SHAP Meets Tensor Networks: Provably Tractable Explanations with Parallelism

Reading time: 2 minute
...

📝 Original Info

  • Title: SHAP Meets Tensor Networks: Provably Tractable Explanations with Parallelism
  • ArXiv ID: 2510.21599
  • Date: 2025-10-24
  • Authors: ** 제공되지 않음 (논문에 저자 정보가 포함되지 않았습니다.) **

📝 Abstract

Although Shapley additive explanations (SHAP) can be computed in polynomial time for simple models like decision trees, they unfortunately become NP-hard to compute for more expressive black-box models like neural networks - where generating explanations is often most critical. In this work, we analyze the problem of computing SHAP explanations for *Tensor Networks (TNs)*, a broader and more expressive class of models than those for which current exact SHAP algorithms are known to hold, and which is widely used for neural network abstraction and compression. First, we introduce a general framework for computing provably exact SHAP explanations for general TNs with arbitrary structures. Interestingly, we show that, when TNs are restricted to a *Tensor Train (TT)* structure, SHAP computation can be performed in *poly-logarithmic* time using *parallel* computation. Thanks to the expressiveness power of TTs, this complexity result can be generalized to many other popular ML models such as decision trees, tree ensembles, linear models, and linear RNNs, therefore tightening previously reported complexity results for these families of models. Finally, by leveraging reductions of binarized neural networks to Tensor Network representations, we demonstrate that SHAP computation can become *efficiently tractable* when the network's *width* is fixed, while it remains computationally hard even with constant *depth*. This highlights an important insight: for this class of models, width - rather than depth - emerges as the primary computational bottleneck in SHAP computation.

💡 Deep Analysis

📄 Full Content

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut