Neural Turtle Graphics for Modeling City Road Layouts

Reading time: 2 minute
...

๐Ÿ“ Original Info

  • Title: Neural Turtle Graphics for Modeling City Road Layouts
  • ArXiv ID: 1910.02055
  • Date: 2019-10-07
  • Authors: Hang Chu, Daiqing Li, David Acuna, Amlan Kar, Maria Shugrina, Xinkai Wei, Ming-Yu Liu, Antonio Torralba, Sanja Fidler

๐Ÿ“ Abstract

We propose Neural Turtle Graphics (NTG), a novel generative model for spatial graphs, and demonstrate its applications in modeling city road layouts. Specifically, we represent the road layout using a graph where nodes in the graph represent control points and edges in the graph represent road segments. NTG is a sequential generative model parameterized by a neural network. It iteratively generates a new node and an edge connecting to an existing node conditioned on the current graph. We train NTG on Open Street Map data and show that it outperforms existing approaches using a set of diverse performance metrics. Moreover, our method allows users to control styles of generated road layouts mimicking existing cities as well as to sketch parts of the city road layout to be synthesized. In addition to synthesis, the proposed NTG finds uses in an analytical task of aerial road parsing. Experimental results show that it achieves state-of-the-art performance on the SpaceNet dataset.

๐Ÿ“„ Full Content

๐Ÿ“ธ Image Gallery

Istanbul.jpg Istanbul.png Khartoum_thick.jpg MexicoCity.jpg MexicoCity.png NewYork.jpg NewYork.png Paris_thick.jpg Shanghai_thick.jpg Vegas_thick.jpg beijing1_12_06_1024_enhance_lr.jpg beijing1_14_05_1024_enhance_lr.jpg beijing1_15_05_1024_enhance_lr.jpg beijing1_16_03_1024_enhance_lr.jpg beijing1_det_enhance2.jpg beijing1_enhance2.jpg city18_4k_final_lr.jpg city7_4k_final_lr.jpg draw.png final.png final_enhance.png gt1.png hyper_fid.png hyper_time.png hyper_xy.png ntg1.png ntg_graph.jpg ntg_model.jpg per_city.png phoenix2_12_09_1024_enhance_lr.jpg phoenix2_14_01_1024_enhance_lr.jpg phoenix2_15_08_1024_enhance_lr.jpg phoenix2_16_01_1024_enhance_lr.jpg phoenix2_det_enhance2.jpg phoenix2_enhance2.jpg step_0.png step_0_enhance.png step_20.png step_20_enhance.png step_40.png step_40_enhance.png step_60.png step_60_enhance.png step_80.png step_80_enhance.png teaser2.jpg

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut