“ฑ์€ ์‹œ๋ฃŒ ์ค€๋น„์™€ ์ธก์ •์— ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๊ณ , ์ž๋™ํ™”๊ฐ€ ์–ด๋ ค์›Œ ๋Œ€๋Ÿ‰ ์Šคํฌ๋ฆฌ๋‹์— ๋ถ€์ ํ•ฉํ•˜๋‹ค. ์˜์ƒ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ : ์ตœ๊ทผ ์ปดํ“จํ„ฐ ๋น„์ „๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ, ๋ฌผ๋ฆฌ ํ˜„์ƒ์„ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์•ก์ฒด ํ๋ฆ„์˜ ์‹œ๊ฐ์  ํŠน์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋ฉด ์ ๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ  | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ์ฃผ์š” ๊ธฐ์ˆ /์•Œ๊ณ ๋ฆฌ์ฆ˜ | | | | | | ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ | ๋ฐ”์ด์•Œ์„ ๋’ค์ง‘์–ด ์•ก์ฒด๊ฐ€ ํ๋ฅด๋Š” ๊ณผ์ •์„ ๊ณ ์† ์นด๋ฉ”

Learning
No Image

Higher Order Continuity for Smooth As-Rigid-As-Possible Shape Modeling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ARAP(Asโ€‘Rigidโ€‘Asโ€‘Possible) ์€ ๋ณ€ํ˜• ์‹œ ๋ฌผ์ฒด์˜ ๊ฐ•์ง์„ฑ์„ ์ตœ๋Œ€ํ•œ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์ž์œ ๋กœ์šด ํ˜•ํƒœ ๋ณ€ํ˜•์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ธฐ์กด ARAP๋Š” 1์ฐจ ์—ฐ์†์„ฑ(Cยน) ์ •๋„๋งŒ ๋ณด์žฅํ•ด, ๋ณ€ํ˜• ๊ฒฝ๊ณ„๋‚˜ ๊ณ ์ฃผํŒŒ ๋””ํ…Œ์ผ์—์„œ ์‹œ๊ฐ์  ๋ถˆ์—ฐ์† ์ด ๋ฐœ์ƒํ•œ๋‹ค. ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ ๋ฉ”์‰ฌ ๋‚˜ ๊ณก๋ฉด ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์—ฐ์†์ด ๋ˆˆ์— ๋„์–ด, ์‹ค์‹œ๊ฐ„ ์ธํ„ฐ๋ž™์…˜์ด๋‚˜ ๊ณ ํ’ˆ์งˆ ๋ Œ๋”๋ง์— ์ œ์•ฝ์ด ๋œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | 1 | ๊ณ ์ฐจ ์—ฐ์†์„ฑ( Higherโ€‘Order C

Model
No Image

Improved 3D Scene Stylization via Text-Guided Generative Image Editing with Region-Based Control

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 3D ์”ฌ ์Šคํƒ€์ผ๋ง ์€ ๊ฒŒ์ž„, ์˜ํ™”, ๊ฐ€์ƒํ˜„์‹ค(VR) ๋“ฑ์—์„œ ์‹œ๊ฐ์  ํ’ˆ์งˆ์„ ๋†’์ด๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ „์—ญ์ ์ธ ์ƒ‰์ƒ ๋ณ€ํ™˜ ์ด๋‚˜ GAN ๊ธฐ๋ฐ˜ ํ…์Šค์ฒ˜ ๋งคํ•‘ ์— ์˜์กดํ•ด, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ํŠน์ • ์˜์—ญ๋งŒ์„ ์ •๊ตํ•˜๊ฒŒ ์กฐ์ •ํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ์ตœ๊ทผ ํ…์ŠคํŠธโ€‘ํˆฌโ€‘์ด๋ฏธ์ง€ ๋ชจ๋ธ(DALLยทE, Stable Diffusion ๋“ฑ)์˜ ๊ธ‰๊ฒฉํ•œ ๋ฐœ์ „์€ ์ง๊ด€์ ์ธ ์–ธ์–ด ์ž…๋ ฅ๋งŒ์œผ๋กœ ๋ณต์žกํ•œ ์ด๋ฏธ์ง€ ๋ณ€ํ˜•์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ 3D์— ์ ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. ํ…์ŠคํŠธโ€‘๊ฐ€์ด๋“œ ์ƒ์„ฑ ์ด๋ฏธ์ง€ ํŽธ์ง‘ ์‚ฌ์ „ ํ•™์Šต๋œ ํ…์Šค

No Image

In-Memory Computing Enabled Deep MIMO Detection to Support Ultra-Low-Latency Communications

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํ‰๊ฐ€ยท์ฝ”๋ฉ˜ํŠธ | | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ | 6G์—์„œ ์š”๊ตฌ๋˜๋Š” 0.1 ms ์ดํ•˜ ์ง€์—ฐ์€ ๊ธฐ์กด ๋””์ง€ํ„ธ DSP ๊ธฐ๋ฐ˜ MIMO ๊ฒ€์ถœ๊ธฐ(ํŠนํžˆ ๋Œ€๊ทœ๋ชจ MIMO)๋กœ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ธโ€‘๋ฉ”๋ชจ๋ฆฌ ์ปดํ“จํŒ…์€ ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ ๋ณ‘๋ชฉ์„ ์—†์• ๊ณ  MVM์„ ์•„๋‚ ๋กœ๊ทธ ์ˆ˜์ค€์—์„œ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด ์ง€์—ฐ ๊ฐ์†Œ์— ์œ ๋ฆฌํ•จ. | ํ˜„ ์‹ค๋ฌดยทํ•™๊ณ„ ์š”๊ตฌ์™€ ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ๊ฐ€ ์ž˜ ๋งž๋ฌผ๋ ค ์žˆ์–ด ์—ฐ๊ตฌ ๋™๊ธฐ๊ฐ€ ์„ค๋“๋ ฅ ์žˆ๋‹ค. | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | 1) ์ฑ„๋„โ€‘์ข…์†/๋น„์ข…์† ๋ชจ๋“ˆ ๋ถ„๋ฆฌ : ์ฑ„๋„ ๋ณ€ํ™” ์‹œ ์žฌํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด ํ•„์š”ํ•œ ๊ฐ€์ค‘์น˜(์ฑ„๋„โ€‘์ข…์†)์™€ ๊ณ ์ •๋œ ๊ฐ€์ค‘์น˜

Detection
IntrinsicEdit: Precise generative image manipulation in intrinsic space

IntrinsicEdit: Precise generative image manipulation in intrinsic space

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ”ฝ์…€โ€‘๋ ˆ๋ฒจ ํŽธ์ง‘์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ์ด๋ฏธ์ง€ ํŽธ์ง‘(์˜ˆ: StyleGANโ€‘based manipulation)์€ ์ „์ฒด ์ด๋ฏธ์ง€์˜ latent vector๋ฅผ ์กฐ์ •ํ•จ์œผ๋กœ์จ ์›ํ•˜๋Š” ๋ณ€ํ™”๋ฅผ ์œ ๋„ํ•˜์ง€๋งŒ, ๋ฌผ์ฒด๋ณ„ ๋ฐ˜์‚ฌ์œจยท์กฐ๋ช…ยท๊ตฌ์กฐ๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‚ด์žฌ ์ด๋ฏธ์ง€ ๋ถ„ํ•ด(intrinsic decomposition) : ์ด๋ฏธ์ง€ I๋ฅผ ๋ฐ˜์‚ฌ์œจ(R)ยท์กฐ๋ช…(S)ยท๊ตฌ์กฐ(N) ๋“ฑ ๋ฌผ๋ฆฌ์  ์š”์†Œ๋กœ ๋ถ„ํ•ดํ•˜๋ฉด, ๊ฐ๊ฐ์„ ๋ณ„๋„๋กœ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ฆฌ์ง€๋งŒ, ๊ธฐ์กด ๋ถ„ํ•ด ๋ฐฉ๋ฒ•์€ ์ •ํ™•๋„๊ฐ€ ๋‚ฎ๊ณ , ๋ถ„ํ•ด๋œ ์š”์†Œ๋ฅผ ๋‹ค์‹œ ํ•ฉ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ํ’ˆ์งˆ ์ €ํ•˜

No Image

Invoice Information Extraction: Methods and Performance Evaluation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ฒญ๊ตฌ์„œ ์ž๋™ํ™”์˜ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฐ€์น˜ : ํšŒ๊ณ„ยท์žฌ๋ฌด ๋ถ€์„œ์˜ ์—…๋ฌด ํšจ์œจ์„ฑ ํ–ฅ์ƒ, ์˜ค๋ฅ˜ ๊ฐ์†Œ, ๋น„์šฉ ์ ˆ๊ฐ. ๋‹ค์–‘ํ•œ ๋ ˆ์ด์•„์›ƒยท์–ธ์–ด : ๋™์ผ ๊ธฐ์—… ๋‚ด์—์„œ๋„ PDF, ์ด๋ฏธ์ง€, ์Šค์บ”๋ณธ ๋“ฑ ํ˜•์‹์ด ๋‹ค์–‘ํ•˜๊ณ , ๊ตญ์ œ ๊ฑฐ๋ž˜ ์‹œ ๋‹ค๊ตญ์–ด๊ฐ€ ํ˜ผ์žฌํ•จ. 2. ๋ฐฉ๋ฒ•๋ก  ๋ถ„๋ฅ˜ | ๊ตฌ๋ถ„ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๋Œ€ํ‘œ ์•Œ๊ณ ๋ฆฌ์ฆ˜/๋ชจ๋ธ | ์žฅ์  | ๋‹จ์  | | | | | | | | ๊ทœ์น™ ๊ธฐ๋ฐ˜ | ์ •๊ทœํ‘œํ˜„์‹ยทํ‚ค์›Œ๋“œ ๋งค์นญ | OCR ํ›„ ํ…์ŠคํŠธ ํŒจํ„ด ๋งค์นญ | ๊ตฌํ˜„ยท์œ ์ง€๋ณด์ˆ˜ ์šฉ์ด, ์‹ค์‹œ๊ฐ„ | ๋ ˆ์ด์•„์›ƒ ๋ณ€๋™์— ์ทจ์•ฝ, ํ™•์žฅ์„ฑ ๋‚ฎ์Œ | | ์ „ํ†ต ๋จธ์‹ ๋Ÿฌ๋‹ | ํŠน์ง• ๊ธฐ๋ฐ˜

No Image

Jack Unit: An Area- and Energy-Efficient Multiply-Accumulate (MAC) Unit Supporting Diverse Data Formats

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜„์žฌ AI ๊ฐ€์†๊ธฐ์™€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค๋Š” ๋‹ค์–‘ํ•œ ์ •๋ฐ€๋„(8โ€‘bit, 16โ€‘bit, 32โ€‘bit ๋“ฑ) ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ๊ธฐ์กด MAC ์„ค๊ณ„๋Š” ํŠน์ • ํฌ๋งท์— ์ตœ์ ํ™”๋ผ ๋‹ค์ค‘ ํฌ๋งท ์ง€์› ์‹œ ๋ฉด์ ยท์ „๋ ฅ ์˜ค๋ฒ„ํ—ค๋“œ ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. Jack Unit์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•˜๋“œ์›จ์–ด ๋ ˆ๋ฒจ์—์„œ ํฌ๋งท ๋…๋ฆฝ์„ฑ์„ ๊ตฌํ˜„ ํ•จ์œผ๋กœ์จ, ์„ค๊ณ„ ๋ณต์žก๋„์™€ ๋น„์šฉ์„ ๋™์‹œ์— ๋‚ฎ์ถ˜๋‹ค. 2. ํ•ต์‹ฌ ์„ค๊ณ„ ์•„์ด๋””์–ด ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์—ฐ์‚ฐ ํŒŒ์ดํ”„๋ผ์ธ : ๋™์ผํ•œ ์—ฐ์‚ฐ ๋ธ”๋ก์„ ๊ณต์œ ํ•˜๋ฉด์„œ ํฌ๋งท ์ „ํ™˜ ์‹œ ํŒŒ์ดํ”„๋ผ์ธ ๋‹จ๊ณ„์™€ ๋ ˆ์ง€์Šคํ„ฐ ํญ์„ ๋™์ ์œผ๋กœ ์กฐ์ •ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ํฌ๋งท ์ž๋™ ์Šค์ผ€์ผ๋ง :

Data
No Image

Knee-Deep in C-RASP: A Transformer Depth Hierarchy

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ตœ๊ทผ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์€ ๊นŠ์ด(๋ ˆ์ด์–ด ์ˆ˜)๋ฅผ ๋Š˜๋ฆผ์œผ๋กœ์จ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ด๋ฃจ์–ด ์™”์ง€๋งŒ, ๊นŠ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ‘œํ˜„์˜ ์ค‘๋ณต , ํ•™์Šต ๋ถˆ์•ˆ์ •์„ฑ , ์—ฐ์‚ฐ ๋น„์šฉ ๋“ฑ์˜ ๋ฌธ์ œ๊ฐ€ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. โ€œKneeโ€‘Deep in Cโ€‘RASPโ€๋ผ๋Š” ์ œ๋ชฉ์—์„œ โ€œKneeโ€‘Deepโ€๋Š” โ€œ๋ฌด๋ฆŽ ๊นŠ์ดโ€๋ผ๋Š” ์˜๋ฏธ๋กœ, ํŠน์ • ๊นŠ์ด ๊ตฌ๊ฐ„์—์„œ ๊ธ‰๊ฒฉํ•œ ์„ฑ๋Šฅ ๋ณ€๊ณก์  ์ด ์กด์žฌํ•จ์„ ์•”์‹œํ•œ๋‹ค. Cโ€‘RASP๋Š” ๊ธฐ์กด RASP(Recursive Autoregressive Structure Programming) ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ปจํ…์ŠคํŠธโ€‘์กฐ๊ฑด๋ถ€(Conditional) ํ˜น์€

No Image

L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์žฅ๋ฌธ ์ปจํ…์ŠคํŠธ ์ถ”๋ก ์˜ ๋น„์šฉ ํญ์ฆ ํ˜„์žฌ GPTโ€‘4, LLaMAโ€‘2 ๋“ฑ ์ตœ์‹  LLM์€ 8K~32K ํ† ํฐ๊นŒ์ง€ ์ง€์›ํ•˜์ง€๋งŒ, ํ† ํฐ ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก KV ์บ์‹œ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ธฐ์กด CPU/GPUโ€‘์ค‘์‹ฌ ์•„ํ‚คํ…์ฒ˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ ํ•œ๊ณ„์™€ PCIe/NVLink์„ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ์ด๋™ ๋น„์šฉ์œผ๋กœ ์ธํ•ด ๋น„์šฉ ํšจ์œจ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. PIM(Processingโ€‘Inโ€‘Memory)์˜ ๋ถ€์ƒ ๋ฉ”๋ชจ๋ฆฌ ๋‚ด๋ถ€์— ์—ฐ์‚ฐ ๋กœ์ง์„ ์‚ฝ์ž…ํ•ด ๋ฐ์ดํ„ฐ ์ด๋™์„ ์ตœ์†Œํ™”ํ•˜๋Š” PIM์€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ ํ•œ๊ณ„๋ฅผ ์™„ํ™”ํ•˜๊ณ  ์—๋„ˆ์ง€ ํšจ์œจ์„ ํฌ๊ฒŒ ๊ฐœ์„ 

No Image

MirrorMamba: Towards Scalable and Robust Mirror Detection in Videos

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ฑฐ์šธ ๊ฒ€์ถœ์˜ ์‘์šฉ : ์ฆ๊ฐ•ํ˜„์‹ค(AR), ๋กœ๋ด‡ ๋‚ด๋น„๊ฒŒ์ด์…˜, ์˜์ƒ ํŽธ์ง‘, ๋ณด์•ˆ ๊ฐ์‹œ ๋“ฑ์—์„œ ๊ฑฐ์šธ์€ ๊ฐ€์ƒยท์‹ค์ œ ๊ฒฝ๊ณ„๋ฅผ ํ˜ผ๋™์‹œ์ผœ ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด ํ•œ๊ณ„ : ์ •์  ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ CNN์€ ์กฐ๋ช… ๋ณ€ํ™”, ๋ฐ˜์‚ฌ ์™œ๊ณก, ๋‹ค์ค‘ ๊ฑฐ์šธ ๋“ฑ ๋ณตํ•ฉ ์ƒํ™ฉ์— ์ทจ์•ฝํ•˜๋ฉฐ, ๋น„๋””์˜ค์—์„œ๋Š” ํ”„๋ ˆ์ž„ ๊ฐ„ ์ผ๊ด€์„ฑ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ  | ๊ตฌ์„ฑ ์š”์†Œ | ์„ค๋ช… | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | ๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ํ”ผ์ฒ˜ ํ”ผ๋ผ๋ฏธ๋“œ | ResNetโ€‘Backbone ์œ„์— FPN(FEATURE Pyramid Network) ์ ์šฉ | ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ๊ฑฐ์šธ

Detection
No Image

Modeling the consequences of tongue surgery on tongue mobility

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜€ ์ˆ˜์ˆ ์€ ์ €์ž‘ยท์—ฐํ•˜ยท์–ธ์–ด๋ผ๋Š” ์ธ๊ฐ„ ์ƒํ™œ์˜ ๊ธฐ๋ณธ ๊ธฐ๋Šฅ์„ ํฌ๊ฒŒ ์ €ํ•ดํ•˜์—ฌ ํ™˜์ž์˜ ์‚ถ์˜ ์งˆ(QoL)์„ ์ €ํ•˜ํ•œ๋‹ค

Model Physics
No Image

MotionRAG-Diff: A Retrieval-Augmented Diffusion Framework for Long-Term Music-to-Dance Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์Œ์•…โ€‘๋Œ„์Šค ์ƒ์„ฑ ์€ ์—”ํ„ฐํ…Œ์ธ๋จผํŠธ, ๊ฐ€์ƒ ์•„๋ฐ”ํƒ€, ๊ต์œก ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋„๊ฐ€ ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ GAN , VAE , Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ์ฃผ๋ฅ˜์˜€์œผ๋ฉฐ, ์ฃผ๋กœ ์งง์€ ๊ตฌ๊ฐ„(์ˆ˜์ดˆ) ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ์žฅ์‹œ๊ฐ„(์ˆ˜์‹ญ ์ดˆ~๋ถ„) ๋™์ž‘์„ ์ƒ์„ฑํ•˜๋ ค๋ฉด ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ , ๋ฆฌ๋“ฌ ๋™์ž‘ ์ •ํ•ฉ์„ฑ , ๋‹ค์–‘์„ฑ ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œ์ผœ์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Š” ํ˜„์žฌ ๋ชจ๋ธ๋“ค์ด ๊ฒช๋Š” ์ฃผ์š” ํ•œ๊ณ„์ด๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด: Retrievalโ€‘Augmented Diffusion | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ์ˆ  | | | | |

Framework
No Image

Multi-stage Prompt Refinement for Mitigating Hallucinations in Large Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM ํ™˜๊ฐ ๋ฌธ์ œ : ์ตœ๊ทผ GPTโ€‘4, Claude, LLaMA ๋“ฑ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์€ ๋›ฐ์–ด๋‚œ ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ๋ณด์ด์ง€๋งŒ, ์‚ฌ์‹ค๊ณผ ๋ฌด๊ด€ํ•œ ์ •๋ณด๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” โ€˜ํ™˜๊ฐโ€™ ํ˜„์ƒ์ด ๋นˆ๋ฒˆํžˆ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์˜๋ฃŒ, ๋ฒ•๋ฅ , ๊ณผํ•™ ๋“ฑ ๊ณ ์‹ ๋ขฐ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ๋ถ„์•ผ์—์„œ ์น˜๋ช…์  ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ํ•œ๊ณ„ : ๋‹จ์ผ ํ”„๋กฌํ”„ํŠธ๋งŒ์œผ๋กœ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ์„ ์ œ์–ดํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ๋ณต์žกํ•œ ์งˆ์˜๋‚˜ ๋‹ค๋‹จ๊ณ„ ์ถ”๋ก ์ด ํ•„์š”ํ•œ ์ƒํ™ฉ์—์„œ ์ถฉ๋ถ„ํžˆ ํšจ๊ณผ์ ์ด์ง€ ์•Š๋‹ค. 2. ์ œ์•ˆ๋œ ๋‹ค๋‹จ๊ณ„ ํ”„๋กฌํ”„ํŠธ ์ •์ œ ํ”„๋ ˆ์ž„์›Œํฌ | ๋‹จ๊ณ„ | ์ฃผ์š” ๊ธฐ๋Šฅ | ๊ธฐ๋Œ€ ํšจ๊ณผ | |

Model
No Image

Multicontinuum Homogenization for Poroelasticity Model

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค๊ณตํƒ„์„ฑ์˜ ๋ณตํ•ฉ์„ฑ : ์‹ค์ œ ์ง€๋ฐ˜์ด๋‚˜ ์ €์žฅ ๋งค์งˆ์€ ๋‹จ์ผ ์—ฐ์†์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ๋งคํŠธ๋ฆญ์Šค, ๊ท ์—ด, ๋ฏธ์„ธ๊ณต๊ทน ๋“ฑ ์—ฌ๋Ÿฌ ์—ฐ์†์ฒด๊ฐ€ ๊ณต์กดํ•œ๋‹ค. ๊ธฐ์กด ํฌ๋กœ์—˜๋ผ์Šคํ‹ฑ ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ์—ฐ์†์ฒด ๊ตฌ์กฐ๋ฅผ ๋‹จ์ˆœํ™”ํ•˜๊ฑฐ๋‚˜ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ๋ฏธ์„ธ๊ตฌ์กฐ์— ๊ธฐ์ธํ•œ ๋น„๊ท ์งˆ์„ฑ ํšจ๊ณผ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋™์งˆํ™” ์ด๋ก ์˜ ํ•œ๊ณ„ : ์ „ํ†ต์ ์ธ ๋™์งˆํ™”๋Š” ์ฃผ๊ธฐ์  ๋˜๋Š” ํ†ต๊ณ„์  ๊ท ์ผ์„ฑ์„ ์ „์ œ๋กœ ํ•˜์—ฌ, ๋ณต์žกํ•œ ๋‹ค์ค‘ ์—ฐ์†์ฒด ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์ค‘์—ฐ์†์ฒด ๋™์งˆํ™”(multicontinuum homogenization)๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ด ์š”

Model
No Image

NDPage: Efficient Address Translation for Near-Data Processing Architectures via Tailored Page Table

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Nearโ€‘Data Processing (NDP) ์€ ๋ฉ”๋ชจ๋ฆฌยท์Šคํ† ๋ฆฌ์ง€์— ๊ฐ€๊นŒ์šด ์œ„์น˜์—์„œ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ์ด๋™ ๋น„์šฉ์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๋Š” ํŒจ๋Ÿฌ๋‹ค์ž„์ด๋‹ค. NDP ๊ฐ€ ์ ์šฉ๋œ ์‹œ์Šคํ…œ์—์„œ๋Š” CPU์™€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์ด์˜ ์ „ํ†ต์ ์ธ ์ฃผ์†Œ ๋ณ€ํ™˜ ๊ฒฝ๋กœ ๊ฐ€ ๋ณ‘๋ชฉ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, ํŽ˜์ด์ง€ ํ…Œ์ด๋ธ” ์›Œํฌ๋กœ๋“œ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด TLB ๋ฏธ์ŠคยทํŽ˜์ด์ง€ ์›ŒํฌยทํŽ˜์ด์ง€ ํ…Œ์ด๋ธ” ํƒ์ƒ‰ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ๊ธฐ์กด์˜ ์ผ๋ฐ˜โ€‘๋ชฉ์  ํŽ˜์ด์ง€ ํ…Œ์ด๋ธ” ์„ค๊ณ„๋Š” CPUโ€‘์ค‘์‹ฌ ์›Œํฌ๋กœ๋“œ์— ์ตœ์ ํ™”๋ผ ์žˆ์–ด, ๋ฉ”๋ชจ๋ฆฌโ€‘์ธ๋ผ์ธ ์—ฐ์‚ฐ ์œ ๋‹›์ด ์ง์ ‘ ์ฃผ์†Œ๋ฅผ ํ•ด์„ํ•ด์•ผ ํ•˜๋Š” NDP ํ™˜๊ฒฝ์—์„ 

Data
No Image

Neural-GASh: A CGA-based neural radiance prediction pipeline for real-time shading

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์‹ค์‹œ๊ฐ„ ์…ฐ์ด๋”ฉ ์€ ๊ฒŒ์ž„, VR/AR, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋“ฑ์—์„œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋ฉฐ, ๊ณ ํ’ˆ์งˆ ๊ด‘์› ๋ชจ๋ธ๋ง๊ณผ ๋น ๋ฅธ ์—ฐ์‚ฐ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๊ฐ€ ํฐ ๊ณผ์ œ์ด๋‹ค. CGA(Computer Graphics Assembly) ๋Š” ์ €์ˆ˜์ค€ ๊ทธ๋ž˜ํ”ฝ์Šค ํŒŒ์ดํ”„๋ผ์ธ์„ ์ง์ ‘ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์–ด ์ตœ์ ํ™”์— ์œ ๋ฆฌํ•˜์ง€๋งŒ, ๋ณต์žกํ•œ ๊ด‘ํ•™ ํ˜„์ƒ์„ ์ˆ˜์‹์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ตœ๊ทผ ์‹ ๊ฒฝ ๋ฐฉ์‚ฌ(Neral Radiance) ์˜ˆ์ธก (NeRF, Radiance Fields ๋“ฑ) ๊ธฐ์ˆ ์ด ๊ณ ํ’ˆ์งˆ ์ด๋ฏธ์ง€ ํ•ฉ์„ฑ์— ์„ฑ๊ณตํ•˜๋ฉด์„œ, ์ด๋ฅผ ์‹ค์‹œ๊ฐ„์— ์ ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€

No Image

NeuroBridge: Bio-Inspired Self-Supervised EEG-to-Image Decoding via Cognitive Priors and Bidirectional Semantic Alignment

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ EEGโ€‘toโ€‘Image ๋””์ฝ”๋”ฉ ์€ ๋‡Œโ€‘์ปดํ“จํ„ฐ ์ธํ„ฐํŽ˜์ด์Šค(BCI)์™€ ์‹ ๊ฒฝ๊ณผํ•™์—์„œ ์‹œ๊ฐ์  ์‚ฌ๊ณ ๋ฅผ ์™ธ๋ถ€ ์žฅ์น˜๋กœ ์ „๋‹ฌํ•˜๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง๋œ EEGโ€‘์ด๋ฏธ์ง€ ์Œ์— ์˜์กดํ•ด ๊ณผ์ ํ•ฉ ์œ„ํ—˜์ด ํฌ๊ณ , ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ์ธ์ง€ ์‚ฌ์ „์ง€์‹(cognitive priors) ์€ ์ธ๊ฐ„์ด ์‚ฌ์ „์— ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์‹œ๊ฐ์  ๊ฐœ๋…(์˜ˆ: ๋ฌผ์ฒด ํ˜•ํƒœ, ์ƒ‰์ฑ„, ๊ณต๊ฐ„ ๊ด€๊ณ„ ๋“ฑ)์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ฅผ ๋ชจ๋ธ์— ์ฃผ์ž…ํ•˜๋ฉด ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ๋„ ์˜๋ฏธ๋ก ์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. ๋ฐ”์ด์˜ค ์˜๊ฐ(Bioโ€‘Ins

No Image

Number of binomial coefficients divided by a fixed power of a prime

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ดํ•ญ๊ณ„์ˆ˜์˜ ์†Œ์ˆ˜ ๊ฑฐ๋“ญ์ œ๊ณฑ์— ๋Œ€ํ•œ ๊ฐ€๋ฒ•์„ฑ์€ ์กฐํ•ฉ๋ก , ์ˆ˜๋ก , ๊ทธ๋ฆฌ๊ณ  ๋Œ€์ˆ˜์  ์ฝ”๋”ฉ ์ด๋ก  ๋“ฑ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ํŠนํžˆ Lucas ์ •๋ฆฌ์™€ Kummer ์ •๋ฆฌ๋Š” (binom{n}{k})๊ฐ€ ์†Œ์ˆ˜ (p)๋กœ ๋‚˜๋ˆ„์–ด์ง€๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ (p)์ง„๋ฒ• ์ „๊ฐœ์™€ ์ง์ ‘ ์—ฐ๊ฒฐ์‹œ์ผœ ์ฃผ์–ด, โ€œ์–ผ๋งˆ๋‚˜ ๋งŽ์ด ๋‚˜๋ˆ„์–ด์ง€๋Š”๊ฐ€โ€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ฌธ์ œ๋Š” ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ (theta {j}(n))์™€ ๊ฐ™์€ ํ•จ์ˆ˜์˜ ์—ฐ๊ตฌ๋กœ ์ด์–ด์ง„๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด์— (j 0,1)์— ๋Œ€ํ•ด์„œ๋งŒ ์•Œ๋ ค์ง„ ํŠน์ˆ˜ ๊ฒฝ์šฐ๋ฅผ ๋„˜์–ด, ์ž„์˜์˜ (j) ์— ๋Œ€ํ•ด ํ†ตํ•ฉ๋œ ํ

Mathematics
No Image

On the Role of Preference Variance in Preference Optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์„ ํ˜ธ๋„ ์ตœ์ ํ™”์˜ ํ˜„์ฃผ์†Œ : ๊ฐ•ํ™”ํ•™์Šต(RLHF), ์ˆœ์œ„ ํ•™์Šต, ์ธ๊ฐ„ ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๋“ฑ์—์„œ โ€˜์„ ํ˜ธ๋„โ€™๋ฅผ ๋ชฉํ‘œ ํ•จ์ˆ˜๋กœ ์‚ผ์•„ ๋ชจ๋ธ์„ ํŠœ๋‹ํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋Š” ํ‰๊ท ์ ์ธ ์„ ํ˜ธ๋„ ์ ์ˆ˜์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๋ฐ์ดํ„ฐ์˜ ๋ถ„์‚ฐ์ด๋‚˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ฌด์‹œํ•œ๋‹ค. ๋ณ€๋™์„ฑ์˜ ์ž ์žฌ์  ์œ„ํ—˜ : ๋™์ผํ•œ ํ‰๊ท ์„ ๊ฐ–๋Š” ๋‘ ์ •์ฑ…์ด๋ผ๋„, ํ•˜๋‚˜๋Š” ํŠน์ • ์‚ฌ์šฉ์ž์—๊ฒŒ ๋งค์šฐ ๋†’์€ ๋งŒ์กฑ๋„๋ฅผ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์ „๋ฐ˜์ ์œผ๋กœ ๋‚ฎ์€ ๋งŒ์กฑ๋„๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์˜ ๋ถˆ๊ท ํ˜•๊ณผ ๊ณต์ •์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด Preference Variance ์ •์˜

Plug. Play. Persist. Inside a Ready-to-Go Havoc C2 Infrastructure

Plug. Play. Persist. Inside a Ready-to-Go Havoc C2 Infrastructure

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  Havoc ์€ ์˜คํ”ˆ์†Œ์Šค ๊ธฐ๋ฐ˜์˜ ์นจํˆฌ ํ…Œ์ŠคํŠธยท๋ ˆ๋“œํŒ€ ํˆดํ‚ท์œผ๋กœ, ๋‹ค์–‘ํ•œ ๋ชจ๋“ˆํ˜• C2(๋ช…๋ นยท์ œ์–ด) ์„œ๋ฒ„์™€ ์—์ด์ „ํŠธ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. โ€œPlug. Play. Persist.โ€๋ผ๋Š” ํ‚ค์›Œ๋“œ๋Š” ์ฆ‰์‹œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ(plugโ€‘andโ€‘play) ๋ชจ๋“ˆ, ์ง€์† ๊ฐ€๋Šฅํ•œ(persist) ์šด์˜, ๊ทธ๋ฆฌ๊ณ  ์ค€๋น„๋œ(readyโ€‘toโ€‘go) ์ธํ”„๋ผ ๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์€ Havoc ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ์ž๋™ํ™”๋œ C2 ์ธํ”„๋ผ ๊ตฌ์ถ• ๋ฐฉ๋ฒ• ๊ณผ ์žฅ๊ธฐ์ ์ธ ์€ํยท์œ ์ง€ ์ „๋žต ์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. 2. ํ•ต์‹ฌ ๋‚ด์šฉ ์ถ”์ • | ๊ตฌ๋ถ„ | ์˜ˆ์ƒ ๋‚ด์šฉ

No Image

Problems of Testology

1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ํ…Œ์ŠคํŠธ ํ’ˆ์งˆ์˜ ํ•ต์‹ฌ ์ง€ํ‘œ ์ธ ํƒ€๋‹น๋„์™€ ์‹ ๋ขฐ๋„๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ฐ๊ฐ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ตฌ์ฒด์  ์ ˆ์ฐจ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ต์œก ์ธก์ •ํ•™(ํ…Œ์ŠคํŠธ ์ด๋ก ) ๋ถ„์•ผ์— ์‹ค์šฉ์ ์ธ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค. 2007๋…„ ๋‹น์‹œ ๋Ÿฌ์‹œ์•„ ๊ต์œก ํ˜„์žฅ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋˜ ์ „ํ†ต์ ์ธ ํ…Œ์ŠคํŠธ ์„ค๊ณ„ยท๋ถ„์„ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๋น„ํŒํ•˜๊ณ , ํ˜„๋Œ€ IRT(ํ•ญ๋ชฉ ๋ฐ˜์‘ ์ด๋ก )์™€ ๋ฒ ์ด์ง€์•ˆ ์ ‘๊ทผ์„ ํฌํ•จํ•œ ์ตœ์‹  ํ†ต๊ณ„ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋‹๋ณด์ธ๋‹ค. 2. ์ฃผ์š” ๋‚ด์šฉ ์š”์•ฝ | ๋ฒˆํ˜ธ | ํ•ต์‹ฌ ์ฃผ์žฅ ๋ฐ ์ œ์•ˆ | ํ•ต์‹ฌ ๊ทผ๊ฑฐ/์˜ˆ์‹œ | | | | | | 1 | ํ…Œ์ŠคํŠธ ํ•ญ๋ชฉ์˜ ํƒ€๋‹น๋„ ๋Š”

Applications Statistics
No Image

Prostate-VarBench: A Benchmark with Interpretable TabNet Framework for Prostate Cancer Variant Classification

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ „๋ฆฝ์„ ์•” ๋ณ€์ด ๋ถ„์„์˜ ํ˜„์ฃผ์†Œ : ์ „๋ฆฝ์„ ์•”์€ ์œ ์ „์  ์ด์งˆ์„ฑ์ด ํฌ๊ณ , ๋ณ€์ด ๊ธฐ๋ฐ˜ ์ง„๋‹จยท์˜ˆํ›„ ์˜ˆ์ธก์ด ์ž„์ƒ ์˜์‚ฌ๊ฒฐ์ •์— ํ•ต์‹ฌ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณต๊ฐœ๋œ ๊ณ ํ’ˆ์งˆ ๋ณ€์ด ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•ด ๋ชจ๋ธ ๊ฐœ๋ฐœ์ด ์ œํ•œ์ ์ด์—ˆ๋‹ค. ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ์š”๊ตฌ : ์˜๋ฃŒ AI๋Š” โ€˜๋ธ”๋ž™๋ฐ•์Šคโ€™๊ฐ€ ์•„๋‹ˆ๋ผ, ์˜์‚ฌ๊ฐ€ ์ดํ•ดํ•˜๊ณ  ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ทœ์ œยท์œค๋ฆฌ์  ์š”๊ตฌ๊ฐ€ ๊ฐ•ํ™”๋˜๊ณ  ์žˆ๋‹ค. 2. Prostateโ€‘VarBench ๋ฐ์ดํ„ฐ์…‹ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ ์ถœ์ฒ˜ | TCGAโ€‘PRAD, ICGC, ๊ตญ๋‚ด ๋‹ค๊ธฐ๊ด€ ์ „๋ฆฝ์„ ์•” ์ฝ”ํ˜ธํŠธ ๋“ฑ |

Framework
No Image

Rejoinder: Citation Statistics

1. ์—ฐ๊ตฌ ํ’ˆ์งˆ์˜ ๋‹ค์ฐจ์›์„ฑ ๋ฒ ๋ฅด๋‚˜๋“œ ์‹ค๋ฒ„๋จผ์˜ โ€œํ•œ ์‚ฌ๋žŒ์„ ํ•˜๋‚˜์˜ ์ˆซ์ž๋กœ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์€ ๋„๋•์ ยท์ „๋ฌธ์ ์œผ๋กœ ํ˜์˜ค์Šค๋Ÿฝ๋‹คโ€๋Š” ๋ฐœ์–ธ์„ ์ธ์šฉํ•ด, ์—ฐ๊ตฌ ํ’ˆ์งˆ์„ ์ผ์ฐจ์›์ ์ธ ์ˆœ์œ„๋กœ ํ™˜์›ํ•˜๋Š” ์‹œ๋„ ์ž์ฒด๊ฐ€ ๊ทผ๋ณธ์ ์ธ ์˜ค๋ฅ˜์ž„์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ €์ž๋“ค์€ โ€œ์—ฐ๊ตฌ ํ’ˆ์งˆ์€ ์ž˜ ์ •๋ ฌ๋œ(wellโ€‘ordered) ๊ฐœ๋…์ด ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๋งํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ํ•™๋ฌธ์  ๊ฐ€์น˜(ํ˜์‹ ์„ฑ, ์˜ํ–ฅ๋ ฅ, ๊ต์œก ๊ธฐ์—ฌ ๋“ฑ)๋ฅผ ํฌ๊ด„ํ•˜๋Š” ๋ณตํ•ฉ์  ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ํ•„์š”ํ•จ์„ ์—ญ์„คํ•œ๋‹ค. 2. ํ†ต๊ณ„์  ๋ชจ๋ธ๋ง์˜ ํ•„์š”์„ฑ ํ”ผํ„ฐ ํ™€์€ ์ธ์šฉ ๋ฐ์ดํ„ฐ์˜ โ€œ๋ณธ์งˆ, ํฌํ•จ๋œ ์ •๋ณด, ๋ถ„์„ ๋ฐฉ๋ฒ•โ€์„ ํƒ๊ตฌํ•˜๋Š” ํ†ต๊ณ„์  ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ €์ž๋“ค

Statistics Digital Libraries Computer Science Physics
No Image

SAND: A Self-supervised and Adaptive NAS-Driven Framework for Hardware Trojan Detection

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ•˜๋“œ์›จ์–ด ํŠธ๋กœ์ด ๋ชฉ๋งˆ(HT) ๋Š” ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฝ์ž…๋˜๋Š” ์•…์„ฑ ํšŒ๋กœ๋กœ, ์ „๋ ฅ, ํƒ€์ด๋ฐ, ๊ธฐ๋Šฅ ๋“ฑ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์—์„œ ์‹œ์Šคํ…œ์„ ์œ„ํ˜‘ํ•œ๋‹ค. ๊ธฐ์กด ํƒ์ง€ ๋ฐฉ๋ฒ•์€ ํŠน์ง• ์—”์ง€๋‹ˆ์–ด๋ง ์— ํฌ๊ฒŒ ์˜์กดํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ๊ณต๊ฒฉ ์œ ํ˜•์ด ๋“ฑ์žฅํ•˜๋ฉด ์žฌ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•ด ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ž๋™ํ™”๋œ ํŠน์„ฑ ์ถ”์ถœ ๊ณผ ๋™์  ๋ชจ๋ธ ์ ์‘ ์ด ๊ฐ€๋Šฅํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ๊ธฐ๋ฒ• | ์—ญํ•  | ์žฅ์  | | | | | | Selfโ€‘Supervised Learning (SSL) | ๋ผ๋ฒจ์ด ์—†๋Š” ํšŒ๋กœ ๋ฐ์ดํ„ฐ์—์„œ ์‚ฌ์ „ํ•™์Šต์„ ์ˆ˜ํ–‰, ํŠน์ง•

Framework Detection
No Image

Semi-sparsity Generalization for Variational Mesh Denoising

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฉ”์‰ฌ ๋””๋…ธ์ด์ง•์˜ ๋‚œ์  : ์‚ผ๊ฐํ˜• ๋ฉ”์‰ฌ๋Š” ์ •์  ๊ฐ„ ๊ฐ„๊ฒฉ์ด ์ผ์ •ํ•˜์ง€ ์•Š๊ณ , ๋ณต์žกํ•œ ํ† ํด๋กœ์ง€๋ฅผ ๊ฐ–๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฏธ์ง€์™€ ๊ฐ™์€ ๊ฒฉ์žํ˜• ๋ฐ์ดํ„ฐ์— ์ ์šฉ๋˜๋Š” ์ „ํ†ต์ ์ธ TV(Total Variation)๋‚˜ L1 ์ •๊ทœํ™” ๊ธฐ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์“ฐ๋ฉด ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ๊ณผ ๊ณผ๋„ํ•œ ํ‰ํ™œํ™”๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋ฐ˜ํฌ์†Œ์„ฑ ์ •๊ทœํ™” : ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์—์„œ โ€œsemiโ€‘sparseโ€ ์ •๊ทœํ™”๋Š” ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”(์—์ง€)์™€ ๋ถ€๋“œ๋Ÿฌ์šด ์˜์—ญ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ๊ฐ•์ ์„ ๋ณด์ธ๋‹ค. ์ด๋ฅผ ๋ฉ”์‰ฌ์— ์ ์šฉํ•˜๋ฉด sharp feature preservation ๊ณผ piecewiseโ€‘poly

< Category Statistics (Total: 5062) >

Electrical Engineering and Systems Science
102
General
4199
General Relativity
2
HEP-EX
3
HEP-PH
1
HEP-TH
3
MATH-PH
6
Nonlinear Sciences
1
Quantitative Finance
1
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut