The q-Harmonic Oscillator and an Analog of the Charlier polynomials

q-해밍턴 oscillator의 동역학적 유사도 군인 SU_q(1,1)과 SU_q(2)의 구체적인 표현을 얻을 수 있다.

q-boson operators가 갖는 수식에 대하여,

q-포아ソン 연산자의 특성,

q-해밍턴 오실레이터에서 classical Fourier transform의 형태로 유도되는 q-Fourier transformation에 대해 다룬다.





q > 1이 성립되면, q-boson operators가 갖는 수식은 다음과 같이 바뀐다.

q-포아존 연산자

q > 1이 성립될 때의 q-boson 연산자의 특성

q-Fourier transform의 정의와 구체적인 표현에 대해 다룬다.

The q-Harmonic Oscillator and an Analog of the Charlier polynomials

arXiv:math/9307206v1 [math.CA] 9 Jul 1993The q-Harmonic Oscillator and an Analog of the Charlier polynomialsR. Askey† and S. K. Suslov‡Abstract.

A model of a q-harmonic oscillator based on q-Charlier poly-nomials of Al-Salam and Carlitz is discussed. Simple explicit realizationof q-creation and q-annihilation operators, q-coherent states and an ana-log of the Fourier transformation are found.

A connection of the kernel ofthis transform with biorthogonal rational functions is observed.Models of q-harmonic oscillators are being developed in connection with quantumgroups and their various applications ( see, for example, Refs. [1–5]).

The q-analogs ofboson operators were introduced explicitly in Refs. [1,3] and [5], where the correspondingwave functions were found in terms of the continuous q-Hermite polynomials of Rogers [6,7]and in terms of the Stieltjes–Wigert polynomials [8,9], respectively.

Here we introduceone more explicit realization of q-creation and q-annihilation operators with the aid ofq-Charlier polynomials of Al-Salam and Carlitz [10].The q-orthogonal polynomials V an studied by Al-Salam and Carlitz may be consideredas a q-version of the Charlier polynomials cµn(s) ( see, for example, [11,12] ). To emphasizethis analogy we use the notation cµn(x | q) for the Al-Salam and Carlitz polynomials.

Inour notation they can be defined by the three-term recurrence relationµq−n−1cµn+1(x | q) + (1 −qn)q−ncµn−1(x | q) =(µ + q)q−n−1 −xcµn(x | q) ,(1)cµ0(x | q) = 1 , cµ1(x | q) = µ−1(µ + q −qx) . These polynomials are orthogonal∞Xs=0cµm(q−s | q) cµn(q−s | q) ρ(s)q−s = (q; q)nµnδmn(2)with respect to a positive measureρ(s) = (µ; q)∞µsqs2(q, µ; q)s; 0 < µ, q < 1 ,(3)where the usual notations (see [13]) are(a; q)n =n−1Yk=0(1 −aqk) ,(a, b; q)n = (a; q)n(b; q)n ,(4)(a; q)∞= limn→∞(a; q)n .† Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA‡ Russian Scientific Center “Kurchatov Institute”, Moscow 123182, Russia1

The weight function (3) is a solution of the Pearson equation ∆(σρ) = ρτ∇x1 (for details,see [12,14]) with x(s) = q−s, σ(s) = (1 −q−s)(µ −q1−s), σ(s) + τ(s)∇x1(s) = µ. Theexplicit form of the polynomials cµn(x | q) iscµn(x | q) = 2ϕ0(q−n, x; q, q1+n/µ), x = q−s . (5)For the definition of the basic hypergeometric function 2ϕ0 , see [13].

In the limit q →1 iteasy to see from (1) or (5) thatlimq→1 c(1−q)µn(q−s | q) = 2F0(−n, −s; −1/µ) = cµn(s) . (6)This justifies our notation for the Al-Salam and Carlitz polynomials.The polynomials cµn(x | q) give us the possibility to introduce a new model of a q-oscillator.

We can define a q-version of the wave functions of harmonic oscillator asψn(s) = d−1n q−s2 ρ12 (s) cµn(q−s | q) ,(7)where d2n = (q; q)n/µn. These q-wave functions satisfy the orthogonality relation∞Xs=0ψn(s) ψm(s) = δnm .

(8)The q-annihilation a and q-creation a+ operators have the following explicit forma =(1 −q)−12hµ12 qs −p(1 −qs+1)(1 −µqs)e∂si,(9)a+ =(1 −q)−12hµ12 qs −e−∂sp(1 −qs+1)(1 −µqs)i,where ∂s ≡dds, eα∂sf(s) = f(s + α). They satisfy the q-commutational ruleaa+ −qa+a = 1(10)and act on the q-wave functions defined in (7) byaψn = e12nψn−1, a+ψn = e12n+1ψn+1 ,(11)whereen = 1 −qn1 −q .In this model of the q-oscillator equations (11) are equivalent to difference-differentiationformulasµqs∆cµn(x | q) = (qn −1) cµn−1(x | q) ,qs∇[ρ(s)cµn(x | q)] = ρ(s) cµn+1(x | q) ,2

respectively. Here ∆f(s) = ∇f(s + 1) = f(s + 1) −f(s) and x = q−s.

In view of (6) thefunctions ψn(s) converge in the limit q →1−to the wave functions of the discrete modelof the linear harmonic oscillator considered in [15].The q-Hamiltonian H = a+a acts on the wave functions (7) asHψn = enψn(12)and has the following explicit formH = (1 −q)−1µq2s + (1 −qs)(1 −µqs−1)−(13)µ12 qsp(1 −qs+1)(1 −µqs)e∂s −µ12 qs−1p(1 −qs)(1 −µqs−1e−∂s.By factorizing the Hamiltonian ( or the difference equation for the Al-Salam and Carlitzpolynomials ) we arrive at the explicit form (9) for the q-boson operators.Since a+a = H, the relation (10) can be written in the equivalent form[a, a+] = 1 −(1 −q)H ≡qN . (14)The operatorN =1log q log[1 −(1 −q)H](15)can be considered as the number operator, since[a, N] = a,[N, a+] = a+ .

(16)From these relations one can obtain the equations (11) and the spectrum (12) of theq-Hamiltonian in abstract form. The q-wave functions areψn(s) = cna+n ψ0(s) ,a ψ0(s) = 0 ,where cn = (en!

)−1/2 and en! = e1e2 .

. .

en.For the model of the q-oscillator under discussion we can construct explicitly q-coherentstates and an analog of the Fourier transformation. For the coherent states | α⟩defined bya | α⟩= α | α⟩,⟨α|α⟩= 1 ,| α⟩= fα∞Xn=0αnψn(s)(en!

)1/2 ,(17)fα =(1 −q) | α|2; q 12∞,(1 −q) | α|2 < 1we can write| α⟩= fαρq−s 12∞Xn=0tn(q; q)ncµn(x | q) , t = αµ12 (1 −q)12 . (18)3

With the aid of the generating function [10]∞Xn=0tn(q; q)ncµn(x | q) = (qtx/µ; q)∞(t , qt/µ; q)∞, |t| < 1, |qt/µ| < 1(19)we arrive at the following explicit form for the q-coherent states| α⟩= fαρq−s 12α(1 −q)1/2µ−1/2q1−s; q∞α(1 −q)1/2µ1/2, αq(1 −q)1/2µ−1/2; q∞,(20)where ρ = (q; q)−1∞(qs+1 , µqs; q)∞µsqs2 . These coherent states are not orthogonal⟨α | β⟩=(1 −q) | α |2 , (1 −q) | β |2; q1/2∞((1 −q)α∗β ; q)∞,where ∗denotes the complex conjugate.To define an analog of the Fourier transform we can consider, following Wiener’sapproach to the classical Fourier transform [16] ( see also [17,18] ), the kernel of the formKt(s, p) =∞Xn=0tnψn(s) ψn(p)(21)=ρ(s)ρ(p)q−s−p 12∞Xn=0(µt)n(q; q)ncµn(q−s | q) cµn(q−p | q) .The series can be summed with the aid of the bilinear generating function by Al-Salamand Carlitz [10]∞Xn=0cµ1n (x | q) cµ2n (y | q)tn(q; q)n= (qtx/µ1 , qty/µ2; q)∞(t , qt/µ1 , qt/µ2; q)∞· 3ϕ2x , y , tqtx/µ1, qty/µ2; q, q2tµ1µ2.

(22)The answer isKt(s, p) =ρ(s)ρ(p)q−s−p 12 (tq1−s , tq1−p ; q)∞(qt , qt , µt; q)∞· 3ϕ2 q−s , q−p , µttq1−s , tq1−p ; q, q2tµ. (23)The q-wave functions (7) are eigenfunctions of the “discrete q-Fourier transform”,imψm(s) =∞Xp=0Ki(s, p) ψm(p) .

(24)4

The orthogonality relation of the kernel,∞Xp=0Ki(s, p) K∗i (s′, p) = δss′ ,(25)implies the orthogonality of the rational functions (23). In view of (6) in the limit q →1−we get the “discrete Fourier transform” considered in [17].Similarly, with the aid of the bilinear generating function (22) and the orthogonalityproperty of the Wall polynomials, which are dual to the polynomials (5), one can obtainthe biorthogonality relation∞Xs=0um(s) vn(s) ρ(s)q−s = d2nδmn(26)withρ(s) =µ2t1 , µ2t2 ; qs(q, µ2 ; q)sµs1qsandd2n = (t1, t2 ; q)∞(µ1, µ2 ; q)∞·(q, µ1 ; q)nµ1t1 , µ1t2 ; qnµ−n2for the 3ϕ2-rational functions of the formum(s) = 3ϕ2q−m , q−s , t1t1µ1q1−m , t1µ2q1−s ; q, q2t2;(27)vn(s) = un(s)|t1↔t2 ;t1t2 = µ1µ2 .These functions are self-dual.They belong to classical biorthogonal rational functions[19,20].We have considered here the explicit form of q-boson operators which satisfy thecommutational rule (10) when 0 < q < 1.

The case q > 1 is also interesting. It leads toanother family of Al-Salam and Carlitz polynomials.It is evident that for the models of the q-oscillator under discussion one can readilyconstruct dynamical symmetry group SUq(1, 1) [4] and write an explicit realization forirreducible representations |j, m⟩q = ψj+m(s)ψj−m(s′) of the groupSUq(2) [1,2].5

REFERENCES1. Macfarlane, A.J.

(1989) J. Phys. A: Math.

Gen., Vol. 22, p. 4581–4588.2.

Biedenharn, L.C. (1989) J. Phys.

A: Math. Gen., Vol.

22, p. L873–L878.3. Atakishiyev, N.M. and Suslov, S.K.

(1990) Teor. i Matem.

Fiz., Vol. 85, No.

1, p.64–73.4. Kulish, P.P.

and Damaskinsky, E.V. (1990) J. Phys.

A: Math. Gen., Vol.

23, p. L415–L419.5. Atakishiyev, N.M. and Suslov, S.K.

(1991) Teor. i Matem.

Fiz., Vol. 87, No.

1, p.154–156.6. Rogers, L.J.

(1894) Proc. London Math.

Soc., Vol. 25, p. 318–343.7.

Askey, R. and Ismail, M.E.H. (1983) In:Studies in Pure Mathematics ( P. Erd¨os, ed.

),Birkh¨auser, Boston, Massachusetts, p. 55–78.8. Stieltjes, T.J. Recherches sur les Fractions Continues, Annales de la Facult´e des Sci-ences de Toulouse, 8 (1894) 122 pp., 9 (1895), 47 pp.

Reprinted in Oeuvres Compl´etes,vol. 2.9.

Wigert S. (1923) Arkiv f¨or Matematik, Astronomi och Fysik, Bd. 17, No.

18, p. 1–15.10. Al-Salam, W.A.

and Carlitz, L. (1965) Math. Nachr., Bd.

30, S. 47–61.11. Chihara, T.S.

(1978) An Introduction to Orthogonal Polynomials. Gordon and Breach,New York.12.

Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B. (1991) Classical Orthogonal Polyno-mials of a Discrete Variable.

Springer-Verlag, Berlin, Heidelberg.13. Gasper, G. and Rahman, M. (1990) Basic Hypergeometric Series, Cambridge Univ.Press, Cambridge.14.

Suslov, S.K. (1989) Russian Math.

Surveys, London Math. Soc., Vol.

44, No. 2, p.227–278.15.

Atakishiyev, N.M. and Suslov, S.K. (1989) A Model of the Harmonic Oscillator on theLattice.

In: Contemporary Group Analysis: Methods and Applications, Baku, p. 17–21[ in Russian ].16. Wiener, N. (1933) The Fourier Integral and Certain of Its Applications.

CambridgeUniversity Press, Cambridge.17. Askey, R., Atakishiyev, N.M., and Suslov, S.K.

Fourier Transformations for DifferenceAnalogs of the Harmonic Oscillator, to appear18. Askey, R., Atakishiyev, N.M., and Suslov, S.K.

An Analog of the Fourier Transforma-tions for a q-Harmonic Oscillator. Preprint No.5611/1, Kurchatov Institute, Moscow,1993.19.

Wilson, J.A. (1991) SIAM J.

Math. Anal., Vol.

22(4), p. 1147–1155.20. Rahman, M. and Suslov, S.K.

Classical Biorthogonal Rational Functions, submitted.6


출처: arXiv:9307.206원문 보기

Subscribe to koineu.com

Don’t miss out on the latest issues. Sign up now to get access to the library of members-only issues.
jamie@example.com
Subscribe