COFAP: A Universal Framework for COFs Adsorption Prediction through Designed Multi-Modal Extraction and Cross-Modal Synergy

Reading time: 1 minute
...

📝 Original Info

  • Title: COFAP: A Universal Framework for COFs Adsorption Prediction through Designed Multi-Modal Extraction and Cross-Modal Synergy
  • ArXiv ID: 2511.01946
  • Date: 2025-11-03
  • Authors: 정보 없음 (논문에 명시된 저자 정보가 제공되지 않았습니다.)

📝 Abstract

Covalent organic frameworks (COFs) are promising adsorbents for gas adsorption and separation, while identifying the optimal structures among their vast design space requires efficient high-throughput screening. Conventional machine-learning predictors rely heavily on specific gas-related features. However, these features are time-consuming and limit scalability, leading to inefficiency and labor-intensive processes. Herein, a universal COFs adsorption prediction framework (COFAP) is proposed, which can extract multi-modal structural and chemical features through deep learning, and fuse these complementary features via cross-modal attention mechanism. Without Henry coefficients or adsorption heat, COFAP sets a new SOTA by outperforming previous approaches on hypoCOFs dataset. Based on COFAP, we also found that high-performing COFs for separation concentrate within a narrow range of pore size and surface area. A weight-adjustable prioritization scheme is also developed to enable flexible, application-specific ranking of candidate COFs for researchers. Superior efficiency and accuracy render COFAP directly deployable in crystalline porous materials.

💡 Deep Analysis

Figure 1

📄 Full Content

📸 Image Gallery

Ablation.png BestCOFs1.png BestCOFs2.png CH401_seen_unseen_comparison_no_legend.png CH410_seen_unseen_comparison_no_legend.png CH4_seen_unseen_comparison_with_legend.png CO2_seen_unseen_comparison_no_legend.png CPSA_seen_unseen_comparison_no_legend.png CVSA_seen_unseen_comparison_no_legend.png H2_seen_unseen_comparison_no_legend.png N2_seen_unseen_comparison_no_legend.png O2_seen_unseen_comparison_no_legend.png PSAresult.jpg SPSA_seen_unseen_comparison_no_legend.png SVSA_seen_unseen_comparison_with_legend.png model.jpg result.png screen.png screen1.png screen2.jpg stats_top100_wr0.0_wa1.0_chart.png stats_top100_wr0.1_wa0.9_chart.png stats_top100_wr0.2_wa0.8_chart.png stats_top100_wr0.3_wa0.7_chart.png stats_top100_wr0.4_wa0.6_chart.png stats_top100_wr0.5_wa0.5_chart.png stats_top100_wr0.6_wa0.4_chart.png stats_top100_wr0.7_wa0.3_chart.png stats_top100_wr0.8_wa0.2_chart.png stats_top100_wr0.9_wa0.1_chart.png stats_top100_wr1.0_wa0.0_chart.png workflow.jpg

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut