Understanding the principles of consensus in communities and finding ways to optimal solutions beneficial for entire community becomes crucial as the speeds and scales of interaction in modern distributed systems increase. Such systems can be both social and information computer networks that unite the masses of people as well as multi-agent computing platforms based on peer-to-peer interactions including those operating on the basis of distributed ledgers. It is now becoming possible for hybrid ecosystems to emerge, having such systems including both humans and computer systems using artificial intelligence. We propose a new form of consensus for all of the listed systems, based on the reputation of the participants, calculated according to the principle of "liquid democracy". We believe that such a system will be more resistant to social engineering and reputation manipulation than the existing systems. In this article, we discuss the basic principles and options for implementing such a system, and also present preliminary practical results.
Начиная с появления децентрализованных и распределенных компьютерных систем без централизованного управления, стало понятно, что надежность определения репутации участников представляет собой серьезную проблему, и эта проблема была объектом всестороннего изучения [1]. Надежное решение по определению репутации узла вычислительной сети оказывается критичным для одно-ранговых систем, в которых каждый узел может взаимодействовать с любым другим узлом в сети [2]. Стандартные теоретические основы для нахождения решения связаны с так называемой «задачей византийских генералов», где переменное число участников с переменными уровнями доверия независимо голосует для достижения консенсуса по решению, которое вносится в публичный реестр, чтобы все сообщество узнало об этом решении и чтобы это решение было для него благоприятным [3]. Поскольку уровень доверия каждого узла системы заранее неизвестен, необходимо снизить риск воздействия на принятие решения со стороны узлов-«предателей», которые пытаются повлиять на консенсус в пользу враждебной части сообщества, одержав верх над остальными членами. В существующих распределенных вычислительных системах, основанных на технологии блокчейн, применяются различные алгоритмы достижения консенсуса, использующие различные формы взвешенного голосования, каждая из которых предлагает определенную эвристику, какое качество узла в компьютерной сети можно использовать, чтобы догадаться о его ожидаемом уровне доверия [4]. Для построения любых систем коллективного интеллекта или просто коллективного принятия решения при большом числе участников и отсутствию жесткой иерархической управляющей структуры («вертикали власти»), необходимы как достаточная автономность в выработке собственных вариантов решений каждым и участников, так и возможность быстрого и надежного определения общественного консенсуса в пределах всей системы. Для предотвращения злоупотреблений и манипуляций в подобной распределенной много-агентной сети необходима высококачественная репутационная система. Например, в создаваемой системе общего искусственного интеллекта (ОИИ) SingularityNET, обеспечение высоко-надежного репутации требует искусственного интеллекта (ИИ) само по себе, что ведет к взаимной рекурсии между ОИИ и оценкой репутации в распределенных системах ИИ. Таким образом, умение построить надежную систему исчисления репутации участников является критически важным для решения проблем ОИИ, и любая парадигма ОИИ должна тем или иным образом решать "проблему доверия" в отношениях между элементами много-агентной системы. Мы полагаем, что решение состоит из двух частей -А) относительно простой базовый алгоритм для определения репутации как «уровня доверия» между участниками в простых общих случаях и Б) система, которая занимается верификацией оценок на основе базового алгоритма на основе методов ИИ, для более сложных случаев. Из описания очевидно, что подобное решение могло бы быть востребовано не только для обе спечений консенсуса в системах распределенного ИИ, но и в существующих человеческих онлайн-сообществах, а также в грядущих смешанных человеко-машинных экосистемах.
Рис.1. Типы консенсуса в распределенных системах .
Большинство алгоритмов достижения консенсуса, обсуждавшихся в предыдущих работах [4] и внедренных в существующие популярные распределенные вычислительные системы, такие как Ethereum и Bitcoin, подвержены взлому при известных обстоятельствах. Алгоритмом достижения консенсуса, называемым «доказательство права работой» или Proof-of-Work (POW), где участник системы голосует вычислительной мощностью, которой он владеет, может злоупотребить общество союзников, которые смогут в нужный момент сконцентрировать свыше 51% компьютерной мощности для достижения консенсуса в свою пользу. С исторической точки зрения на человеческое сообщество, данный алгоритм соответствует «праву силы», характерному для большинства древних сообществ и животных стай и стад. Еще один известный алгоритм достижения консенсуса, называемый «доказательство права финансовой ставкой» или «Proof-of-Stake» (POS), подразумевает голосование суммой финансовых средств, которыми владеет каждый участник. Это аналогично консенсусу в современных капиталистических обществах с «правом денег», где «богатый всегда богатеет». Такое решение приводит постепенно к глубокому разрыву в доходах, при котором со временем один участник или группа участников, сконцентрировавших достаточные средства, могут повлиять на достижение консенсуса исключительно в личных интересах, а не интересах всего сообще ства. Усовершенствованная версия POS, называемая «делегирование права доказательства финансовой ставкой» или «Delegated-Proof-of-Stake» (DPOS), предполагается как решение последней проблемы явным делегированием права управлять «делегатам», назначенным участниками, владеющими большими долями, но это лишь приводит к ручному контролю над распределенной системой.
В настоящей работе мы предлагаем, по нашему мнению, более перспективную версию алгоритма достижения консенсуса, н
This content is AI-processed based on open access ArXiv data.