PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers

Reading time: 3 minute
...

📝 Original Info

  • Title: PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers
  • ArXiv ID: 0712.1698
  • Date: 2009-01-09
  • Authors: ** 논문에 명시된 저자 정보가 제공되지 않았습니다. (저자 미상) **

📝 Abstract

The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control the risk of the latter. These results allow to bound the risk of very general estimation procedures, as well as to perform model selection.

💡 Deep Analysis

📄 Full Content

Ò Ø ÓÒ ½º½º Ä Ø Ù× ÔÙØ

Ü ÑÔÐ ½º¿ ´ Ò× ØÝ ר Ñ Ø ÓÒµº À Ö ¸Û ××ÙÑ Ø Ø P 1 = … = P N = P Ò ÓÒ× ÕÙ ÒØÐÝ Ø Ø

.

P exp sup

´ º½µ

´ º¾µ

´ º¿µ

´ º µ β -

, θi,β -βr ′ (., θ)

-log π i exp -βr ′ (., θ) .

´ º½¿µ

´ º½ µ R ′ θt , θt j ≤ B(t j , t s(j) ) + B(t s(j) , t j ) + B( t, t ŝ) + B(t ŝ, t) .

Ï Ö Ó Ò ØÓ ÙÔÔ Ö ÓÙÒ × Ô Ö Ø ÐÝ B(t j , t s(j) ) + B(t s(j) , t j ) Ò B( t, t ŝ) + B(t ŝ, t)º Ä Ø Ù× Öר Ð Û Ø Ø Ø ÖÑ B(t j , t s(j) ) + B(t s(j) , t j )

´ º½ µ B(t j , t s(j) ) + B(t s(j) , t j) , θt j ) ≤ B(t j , t s(j) ) + B(t s(j) , t j ) ≤ Eδ N (i, q, ε, κ).

ÈÐÙ Ò ÐÐ Ø × Ö ×ÙÐØ× ÒØÓ ÁÒ ÕÙ Ð ØÝ ´ º½ µ¸Û Ó Ø Ò¸ 1 -2λx N R ′ θt , θt j ≤ Eδ N (i, q, ε, κ) + 2λ N xEδ N (i, q, ε, κ) + 2xR ′ ( θt j , θ i ) + 2xR ′ (θ i , θ) + ϕ(x)

.

× Ù×Ù Ð¸Ð Ø Ù× ÔÔÐÝ Ä ÑÑ º ØÓ ÙÔÔ Ö ÓÙÒ C(t j )¸Ä ÑÑ º¿ ØÓ ÙÔÔ Ö ÓÙÒ R ′ ( θt j , θ i ) Ò Ä ÑÑ º½ ØÓ ÙÔÔ Ö ÓÙÒ ϕ(x)º Ä Ø Ù× ÔÙØ

θt , θt j ≤ E ′ δ N (i, q, ε, κ). Ì Ò¸ ÓÖ ÒÝ (θ, θ ′ ) ∈ Θ 2 Ŗ(θ)

📸 Image Gallery

cover.png

Reference

This content is AI-processed based on open access ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut