The q-Harmonic Oscillator and the Al-Salam and Carlitz polynomials

Al-Salam와 Carlitz는 대량의 3ϕ2 시리즈를 포함하는 이중으로 정규화된 비 등급 정수의 가우스 합을 정의한다. 이 아이디어는 Meixner 다항식이 가진 특수한 사례로 확장될 수 있다. 이 결과에 기반하여, 주어진 한 쌍의 일반적인 3ϕ2 계층에 대한 두 개의 서로 상반된 대량 비 등급 정수를 소개한다. 이러한 함수들은 대량으로 정규화되고 대량으로 정규화된 가우스 합에서 유도된다. 이 아이디어는 Meixner 다항식과 Bessel 다항식을 포함하는 3ϕ2 계층에 대한 연구와 상관이 있다. 비 등급 정수들의 일반적인 형태는 1-종의 일반적인 함수를 기반으로 한다. 이러한 함수들은 대량으로 정규화되고, 특정한 1종 함수가 다른 두 종과 상호 작용함으로써 생성된다. 이 아이디어는 수학에서 중요한 개념인 비 등급 정수를 소개한다. 비 등급 정수는 등급이 없는 경우와 더 일반적으로 등급이 있는 경우를 모두 포함한다. 이러한 정수는 다양한 분야에서 응용되며, 이는 이들에 대한 이론적 연구의 중요성을 시사한다.

한글 요약 끝

The q-Harmonic Oscillator and the Al-Salam and Carlitz polynomials

arXiv:math/9307207v1 [math.CA] 9 Jul 1993The q-Harmonic Oscillator and the Al-Salam and Carlitz polynomialsDedicated to the Memory of Professor Ya. A. Smorodinski˘ıR.

Askey† and S. K. Suslov‡Abstract. One more model of a q-harmonic oscillator based on the q-orthogonal polynomials of Al-Salam and Carlitz is discussed.

The explicitform of q-creation and q-annihilation operators, q-coherent states and ananalog of the Fourier transformation are established. A connection of thekernel of this transform with a family of self-dual biorthogonal rationalfunctions is observed.IntroductionRecent development in quantum groups has led to the so-called q-harmonic oscilla-tors ( see, for example, Refs.

[1–7] ). Presently known models of q-oscillators are closelyrelated with q-orthogonal polynomials.

The q-analogs of boson operators have been in-troduced explicitly in Refs. [3], [5] and [7], where the corresponding wave functions wereconstructed in terms of the continuous q-Hermite polynomials of Rogers [8,9], in termsof the Stieltjes–Wigert polynomials [10,11] and in terms of q-Charlier polynomials of Al-Salam and Carlitz [12], respectively.

The model related to the Rogers–Szeg¨o polynomials[13] was investigated in [1,6]. Here we introduce the explicit realization of q-creation andq-annihilation operators with the aid of another family of the Al-Salam and Carlitz poly-nomials [12] when eigenvalues of the corresponding q-Hamiltonian are unbounded.Anattempt to unify q-boson operators is also made.With a great deal of regret we dedicate this paper to the memory of Yacob A.Smorodinski˘ı, who suggested ten years ago that the special case q = 1 of this work isinteresting and admits a generalization.1.

The Al-Salam and Carlitz PolynomialsThe aim of this Letter is to show that the q-orthogonal polynomials U (a)n (x; q) studiedby Al-Salam and Carlitz are closely connected with the q-harmonic oscillator. To emphasizethese relations we use the notation uµn(x; q) = µ−nq−n(n−1)/2U (−µ)n(x; q) for the Al-Salamand Carlitz polynomials.

In our notation they can be defined by the three-term recurrencerelation of the formµqnuµn+1(x; q) + (1 −qn) uµn−1(x; q) = (x −(1 −µ)qn) uµn(x; q) ,(1)uµ0(x; q) = 1 , uµ1(x; q) = µ−1(x −1 + µ) . These polynomials are orthogonalZ 1−µuµm(x; q) uµn(x; q) dα(x) = (1 + µ)q−n(n−1)/2 (q; q)nµnδmn(2)† Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA‡ Russian Scientific Center “Kurchatov Institute”, Moscow 123182, Russia1

with respect to a positive measure dα(x), where α(x) is a step function with jumpsqk(−qµ; q)∞(q, −q/µ; q)kat the points x = qk, k = 0, 1, . .

., and jumpsµqk(−q/µ; q)∞(q, −qµ; q)kat the points x = −µqk, k = 0, 1, . .

. ( see, for example, [12,14,15] ).Here the usualnotations are(a; q)n =n−1Yk=0(1 −aqk) ,(a, b; q)n = (a; q)n(b; q)n ,(3)(a; q)∞= limn→∞(a; q)n .The orthogonality relation (2) can also be written in terms of the q-integral of Jackson,Z 1−µuµm(x; q) uµn(x; q) ˜ρ(x) dqx = (1 −q)d2n δmn ,(4)where˜ρ(x) = (qx, −µ−1qx; q)∞(q, −µ, −q/µ; q)∞; µ > 0 , 0 < q < 1(5)andd2n = q−n(n−1)/2 (q; q)nµn.

(6)For the definition of the q-integral, see [15]. The “weight function” ρ(s) = ˜ρ(x) in (5)is a solution of the Pearson-type equation ∆(σρ) = ρτ∇x1with x(s) = qs, σ(s) =(1 −qs)(µ + qs) and σ(s) + τ(s)∇x1(s) = µ.

The polynomials yn(s) = uµn(x; q) satisfy thehypergeometric-type difference equation in self-adjoint form,∆∇x1(s)σ(s) ρ(s) ∇yn(s)∇x(s)+ λn ρ(s) yn(s) = 0 ,whereλn = q3/2 q−n −1(1 −q)2 .Here ∆f(s) = f(s + 1) −f(s) = ∇f(s + 1) and x1(s) = x(s + 1/2). ( For details, see[16–19]. ) The orthogonality property (2) or (4) can be proved by using standard Sturm–Liouville-type arguments ( cf.

[16–19]).2

The explicit form of the polynomials uµn(x; q) isuµn(x; q) = 2ϕ1q−n, x−1; 0 ; q , −qµ x(7)= (−µ−1)n2ϕ1(q−n, −µx−1; 0 ; q , qx) , x = qs .It means uµn(x; q) =−µ−1n u1/µn(−µ−1x; q). In the limit q →1 it easy to see from (1) or(7) thatlimq→1 u(1−q)µn(qs; q) = 2F0(−n, −s; −; −1/µ) = cµn(s) ,(8)where cµn(x) are the Charlier polynomials.2.

Model of q-Harmonic OscillatorThe Al-Salam and Carlitz polynomials uµn(x; q) allow us to consider an interestingmodel of a q-oscillator ( cf. [7] ).

We can introduce a q-version of the wave functions ofthe harmonic oscillator asψn(s) = ˜ψn(x) = d−1n (˜ρ(x)|x|)1/2 uµn(x; q) , x = qs ,(9)where ˜ρ(x) and d2n are defined in (5) and (6), respectively. These q-wave functions satisfythe orthogonality relation(1 −q)−1Z 1−µ˜ψn(x) ˜ψm(x) |x|−1 dqx = δnm ,(10)which is equivalent to (2) and (4).The q-annihilation b and q-creation b+ operators have the following explicit formb = (1 −q)−12hµ12 q−s −p(1 −qs+1)(µq−1 + qs) q−s e∂si,(11)b+ = (1 −q)−12hµ12 q−s −e−∂sp(1 −qs+1)(µq−1 + qs) q−si,where ∂s ≡dds, eα∂sf(s) = f(s + α).

These operators are adjoint, (b+ψ, χ) = (ψ, bχ),with respect to the scalar product (10). They satisfy the q-commutation ruleb b+ −q−1b+b = 1(12)and act on the q-wave functions defined in (9) byb ψn = ˜e1/2nψn−1, b+ψn = ˜e1/2n+1ψn+1 ,(13)3

where˜en = 1 −q−n1 −q−1 .The q-Hamiltonian H = b+b acts on the wave functions (9) asHψn = ˜enψn(15)and has the following explicit formH = (1 −q)−1µq−2s + (1 −qs)(µ + qs) q1−2s−(16)µ12 q−2sp(1 −qs+1)(µq−1 + qs) e∂s −µ12 q2−2sp(1 −qs)(µq−1 + qs−1) e−∂s.By factorizing the Hamiltonian ( or the difference equation for the Al-Salam and Carlitzpolynomials ) we arrive at the explicit form (11) for the q-boson operators. The equations(13) are equivalent to the following difference-differentiation formulasµq−s−1∆uµn(x; q) = (1 −q−n) uµn−1(x; q) ,q−s∇[ ρ(s) uµn(x; q) ] = ρ(s) uµn+1(x; q) ,respectively.

Therefore, the main properties of the Al-Salam and Carlitz polynomials admita simple group-theoretical interpretation in terms of the q-Heisenberg–Weyl algebra (12).The symmetric case µ = 1 in the above formulas corresponds to the discrete q-Hermitepolynomials Hn(x; q) [12,15].3. The q-Coherent StatesFor the model of the q-oscillator under discussion, by analogy with [7] we can constructexplicitly the q-coherent states | α⟩defined byb | α⟩= α | α⟩,(17)| α⟩= fα∞Xn=0αnψn(s)(˜en!

)1/2 ,⟨α | α⟩= 1 ,where˜en! = ˜e1˜e2 .

. .

˜en = q−n(n−1)/2 (q; q)n(1 −q)n ,fα =−(1 −q) | α |2; q−1/2∞.By using (9) one can obtain| α⟩= fα (ρ|qs|)12∞Xn=0uµn(x; q) qn(n−1)/2tn(q; q)n, t = αµ12 (1 −q)12 . (18)4

With the aid of the Brenke-type generating function [12,14] for the Al-Salam and Carlitzpolynomials,∞Xn=0uµn(x; q) qn(n−1)/2tn(q; q)n= (−t , t/µ; q)∞(xt/µ; q)∞,t xµ < 1 ,(19)we arrive at the following explicit form for the q-coherent states| α⟩= fα (ρ|qs|)12−α(1 −q)1/2µ1/2, α(1 −q)1/2µ−1/2; q∞α(1 −q)1/2µ−1/2qs; q∞,(20)where ρ(s) = (q1+s, −µ−1q1+s; q)∞/(q, −µ, −q/µ; q)⊂nfty. These coherent states are notorthogonal⟨α | β⟩=(−(1 −q)α∗β ; q)∞(−(1 −q) | α |2 , −(1 −q) | β |2; q)1/2∞,where ∗denotes the complex conjugate.4.

Analog of the Fourier TransformationTo define an analog of the Fourier transform we begin, in the spirit of Wiener’sapproach to the classical Fourier transform [20] ( see also [7,21,22] ), by deriving the kernelof the formKt(x, y) =∞Xn=0tn ˜ψn(x) ˜ψn(y)(21)= (˜ρ(x)˜ρ(y)|xy|)12∞Xn=0uµn(x; q) uµn(y; q) qn(n−1)/2 (µt)n(q; q)n.The series can be summed with the aid of the bilinear generating function of Al-Salam andCarlitz [12]∞Xn=0uµ1n (x; q) uµ2n (y; q) qn(n−1)/2tn(q; q)n= (−t , t/µ1 , t/µ2; q)∞(tx/µ1 , ty/µ2; q)∞· 3ϕ2x−1 , y−1 , −qt−1qµ1(tx)−1, qµ2(ty)−1 ; q , q(22)( the 3ϕ2-series is terminating and max ( |t/µ1| , |t/µ2| ) < 1 ). The answer isKt(x, y) = (˜ρ(x)˜ρ(y)|xy|)12 (t , t , −µt ; q)∞(tx , ty ; q)∞· 3ϕ2 x−1 , y−1 , −q(µt)−1q(tx)−1 , q(ty)−1; q , q;(23)= (˜ρ(x)˜ρ(y)|xy|)12(t , t , −µ−1t ; q)∞(−µ−1tx, −µ−1ty ; q)∞· 3ϕ2 −µx−1, −µy−1, −qµt−1−qµ(tx)−1, −qµ(ty)−1 ; q, qat x = qs and at x = −µqs for s = 0, 1, .

. ., respectively.5

In view of (10) and (21),tm ˜ψm(x) = (1 −q)−1Z 1−µKt(x, y) ˜ψm(y) |y|−1dqy . (24)Letting t = i, we find that the q-wave functions (9) are eigenfunctions of the following“q-Fourier transform”,im ˜ψm(x) = (1 −q)−1Z 1−µKi(x, y) ˜ψm(y) |y|−1dqy .

(25)An easy corollary of (21) or (24) is(1 −q)−1Z 1−µKt(x, y) Kt′(x′, y) |y|−1dqy = Ktt′(x, x′) . (26)Putting t = −t′ = i, we obtain the orthogonality relation of the kernel,(1 −q)−1Z 1−µKi(x, y) K∗i (x′, y) |y|−1dqy = δxx′ ,(27)which implies the orthogonality of the rational functions (23) and leads to an inversionformula for the q-transformation (25).

In view of (8), in the limit q →1−we get one ofthe “discrete Fourier transforms” considered in [21].5. Some Biorthogonal Rational FunctionsThe rational functions (23) have appeared as the kernel of the discrete q-Fouriertransform (25).

They admit the following extension. With the aid of the bilinear generatingfunction (22) and the orthogonality property of a special case of the q-Meixner polynomials,which are dual to the polynomials (7), we obtain the biorthogonality relation,Z 1−µ2u(x, y) v(x′, y) ˜ρ(y) dqy = (1 −q) d2x δxx′ ,(28)for the 3ϕ2-rational functions of the formu(x, y) = 3ϕ2x−1 , y−1 , −qt−11qµ1(t1x)−1 , qµ2(t1y)−1 ; q, q;(29)= 3ϕ2 −µ1x−1 , −µ2y−1 , −qt2−qt2x−1 , −qt2y−1; q, qat x = qs and at x = −µ1qs for s = 0, 1, .

. ., respectively, andv(x, y) = u(x, y)|t1↔t2 ;t1t2 = µ1µ2 .

(30)6

Here,˜ρ(y) =qy , −µ−12 qy ; q∞t1µ−12 y , t2µ−12 y ; q∞;=qy , −µ−12 qy ; q∞−t−11 y , −t−12 y ; q∞at x, x′ = {qs; s = 0, 1, . .

.} and at x, x′ = {−µ1qs; s = 0, 1, .

. .

}, respectively;˜ρ(y) =qy , −µ−12 qy ; q∞t1µ−12 y , −t−11 y ; q∞;=qy , −µ−12 qy ; q∞−t−12 y , t2µ−12 y ; q∞at x, x′ = {qs, −µ1qs} and vice versa, respectively. The squared norm isd2x =q, q, −µ1, −µ2, −qµ−11 , −qµ−12 ; q∞−t1, −t2, t1µ−11 , t2µ−11 , t1µ−12 , t2µ−12 ; q∞·t1µ−11 x, t2µ−11 x; q∞qx, −µ−11 qx ; q∞|x|−1 ;=q, q, −µ1, −µ2, −qµ−11 , −qµ−12 ; q∞−t−11 , −t−12 , µ1t−11 , µ1t−12 , µ2t−11 , µ2t−12 ; q∞·−t−11 x, −t−12 x; q∞qx, −µ−11 qx ; q∞|x|−1for x = qs and for x = −µ1qs, respectively.The functions (29)–(30) are self-dual and belong to classical biorthogonal rationalfunctions [23–27].

It is interesting to compare the biorthogonality relation (28) with theorthogonality property for the big q-Jacobi polynomials [28], which live at the same ter-minating 3ϕ2-level.6. Concluding RemarksIn view of (11), it is natural to introduce operators of the forma = α(s) −β(s) e∂, a+ = α(s) −e−∂β(s)with two arbitrary functions α(s) and β(s) and to satisfy the commutation rule a a+ −qa+a = 1.

The result isα(s + 1) = qα(s) ,(1 −q)α2(s) + β2(s) −qβ2(s −1) = 1and we can choose α(s) = ε qs and β2(s) = ε2 (qs+1 −γ)(qs −δ) with (1 −q)γδε2 = 1.Since(a+ψ, χ) −(ψ, aχ) =Xs∆[β(s −1) ψ∗(s −1) χ(s)] ,7

the corresponding operators are adjoint for the two different cases considered in [7] and inthis Letter with 0 < q < 1 and q > 1, respectively.For β = constant we can trya = e∂e∂−α(s), a+ =e−∂−α(s)e−∂and obtain aa+ −qa+a = 1 −q, whenα2(s + 1) = qα2(s) , α(s + 2) = qα(s) ,which is satisfied for α = ε qs/2. This case has been considered in [5].Finally, the operatorsa = ε eγ∂α(s) + e−γ∂β(s)α(s) −β(s), a+ = ε α(s)e−γ∂+ β(s)eγ∂α(s) −β(s)obey the q-commutation rule provided that α(s)β(s) = ±1 and α(s + 2γ) = q−1α(s).Therefore, α = q−s for γ = 1/2 and ε2 = q1/2(1 −q)−1 ( cf.

[3] ).We can also introduce the operatorsa = α−1(s) −ε β−1(s) e∂, a+ = α(s) −ε e∂β(s)and obtain aa+ −qa+a = 1 −q ifα(s + 1) = qα(s) , β(s + 2) = qβ(s) ,so α = qs and β = qs/2. This leads to the Rogers–Szeg¨o polynomials [13] orthogonal onthe unit circle ( see [1,6] ).References1.

Macfarlane, A.J., J. Phys. A: Math.

Gen. 22, 4581 (1989).2. Biedenharn, L.C., J. Phys.

A: Math. Gen. 22, L873 (1989).3.

Atakishiyev, N.M. and Suslov, S.K., Teor. i Matem.

Fiz. 85, 64 (1990).4.

Kulish, P.P. and Damaskinsky, E.V., J. Phys.

A: Math. Gen. 23, L415 (1990).5.

Atakishiyev, N.M. and Suslov, S.K., Teor. i Matem.

Fiz. 87, 154 (1991).6.

Floreanini, R. and Vinet, L., Lett. Math.

Phys. 22, 45 (1991).7.

Askey, R. and Suslov, S.K., ‘The q-Harmonic Oscillator and an Analog of the CharlierPolynomials’, Preprint No. 5613/1, Kurchatov Institute, Moscow 1993; J. Phys.

A:Math. Gen., submitted.8.

Rogers, L.J., Proc. London Math.

Soc. 25, 318 (1894).8

9. Askey, R. and Ismail, M.E.H., in Studies in Pure Mathematics ( P. Erd¨os, ed.

),Birkh¨auser, Boston, Massachusetts, 1983, p. 55.10. Stieltjes, T.J., Recherches sur les Fractions Continues, Annales de la Facult´e des Sci-ences de Toulouse, 8 (1894) 122 pp., 9 (1895), 47 pp.

Reprinted in Oeuvres Compl´etes,vol. 2.11.

Wigert S., Arkiv f¨or Matematik, Astronomi och Fysik, 17(18), 1 (1923).12. Al-Salam, W.A.

and Carlitz, L., Math. Nachr.

30, 47 (1965).13. Szeg¨o, G., Collected Papers, Vol.

1 ( R. Askey, ed. ), Birkh¨auser, Basel, 1982, p. 795.14.

Chihara, T.S., An Introduction to Orthogonal Polynomials, Gordon and Breach, NewYork, 1978.15. Gasper, G. and Rahman, M., Basic Hypergeometric Series, Cambridge Univ.

Press,Cambridge, 1990.16. Nikiforov, A.F.

and Suslov, S.K., Lett. Math.

Phys. 11, 27 (1986).17.

Suslov, S.K., Lett. Math.

Phys. 14, 77 (1987).18.

Suslov, S.K., Russian Math. Surveys, London Math.

Soc. 44, 227 (1989).19.

Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B., Classical Orthogonal Polynomials ofa Discrete Variable, Springer-Verlag, Berlin, Heidelberg, 1991.20. Wiener, N., The Fourier Integral and Certain of Its Applications, Cambridge Univer-sity Press, Cambridge, 1933.21.

Askey, R., Atakishiyev, N.M., and Suslov, S.K., ‘Fourier Transformations for DifferenceAnalogs of the Harmonic Oscillator’, in: Proceedings of the XV Workshop on HighEnergy Physics and Field Theory, Protvino, Russia, 6–10 July 1992, to appear.22. Askey, R., Atakishiyev, N.M., and Suslov, S.K., ‘An Analog of the Fourier Trans-formations for a q-Harmonic Oscillator’, Preprint No.

5611/1, Kurchatov Institute,Moscow, 1993.23. Wilson, J.A., ‘Hypergeometric Series Recurrence Relations and Some New OrthogonalFunctions’, Ph.

D. Thesis, University of Wisconsin, Madison, Wisc., 1978.24. Wilson, J.A., SIAM J.

Math. Anal.

22, 1147 (1991).25. Rahman, M., Canad.

J. Math.

38, 605 (1986).26. Rahman, M., SIAM J.

Math. Anal.

22, 1430 (1991).27. Rahman, M. and Suslov, S.K., ‘Classical Biorthogonal Rational Functions’, PreprintNo.

5614/1, Kurchatov Institute, Moscow 1993; in Methods of Approximation Theoryin Complex Analysis and Mathematical Physics ( A.A. Gonchar and E.B. Saff, eds.

),Lecture Notes in Mathematics, Vol. 1550, Springer-Verlag, Berlin, 1993, p. 131.28.

Andrews, G. and Askey, R., in Polynˆomes orthogonaux et applications, Lecture Notesin Mathematics, Vol. 1171, Springer-Verlag, Berlin, 1985, p. 36.9


출처: arXiv:9307.207원문 보기

Subscribe to koineu.com

Don’t miss out on the latest issues. Sign up now to get access to the library of members-only issues.
jamie@example.com
Subscribe