Deep Research: A Systematic Survey

Reading time: 8 minute
...

📝 Original Info

  • Title: Deep Research: A Systematic Survey
  • ArXiv ID: 2512.02038
  • Date: 2025-11-24
  • Authors: ** Zhengliang Shi¹, Yiqun Chen², Haitao Li³, Weiwei Sun⁴, Shiyu Ni⁵, Yougang Lyu⁶, Run‑Ze Fan⁷, Bowen Jin⁸, Yixuan Weng⁹, Minjun Zhu⁹, Qiujie Xie⁹, Xinyu Guo¹⁰, Qu Yang¹¹, Jiayi Wu¹¹, Jujia Zhao¹², Xiaqiang Tang¹¹, Xinbei Ma¹¹, Cunxiang Wang³, Jiaxin Mao², Qingyao Ai³, Jen‑Tse Huang¹³, Wenxuan Wang², Yue Zhang⁹, Yiming Yang⁴, Zhaopeng Tu¹¹, Zhaochun Ren¹² ¹ Shandong University, ² Renmin University of China, ³ Tsinghua University, ⁴ Carnegie Mellon University, ⁵ UCAS, ⁶ University of Amsterdam, ⁷ University of Massachusetts Amherst, ⁸ University of Illinois Urbana‑Champaign, ⁹ Westlake University, ¹⁰ University of Arizona, ¹¹ Tencent, ¹² Leiden University, ¹³ Johns Hopkins University — **

📝 Abstract

Large language models (LLMs) have rapidly evolved from text generators into powerful problem solvers. Yet, many open tasks demand critical thinking, multi-source, and verifiable outputs, which are beyond single-shot prompting or standard retrieval-augmented generation. Recently, numerous studies have explored Deep Research (DR), which aims to combine the reasoning capabilities of LLMs with external tools, such as search engines, thereby empowering LLMs to act as research agents capable of completing complex, open-ended tasks. This survey presents a comprehensive and systematic overview of deep research systems, including a clear roadmap, foundational components, practical implementation techniques, important challenges, and future directions. Specifically, our main contributions are as follows: (i) we formalize a three-stage roadmap and distinguish deep research from related paradigms; (ii) we introduce four key components: query planning, information acquisition, memory management, and answer generation, each paired with fine-grained sub-taxonomies; (iii) we summarize optimization techniques, including prompting, supervised fine-tuning, and agentic reinforcement learning; and (iv) we consolidate evaluation criteria and open challenges, aiming to guide and facilitate future development. As the field of deep research continues to evolve rapidly, we are committed to continuously updating this survey to reflect the latest progress in this area.

💡 Deep Analysis

Figure 1

📄 Full Content

Deep Research: A Systematic Survey Zhengliang Shi1 Yiqun Chen2 Haitao Li3 Weiwei Sun4 Shiyu Ni5 Yougang Lyu6 Run-Ze Fan7 Bowen Jin8 Yixuan Weng9 Minjun Zhu9 Qiujie Xie9 Xinyu Guo10 Qu Yang11 Jiayi Wu11 Jujia Zhao12 Xiaqiang Tang11 Xinbei Ma11 Cunxiang Wang3 Jiaxin Mao2 Qingyao Ai3 Jen-Tse Huang13 Wenxuan Wang2 Yue Zhang9 Yiming Yang4 Zhaopeng Tu11, Zhaochun Ren12, 1Shandong University 2Renmin University of China 3Tsinghua University 4Carnegie Mellon University 5UCAS 6University of Amsterdam 7University of Massachusetts Amherst 8University of Illinois Urbana-Champaign 9Westlake University 10University of Arizona 11Tencent 12Leiden University 13Johns Hopkins University Abstract: Large language models (LLMs) have rapidly evolved from text generators into powerful problem solvers. Yet, many open tasks demand critical thinking, multi-source, and verifiable outputs, which are beyond single-shot prompting or standard retrieval-augmented generation. Recently, nu- merous studies have explored Deep Research (DR), which aims to combine the reasoning capabilities of LLMs with external tools, such as search engines, thereby empowering LLMs to act as research agents capable of completing complex, open-ended tasks. This survey presents a comprehensive and systematic overview of deep research systems, including a clear roadmap, foundational components, practical implementation techniques, important challenges, and future directions. Specifically, our main contributions are as follows: (i) we formalize a three-stage roadmap and distinguish deep research from related paradigms; (ii) we introduce four key components: query planning, information acquisi- tion, memory management, and answer generation, each paired with fine-grained sub-taxonomies; (iii) we summarize optimization techniques, including prompting, supervised fine-tuning, and agentic reinforcement learning; and (iv) we consolidate evaluation criteria and open challenges, aiming to guide and facilitate future development. As the field of deep research continues to evolve rapidly, we are committed to continuously updating this survey to reflect the latest progress in this area. Corresponding Author Keywords: Deep Research, Large Language Models, Information Retrieval Date: November 13, 2025 Code Repository: https://github.com/mangopy/Deep-Research-Survey Contact: zhengliang.shii@gmail.com chenyiqun990321@ruc.edu.cn z.ren@liacs.leidenuniv.nl arXiv:2512.02038v1 [cs.CL] 24 Nov 2025 Contents 1 Introduction 5 2 Preliminary Concept of Deep Research 6 2.1 What is Deep Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Understanding Deep Research from Three Phases . . . . . . . . . . . . . . . . . . . . 6 2.3 Comparing Deep Research with RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Key Components in Deep Research System 9 3.1 Query Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Parallel Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 Sequential Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.3 Tree-based Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Information Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Retrieval Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 Retrieval Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 Information Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Memory Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.2 Memory Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 Memory Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.4 Memory Forgetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Answer Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Integrating Upstream Information . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.2 Synthesizing Evidence and Maintaining Coherence . . . . . . . . . . . . . . . 25 3.4.3 Structuring Reasoning and Narrative . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.4 Presentation Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Practical Techniques for Optimizing Deep Research Systems 27 4.1 Workflow Prompt Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.1 Deep Research System of Anthropic . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Supervised Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 4.2.1 Strong-to-weak Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 Ite

📸 Image Gallery

page_1.png page_2.png page_3.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut