Semi-sparsity Generalization for Variational Mesh Denoising

Reading time: 1 minute
...

📝 Original Info

  • Title: Semi-sparsity Generalization for Variational Mesh Denoising
  • ArXiv ID: 2510.13372
  • Date: 2025-10-15
  • Authors: ** 정보가 제공되지 않았습니다. (논문 원문 또는 저자 페이지에서 확인 필요) **

📝 Abstract

In this paper, we propose a new variational framework for 3D surface denoising over triangulated meshes, which is inspired by the success of semi-sparse regularization in image processing. Differing from the uniformly sampled image data, mesh surfaces are typically represented by irregular, non-uniform structures, which thus complicate the direct application of the standard formulation and pose challenges in both model design and numerical implementation. To bridge this gap, we first introduce the discrete approximations of higher-order differential operators over triangle meshes and then develop a semi-sparsity regularized minimization model for mesh denoising. This new model is efficiently solved by using a multi-block alternating direction method of multipliers (ADMM) and achieves high-quality simultaneous fitting performance -- preserving sharp features while promoting piecewise-polynomial smoothing surfaces. To verify its effectiveness, we also present a series of experimental results on both synthetic and real scanning data, showcasing the competitive and superior results compared to state-of-the-art methods, both visually and quantitatively.

💡 Deep Analysis

Figure 1

📄 Full Content

📸 Image Gallery

Haihui.png Junqing.png Michael.png bf.png bf_deg_err.png bf_local.png block.png cnr.png cnr_deg_err.png cnr_local.png color_map.png ho.png ho_deg_err.png ho_local.png julius_beta1_local.png julius_beta2_local.png julius_beta3_local.png julius_beta4_local.png julius_noisy_local.png l0.png l0_deg_err.png l0_local.png noisy.png noisy_local.png ours.png ours_deg_err.png ours_local.png smooth_feature_alpha1.png smooth_feature_alpha2.png smooth_feature_alpha3.png smooth_feature_alpha4.png smooth_feature_noisy.png src.png src_local.png tgv.png tgv_deg_err.png tgv_local.png tv.png tv_deg_err.png tv_local.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut