Topic

9404

A collection of 3 issues

PROBLEM OF METRIZABILITY FOR THE DYNAMICAL SYSTEMS

네이던 동역학 시스템이 정규 쉬프트를 수용할 때 메트리화 가능성을 조사하는 문제이다. 시스템의 미분 방정식은 형태로 주어진다. 1)¨r = F(r, ˙r) 이러한 시스템에 대한 일반적인 보넷 변환은 이차 물체의 운동에서 유도된다. 또한 이는 Riemannian 공간에서 일반화된 보넷 전환이다. 네이던 동역학 시스템과 그 일반화를 연결하는 문제가 제기되었다. 2) 동역학 시스템의 미분
13 min read

MULTIDIMENSIONAL DYNAMICAL SYSTEMS

이 논문은 유동계에 대한 연구로서, 일반적으로 이차형태의 방정식인 유동계의 역학적 성질을 분석하고 있다. 유동계는 운동량 conservation과 에너지 보존의 특성을 가지고 있으며, 이러한 특성으로 인해 운동량과 에너지를 보존하는 역학적 시스템이다. 논문에서는, 유동계가 정상적인 동작을 유지하기 위한 기본 조건으로서, 이차형태의 방정식인 유동계의 역학적 성질이 충족되어야 한다는 것을 밝히고 있다. 또한 논문에서는, 이러한
8 min read

Subscribe to koineu.com

Don’t miss out on the latest issues. Sign up now to get access to the library of members-only issues.
jamie@example.com
Subscribe