Approximate Query Processing using Deep Generative Models

Reading time: 2 minute
...

๐Ÿ“ Original Info

  • Title: Approximate Query Processing using Deep Generative Models
  • ArXiv ID: 1903.10000
  • Date: 2019-11-20
  • Authors: Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, Gautam Das

๐Ÿ“ Abstract

Data is generated at an unprecedented rate surpassing our ability to analyze them. The database community has pioneered many novel techniques for Approximate Query Processing (AQP) that could give approximate results in a fraction of time needed for computing exact results. In this work, we explore the usage of deep learning (DL) for answering aggregate queries specifically for interactive applications such as data exploration and visualization. We use deep generative models, an unsupervised learning based approach, to learn the data distribution faithfully such that aggregate queries could be answered approximately by generating samples from the learned model. The model is often compact - few hundred KBs - so that arbitrary AQP queries could be answered on the client side without contacting the database server. Our other contributions include identifying model bias and minimizing it through a rejection sampling based approach and an algorithm to build model ensembles for AQP for improved accuracy. Our extensive experiments show that our proposed approach can provide answers with high accuracy and low latency.

๐Ÿ“„ Full Content

๐Ÿ“ธ Image Gallery

110809_familychineseoahu_en_00317_2040x1360-small-13.jpeg 110809_familychineseoahu_en_02016_981x654-small-11.jpeg 110809_familychineseoahu_en_02390_2880x1921-small-9.jpeg VAEDepth.png VAEInputEncoding.png VAELatentDimension.png VAEModelQuality.png VAEOutputEncoding.png VAERejectionSampling.png VAERejectionSampling_new.png VAESelectivity.png allDLModels.png allDLModels_new.png fig4-230.png fig4-small-231.png mt-07EEAA23-F087-48C1-B6D0-04F3123EF6C7-222.jpg mt-28415F3F-1E88-49CA-9288-73C5EC0E73AB-225.jpg mt-28D0C904-1282-4458-A229-93C6451C7CE8-223.jpg mt-2B1EC37A-AC99-407C-80A1-BFA6DAD07337-226.jpg mt-6574C108-BEFF-4758-89D5-39BDC991689B-217.jpg mt-948A42DF-8C2D-41B9-8BF0-4A87F169BBA1-221.jpg mt-A672DE80-9545-4D04-8F0A-810E1439CC90-218.jpg mt-CC8F34D9-65B4-4E66-85DF-0F5DC90B1F33-220.jpg mt-E2298BC6-2981-4132-B2DD-DF3EFA1F2546-227.jpg mt-E8BB6D9E-506A-42C8-A335-455FEDC2E11C-219.jpg mt-F39BAD95-4ABB-4F39-A54F-1C6A46BCA6C5-224.jpg nonBinaryToBinary.png oneVsManyVAE.png oneVsManyVAEDPAlgo.png pasted-image-426.png pasted-image-430.png pasted-image-small-427.png pasted-image-small-431.png preview-micro.jpg preview-web.jpg preview.jpg sampling_vae.png sampling_vae_new.png st-5EC13E0B-0733-428D-A9F3-1C97A08B8ABC-478.jpg st-7D643FA7-9A1F-45A5-A30F-7828735F3C35-205.jpg st-7D643FA7-9A1F-45A5-A30F-7828735F3C35-524.jpg st-8B3BD799-9FA2-412E-B6C6-ECA033597229-477.jpg training_vae.png training_vae_new.png tsne.png twoPhasedApproach.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut