AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions

Reading time: 1 minute
...

📝 Original Info

  • Title: AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions
  • ArXiv ID: 2509.11595
  • Date: 2025-09-15
  • Authors: Sabin Huda, Ernest Foo, Zahra Jadidi, MA Hakim Newton, Abdul Sattar

📝 Abstract

💡 Deep Analysis

This research explores the key findings and methodology presented in the paper: AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions.

📄 Full Content

Abstract not available for this paper.

📸 Image Gallery

AMLNet_-_ROC_AUC.png AUSTRAC_Alignment_August_2025.png Agent_June_2025.png Alert_over_time.png Avg_Transaction_Amount_by_Day_of_week.png Fraud_probability_distribution_-_AMLNet.png ML_Patterns_-_04.08.2025.png Network_and_Detection_System_Performance.png Precision-Recall_Curve_-_SynthAML.png ROC_Curve_SynthAML.png Real-time_Detection_Latency.png Transaction_Category_Distribution.png cross_institutional_transactions2.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut