Domain-Specific Foundation Model Improves AI-Based Analysis of Neuropathology

Reading time: 5 minute
...

📝 Original Info

  • Title: Domain-Specific Foundation Model Improves AI-Based Analysis of Neuropathology
  • ArXiv ID: 2512.05993
  • Date: 2025-11-30
  • Authors: Ruchika Verma, Shrishtee Kandoi, Robina Afzal, Shengjia Chen, Jannes Jegminat, Michael W. Karlovich, Melissa Umphlett, Timothy E. Richardson, Kevin Clare, Quazi Hossain, Jorge Samanamud, Phyllis L. Faust, Elan D. Louis, Ann C. McKee, Thor D. Stein, Jonathan D. Cherry, Jesse Mez, Anya C. McGoldrick, Dalilah D. Quintana Mora, Melissa J. Nirenberg, Ruth H. Walker, Yolfrankcis Mendez, Susan Morgello, Dennis W. Dickson, Melissa E. Murray, Carlos Cordon-Cardo, Nadejda M. Tsankova, Jamie M. Walker, Diana K. Dangoor, Stephanie McQuillan, Emma L. Thorn, Claudia De Sanctis, Shuying Li, Thomas J. Fuchs, Kurt Farrell, John F. Crary, Gabriele Campanella

📝 Abstract

Foundation models have transformed computational pathology by providing generalizable representations from large-scale histology datasets. However, existing models are predominantly trained on surgical pathology data, which is enriched for non-nervous tissue and overrepresents neoplastic, inflammatory, metabolic, and other non-neurological diseases. Neuropathology represents a markedly different domain of histopathology, characterized by unique cell types (neurons, glia, etc.), distinct cytoarchitecture, and disease-specific pathological features including neurofibrillary tangles, amyloid plaques, Lewy bodies, and pattern-specific neurodegeneration. This domain mismatch may limit the ability of general-purpose foundation models to capture the morphological patterns critical for interpreting neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and cerebellar ataxias. To address this gap, we developed NeuroFM, a foundation model trained specifically on whole-slide images of brain tissue spanning diverse neurodegenerative pathologies. NeuroFM demonstrates superior performance compared to general-purpose models across multiple neuropathology-specific downstream tasks, including mixed dementia disease classification, hippocampal region segmentation, and neurodegenerative ataxia identification encompassing cerebellar essential tremor and spinocerebellar ataxia subtypes. This work establishes that domain-specialized foundation models trained on brain tissue can better capture neuropathology-specific features than models trained on general surgical pathology datasets. By tailoring foundation models to the unique morphological landscape of neurodegenerative diseases, NeuroFM enables more accurate and reliable AI-based analysis for brain disease diagnosis and research, setting a precedent for domain-specific model development in specialized areas of digital pathology.

💡 Deep Analysis

Figure 1

📄 Full Content

Domain-Specific Foundation Model Improves AI-Based Analysis of Neuropathology Ruchika Verma1,2*, Shrishtee Kandoi3,4, Robina Afzal3,4, Shengjia Chen1,2, Jannes Jegminat1,2, Michael W. Karlovich3,4, Melissa Umphlett4, Timothy E. Richardson4, 21, Kevin Clare4, Quazi Hossain4, Jorge Samanamud4, Phyllis L. Faust5, Elan D. Louis10, 11, Ann C. McKee12, 13, 14, 15, 16, Thor D. Stein12, 13, 15, 16, Jonathan D. Cherry15, 16, 12, 14, 13, 18, Jesse Mez15, 16, 14, Anya C. McGoldrick19, 20, Dalilah D. Quintana Mora19,20, Melissa J. Nirenberg19,3, 20, 21, Ruth H. Walker19,3, 20, 21, Yolfrankcis Mendez19, 20, Susan Morgello3, 4, 7, Dennis W. Dickson8, Melissa E. Murray8, Carlos Cordon-Cardo6, Nadejda M. Tsankova4, 7, Jamie M. Walker4, 7, 21, Diana K. Dangoor4, 9, 1, 7, 20, 21, Stephanie McQuillan4, 20, Emma L. Thorn4, 20, Claudia De Sanctis4, 1, 7, 9, 20, 21, Shuying Li22, 17, Thomas J. Fuchs1,2, Kurt Farrell4,1, John F. Crary1,4,7,9,20,21*, Gabriele Campanella1,2* 1Windreich Department of AI and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 2Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 3Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 4Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 5Department of Pathology and Cell Biology, Columbia University, New York, NY, USA. 6Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. 7Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 8Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA. 9Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 10Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA. 11Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. 12VA Boston Healthcare System, Boston, MA, USA. 13Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA. 14Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA. 15Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA. 16Boston University Chronic Traumatic Encephalopathy Center, Boston University Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA. 17Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA. 18Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA. 19Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA. 1 arXiv:2512.05993v1 [cs.CV] 30 Nov 2025 20Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 21Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 22Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA. *Corresponding author(s). E-mail(s): ruchika@mssm.edu; john.crary@mountsinai.org; gabriele.campanella@mssm.edu; Abstract Foundation models have transformed computational pathology by providing generalizable representa- tions from large-scale histology datasets. However, existing models are predominantly trained on surgical pathology data, which is enriched for non-nervous tissue and overrepresents neoplastic, inflammatory, metabolic, and other non-neurological diseases. Neuropathology represents a markedly different domain of histopathology, characterized by unique cell types (neurons, glia, etc.), distinct cytoarchitecture, and disease-specific pathological features including neurofibrillary tangles, amyloid plaques, Lewy bodies, and pattern-specific neurodegeneration. This domain mismatch may limit the ability of general-purpose foundation models to capture the morphological patterns critical for interpreting neurodegenerative dis- eases such as Alzheimer’s disease, Parkinson’s disease, and cerebellar ataxias. To address this gap, we developed NeuroFM, a foundation model trained specifically on whole-slide images of brain tissue spanning diverse neurodegenerative pathologies. NeuroFM demonstrates superior performance compared to general-purpose models across multiple neuropathology-specific downstream tasks, including mixed dementia disease classification, hippocampal region segmentation, and neurodegenerative ataxia identifi- cation encompassing cerebellar essential tremor and spinocerebellar ataxia subtypes. This work establishes that domain-specialized foundation models trained on brain tissue can better capture neuropathology- specific features than models trained on general surgical pathology datasets. By tailoring foundation m

📸 Image Gallery

Architecture_ablation.png Boxplots_Alzheimer_Disease_Neuropathologic_Change.png Boxplots_Alzheimers_Disease_Neuropathologic_Change__Region_and_Stain_Specific_.png Boxplots_Brain_Atrophy.png Boxplots_Brain_Tumors.png Boxplots_Cerebrovascular_Pathology.png Boxplots_Cerebrovascular_Pathology__Region_and_Stain_Specific_.png Boxplots_Coarse_Segmentation.png Boxplots_Frontotemporal_Dementia__FTLD__Pathology.png Boxplots_Frontotemporal_Dementia__FTLD__Pathology__Region_and_Stain_Specific_.png Boxplots_Neurodegeneration_Ataxia.png Boxplots_Neurodegeneration_Braak_Staging.png Boxplots_Neurodegeneration_Mixed_Dementia.png Boxplots_Neuroinfection_HIV.png Boxplots_Regression.png Boxplots_Regression__Region_and_Stain_Specific_.png Coarse_seg_results.png Data_ablation.png Downstream_Tasks_ordered_Heatmaps_with_overall_ranking_categories.png Geographical_map.png Geographical_map_sites.png Heatmap_Alzheimer_Disease_Neuropathologic_Change.png Heatmap_Alzheimers_Disease_Neuropathologic_Change__Region_and_Stain_Specific_.png Heatmap_Brain_Atrophy.png Heatmap_Brain_Tumors.png Heatmap_Cerebrovascular_Pathology.png Heatmap_Cerebrovascular_Pathology__Region_and_Stain_Specific_.png Heatmap_Coarse_Segmentation.png Heatmap_Frontotemporal_Dementia__FTLD__Pathology.png Heatmap_Frontotemporal_Dementia__FTLD__Pathology__Region_and_Stain_Specific_.png Heatmap_IHC_Classification_Performance_Across_NACC_Cohort.png Heatmap_Neurodegeneration_Ataxia.png Heatmap_Neurodegeneration_Braak_Staging.png Heatmap_Neurodegeneration_Mixed_Dementia.png Heatmap_Neuroinfection_HIV.png Heatmap_Regression.png Heatmap_Regression__Region_and_Stain_Specific_.png NACC_data.png NeuroFM_Architecture_v2.png NeuroFM_all_wins_combined_2rows.png Ranking_heatmap_Alzheimers_Disease_Neuropathologic_Change_Region_and_Stain_Specific_sorted.png Ranking_heatmap_Alzheimers_Disease_Neuropathologic_Change_sorted.png Ranking_heatmap_Brain_Atrophy_Region_and_Stain_Specific_sorted.png Ranking_heatmap_Brain_Atrophy_sorted.png Ranking_heatmap_Brain_Tumors_sorted.png Ranking_heatmap_Cerebrovascular_Pathology_Region_and_Stain_Specific_sorted.png Ranking_heatmap_Cerebrovascular_Pathology_sorted.png Ranking_heatmap_Coarse_Segmentation.png Ranking_heatmap_Frontotemporal_Dementia_FTLD_Pathology_Region_and_Stain_Specific_sorted.png Ranking_heatmap_Frontotemporal_Dementia_FTLD_Pathology_sorted.png Ranking_heatmap_Neurodegeneration_Ataxia_sorted.png Ranking_heatmap_Neurodegeneration_Braak_Staging_sorted.png Ranking_heatmap_Neurodegeneration_Mixed_Dementia_sorted.png Ranking_heatmap_Neuroinfection_HIV_sorted.png Ranking_heatmap_Regression.png Ranking_heatmap_Regression_Region_and_Stain_Specific.png Statistical_heatmaps_with_colorbar_Alzheimer_Disease_Neuropathologic_Change.png Statistical_heatmaps_with_colorbar_Alzheimers_Disease_Neuropathologic_Change__Region_and_Stain_Specific_.png Statistical_heatmaps_with_colorbar_Brain_Atrophy.png Statistical_heatmaps_with_colorbar_Brain_Tumors.png Statistical_heatmaps_with_colorbar_Cerebrovascular_Pathology.png Statistical_heatmaps_with_colorbar_Cerebrovascular_Pathology__Region_and_Stain_Specific_.png Statistical_heatmaps_with_colorbar_Coarse_Segmentation.png Statistical_heatmaps_with_colorbar_Frontotemporal_Dementia__FTLD__Pathology.png Statistical_heatmaps_with_colorbar_Frontotemporal_Dementia__FTLD__Pathology__Region_and_Stain_Specific_.png Statistical_heatmaps_with_colorbar_Neurodegeneration_Ataxia.png Statistical_heatmaps_with_colorbar_Neurodegeneration_Braak_Staging.png Statistical_heatmaps_with_colorbar_Neurodegeneration_Mixed_Dementia.png Statistical_heatmaps_with_colorbar_Neuroinfection_HIV.png Statistical_heatmaps_with_colorbar_Regression.png Statistical_heatmaps_with_colorbar_Regression__Region_and_Stain_Specific_.png ablation_disease_category_plot.png all_wins_Gigapath.png all_wins_UNI2.png all_wins_Virchow.png all_wins_Virchow2.png architecture_ablation_boxplot.png combined_tasks_checkpoint_ablations.png cross_stain_generalization_boxplot.png data_ablation_boxplot.png data_info_v2.png model_performance_boxplot_with_significance.png model_scale_vs_performance.png performance_by_category_all_encoders.png region_n_stain_NeuroFM_all_wins_combined_2rows.png region_n_stain_model_performance_boxplot_with_significance.png region_n_stain_wins_by_category_comparison.png regiona_n_stain_performance_by_category_all_encoders.png side_by_side_comparison.png wins_by_category_comparison.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut