FractalBench: Diagnosing Visual-Mathematical Reasoning Through Recursive Program Synthesis

Reading time: 1 minute
...

📝 Original Info

  • Title: FractalBench: Diagnosing Visual-Mathematical Reasoning Through Recursive Program Synthesis
  • ArXiv ID: 2511.06522
  • Date: 2025-11-09
  • Authors: ** NaiveNeuron (주요 연구자) 외 다수 공동 저자 (구체적인 저자 명단은 원 논문을 참고) **

📝 Abstract

Mathematical reasoning requires abstracting symbolic rules from visual patterns -- inferring the infinite from the finite. We investigate whether multimodal AI systems possess this capability through FractalBench, a benchmark evaluating fractal program synthesis from images. Fractals provide ideal test cases: Iterated Function Systems with only a few contraction maps generate complex self-similar patterns through simple recursive rules, requiring models to bridge visual perception with mathematical abstraction. We evaluate four leading MLLMs -- GPT-4o, Claude 3.7 Sonnet, Gemini 2.5 Flash, and Qwen 2.5-VL -- on 12 canonical fractals. Models must generate executable Python code reproducing the fractal, enabling objective evaluation. Results reveal a striking disconnect: 76% generate syntactically valid code but only 4% capture mathematical structure. Success varies systematically -- models handle geometric transformations (Koch curves: 17-21%) but fail at branching recursion (trees: <2%), revealing fundamental gaps in mathematical abstraction. FractalBench provides a contamination-resistant diagnostic for visual-mathematical reasoning and is available at https://github.com/NaiveNeuron/FractalBench

💡 Deep Analysis

Figure 1

📄 Full Content

📸 Image Gallery

better_failed_01_generated_heighway_dragon_depth8_size500.png better_failed_01_groundtruth_heighway_dragon_depth8_size500.png better_failed_02_generated_symmetric_binary_tree_depth10_angle60_contraction_ratio0.65_size500.png better_failed_02_groundtruth_symmetric_binary_tree_depth10_angle60_contraction_ratio0.65_size500.png better_failed_03_generated_levy_dragon_depth17_size500.png better_failed_03_groundtruth_levy_dragon_depth17_size500.png better_failed_04_generated_pythagoras_tree_depth2_size500.png better_failed_04_groundtruth_pythagoras_tree_depth2_size500.png better_failed_05_generated_heighway_dragon_depth9_size500.png better_failed_05_groundtruth_heighway_dragon_depth9_size500.png better_failed_06_generated_symmetric_binary_tree_depth11_angle60_contraction_ratio0.65_size500.png better_failed_06_groundtruth_symmetric_binary_tree_depth11_angle60_contraction_ratio0.65_size500.png code_complexity_cantor_dust_loc.png code_complexity_cantor_set_loc.png code_complexity_heighway_dragon_loc.png code_complexity_koch_curve_loc.png code_complexity_koch_snowflake_loc.png code_complexity_levy_dragon_loc.png code_complexity_mcworter_pentigree_loc.png code_complexity_pythagoras_tree_loc.png code_complexity_sierpinski_carpet_loc.png code_complexity_sierpinski_gasket_loc.png code_complexity_sierpinski_pentagon_loc.png code_complexity_symmetric_binary_tree_loc.png fractal_gallery.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut