A Generalization of the Idea of Disjunction
📝 Original Info
- Title: A Generalization of the Idea of Disjunction
- ArXiv ID: 1007.3440
- Date: 2010-07-21
- Authors: Kerry M. Soileau
📝 Abstract
We generalize the concept of disjunction.💡 Deep Analysis
📄 Full Content
ABSTRACT We generalize the concept of disjunction.
- INTRODUCTION
Let X be a nonempty set. Definition 1: We say that a relation on X is disjunctive if and only if for every 1 2 , x x X , 1 2 y X x y x y if and only if 1 2 x x
(1) 1 2 2 1 x x x x
(2) 1 1 x x
(3)
Examples: (1) Let X be some nonempty set, and define 1 2 x x if and only if 1 2 x x . (2) Take X to be the power set of some nonempty set, and define 1 2 x x if and only if 1 2 x x . (3) Take , , X a b c , and define 1 2 x x if and only if 1 2 , , x x a b . Proposition 1: For any 1 2 , x x X , 1 2 1 2 x x x x . Proof: Suppose for a contradiction that 1 2 x x and 1 2 x x . This means 1 1 x x , which contradicts (3). ■
2
- A DISJUNCTIVE RELATION INDUCES A PARTIAL ORDER
Definition 2: Define the order
satisfying
1
2
x
x if and only if
2
1
y
X x y
x y
.
Proposition 2: If
1
2
x x
, then
3
2
x
x implies
1
3
x x
.
Proof: Suppose
1
2
x x
and
3
2
x
x . Since
1
2
x x
, from (2) we get
2
1
x
x
. Since
3
2
x
x , we have
2
3
y
X x y
x y
so in particular
2
1
3
1
x x
x x
and thus
3
1
x x
. Another application of (2) yields
1
3
x x
. ■
Proposition 3:
is a partial order on X .
Proof: (1) Fix x
X
. Since clearly
y
X x y
x y
, it follows that x
x . (2) Suppose
1
2
x
x
and
2
1
x
x . Then
2
1
y
X x y
x y
and
1
2
y
X x y
x y
, hence
1
2
y
X x y
x y
, which by definition of implies
1
2
x
x
. (3) Suppose
1
2
x
x and
2
3
x
x . Fix
y
X
. Then
2
1
x y
x y
and
3
2
x y
x y
, implying
3
1
x y
x y
, thus
1
3
x
x .■
Example:
Take
, ,
X
a b c
, and define
1
2
x x
if and only if
1
2
,
,
x x
a b
or
1
2
,
,
x x
b a
.
Then
1
2
x
x if and only if
2x
c
.
This example can be illustrated with a table:
a b c
a
F T F
b
T F F
c
F
F F
The entry for each row and column gives the truth value of the disjunctive relation, for example the table indicates that a b is true and b c is false. When a table is constructed for a given disjunctive relation, it will be noticed that the table has three properties:
- The diagonal contains only entries of F ,
- the table is symmetric with respect to transposing rows and columns, and
- no two columns or are alike (and the same is true for rows).
3
BIBLIOGRAPHY
Bernd S. W. Schröder, Ordered Sets: An Introduction (Boston: Birkhäuser, 2003) 2. George Grätzer (1971). Lattice theory: first concepts and distributive lattices. W. H. Freeman and Co. ISBN 0-7167-0442-0 3. Ferreirós, Jose, 2007 (1999). Labyrinth of Thought: A history of set theory and its role in modern mathematics. Basel, Birkhäuser. ISBN 978-3-7643-8349-7 4. Halmos, P.R., Naive Set Theory, D. Van Nostrand Company, Princeton, NJ, 1960. Reprinted, Springer- Verlag, New York, NY, 1974, ISBN 0-387-90092-6.
International Space Station Program Office, Avionics and Software Office, Mail Code OD, NASA Johnson Space Center, Houston, TX 77058 E-mail address: ksoileau@yahoo.com