Geometric implicit neural representations for signed distance functions

Reading time: 1 minute
...

📝 Original Info

  • Title: Geometric implicit neural representations for signed distance functions
  • ArXiv ID: 2511.07206
  • Date: 2025-11-10
  • Authors: ** 제공된 정보에 저자명 및 소속이 명시되지 않았습니다. **

📝 Abstract

\textit{Implicit neural representations} (INRs) have emerged as a promising framework for representing signals in low-dimensional spaces. This survey reviews the existing literature on the specialized INR problem of approximating \textit{signed distance functions} (SDFs) for surface scenes, using either oriented point clouds or a set of posed images. We refer to neural SDFs that incorporate differential geometry tools, such as normals and curvatures, in their loss functions as \textit{geometric} INRs. The key idea behind this 3D reconstruction approach is to include additional \textit{regularization} terms in the loss function, ensuring that the INR satisfies certain global properties that the function should hold -- such as having unit gradient in the case of SDFs. We explore key methodological components, including the definition of INR, the construction of geometric loss functions, and sampling schemes from a differential geometry perspective. Our review highlights the significant advancements enabled by geometric INRs in surface reconstruction from oriented point clouds and posed images.

💡 Deep Analysis

📄 Full Content

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut