Approximate counting CSP seen from the other side

Reading time: 2 minute
...

📝 Original Info

  • Title: Approximate counting CSP seen from the other side
  • ArXiv ID: 1907.07922
  • Date: 2020-05-15
  • Authors: Andrei A. Bulatov and Stanislav Zivny

📝 Abstract

In this paper we study the complexity of counting Constraint Satisfaction Problems (CSPs) of the form #CSP($\mathcal{C}$,-), in which the goal is, given a relational structure $\mathbf{A}$ from a class $\mathcal{C}$ of structures and an arbitrary structure $\mathbf{B}$, to find the number of homomorphisms from $\mathbf{A}$ to $\mathbf{B}$. Flum and Grohe showed that #CSP($\mathcal{C}$,-) is solvable in polynomial time if $\mathcal{C}$ has bounded treewidth [FOCS'02]. Building on the work of Grohe [JACM'07] on decision CSPs, Dalmau and Jonsson then showed that, if $\mathcal{C}$ is a recursively enumerable class of relational structures of bounded arity, then assuming FPT $\neq$ #W[1], there are no other cases of #CSP($\mathcal{C}$,-) solvable exactly in polynomial time (or even fixed-parameter time) [TCS'04]. We show that, assuming FPT $\neq$ W[1] (under randomised parametrised reductions) and for $\mathcal{C}$ satisfying certain general conditions, #CSP($\mathcal{C}$,-) is not solvable even approximately for $\mathcal{C}$ of unbounded treewidth; that is, there is no fixed parameter tractable (and thus also not fully polynomial) randomised approximation scheme for #CSP($\mathcal{C}$,-). In particular, our condition generalises the case when $\mathcal{C}$ is closed under taking minors.

📄 Full Content

...(본문 내용이 길어 생략되었습니다. 사이트에서 전문을 확인해 주세요.)

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut