Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method

Reading time: 2 minute
...

📝 Original Info

  • Title: Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method
  • ArXiv ID: 1909.03292
  • Date: 2020-06-12
  • Authors: Prabhat Kumar, Jan S. Frouws and Matthijs Langelaar

📝 Abstract

In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new density-based topology optimization approach using Darcy's law in conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established using Darcy's law and the associated PDE is solved using the finite element method. Further, the obtained pressure field is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical examples related to fluidic pressure loaded stiff structures and small-deformation compliant mechanisms are solved. For the structures, compliance is minimized, whereas for the mechanisms a multi-criteria objective is minimized with given resource constraints.

📄 Full Content

📸 Image Gallery

Ex2WLconti-eps-converted-to.png Ex2wL-eps-converted-to.png Ex3WLconti-eps-converted-to.png Ex3wL-eps-converted-to.png sec1fig1a-eps-converted-to.png sec1fig1b-eps-converted-to.png sec2fig1-eps-converted-to.png sec2fig2a-eps-converted-to.png sec2fig2b-eps-converted-to.png sec2fig2c-eps-converted-to.png sec2fig3-eps-converted-to.png sec2fig4-eps-converted-to.png sec2fig5-eps-converted-to.png sec3fig1-eps-converted-to.png sec3fig2a-eps-converted-to.png sec3fig2b-eps-converted-to.png sec3fig3a-eps-converted-to.png sec3fig3b-eps-converted-to.png sec3fig3c-eps-converted-to.png sec3fig3d-eps-converted-to.png sec4CM1deformed-eps-converted-to.png sec4CM2deformed-eps-converted-to.png sec4fig1a-eps-converted-to.png sec4fig1c-eps-converted-to.png sec4fig1d-eps-converted-to.png sec4fig2a-eps-converted-to.png sec4fig2b-eps-converted-to.png sec4fig2c-eps-converted-to.png sec4fig2d-eps-converted-to.png sec4fig3a-eps-converted-to.png sec4fig3b-eps-converted-to.png sec4fig3c-eps-converted-to.png sec4fig3d-eps-converted-to.png sec4fig5a-eps-converted-to.png sec4fig5b-eps-converted-to.png sec4fig5c-eps-converted-to.png sec4fig5d-eps-converted-to.png sec4fig6a-eps-converted-to.png sec4fig6b-eps-converted-to.png sec4fig6c-eps-converted-to.png sec4fig6d-eps-converted-to.png sec4fig6e-eps-converted-to.png sec4fig6f-eps-converted-to.png sec4fig7a-eps-converted-to.png sec4fig7b-eps-converted-to.png sec4fig7c-eps-converted-to.png sec4fig7d-eps-converted-to.png sec4fig8a-eps-converted-to.png sec4fig8b-eps-converted-to.png sec4fig8c-eps-converted-to.png sec4fig8d-eps-converted-to.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut