S&CNet: Monocular Depth Completion for Autonomous Systems and 3D Reconstruction

Reading time: 1 minute
...

📝 Original Info

  • Title: S&CNet: Monocular Depth Completion for Autonomous Systems and 3D Reconstruction
  • ArXiv ID: 1907.06071
  • Date: 2019-08-30
  • Authors: Lei Zhang, Weihai Chen, Chao Hu, Xingming Wu, Zhengguo Li

📝 Abstract

Dense depth completion is essential for autonomous systems and 3D reconstruction. In this paper, a lightweight yet efficient network (S\&CNet) is proposed to obtain a good trade-off between efficiency and accuracy for the dense depth completion. A dual-stream attention module (S\&C enhancer) is introduced to measure both spatial-wise and the channel-wise global-range relationship of extracted features so as to improve the performance. A coarse-to-fine network is designed and the proposed S\&C enhancer is plugged into the coarse estimation network between its encoder and decoder network. Experimental results demonstrate that our approach achieves competitive performance with existing works on KITTI dataset but almost four times faster. The proposed S\&C enhancer can be plugged into other existing works and boost their performance significantly with a negligible additional computational cost.

📄 Full Content

📸 Image Gallery

1.png 10.png 10_far.png 10_mid.png 10_near.png 1_far.png 1_mid.png 1_near.png 5.png 5_far.png 5_mid.png 5_near.png GLOBAL_MODLE.png NEW_SC_MODULE.png clip_colored_gt.png clip_colored_raw.png clip_dense.png clip_rgb.png coarse-to-fine.png coarse-to-fine_new.png colorbar.png compare_img.png conpare_deeplidar.png conpare_ours.png conpare_sparse.png depth.png far.png feature_map_110.png feature_map_160.png feature_map_30.png feature_map_img.png img.png mid.png near.png ori.png pic1.png pic2.png rgb.png rgb_depth.png sparse-dense-new.png sparse-dense-ori.png sparse-to-dense-img.png sparse-to-dense-new.png sparse-to-dense-ori.png toy_a.png toy_b.png toy_c.png toy_d.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut