KOINEU Logo
One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation

One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์‹œ๊ฐ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๊ณ ์ฐจ์› ์ด๋ฏธ์ง€ ํŠน์ง•์„ ์ง์ ‘ ํ™œ์šฉํ•˜๊ธฐ๋ณด๋‹ค ์••์ถ•๋œ ์ž ์žฌ๊ณต๊ฐ„์—์„œ ์ž‘๋™ํ•จ์œผ๋กœ์จ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ  ์ƒ˜ํ”Œ ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ ค๋Š” ํ๋ฆ„์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋น„์ „ ํŠธ๋žœ์Šคํฌ๋จธ(DINO, SigLIP ๋“ฑ)์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ์ดํ•ดโ€‘์ง€ํ–ฅ ํŠน์ง•์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’์€ ์ฐจ์›์„ ์œ ์ง€ํ•˜๋ฉฐ, ์ด๋Š” ๋งˆ์Šคํฌ๋œ ์˜์—ญ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๊ฐ€์„ค์„ ๋™์‹œ์— ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ํ™•์‚ฐ ๋ชจ๋ธ์ด๋‚˜ ์ •๊ทœํ™” ํ๋ฆ„๊ณผ ๊ฐ™์€ ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋…ธ์ด์ฆˆ๋ฅผ ์ •ํ™•ํžˆ ์ „๋‹ฌํ•˜๊ณ  ์ ์ง„์ ์œผ๋กœ ์ƒ˜ํ”Œ์„ ๋ณต์›ํ•ด์•ผ ํ•˜๋ฏ€๋กœ, ์ฐจ์›์ด ๋‚ฎ๊ณ  ์—ฐ์†์ ์ธ ์ž ์žฌ๊ณต๊ฐ„์„ ์š”๊ตฌ

Over-the-Air Federated Learning: Rethinking Edge AI Through Signal Processing

Over-the-Air Federated Learning: Rethinking Edge AI Through Signal Processing

์˜ค๋ฒ„๋”์—์–ด ํŽ˜๋”๋ ˆ์ดํ‹ฐ๋“œ ๋Ÿฌ๋‹(AirFL)์€ ์ „ํ†ต์ ์ธ ํŽ˜๋”๋ ˆ์ดํ‹ฐ๋“œ ๋Ÿฌ๋‹(Federated Learning, FL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ†ต์‹  ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด์†Œํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๋ฌด์„  ์ฑ„๋„์˜ ์•„๋‚ ๋กœ๊ทธ ํ•ฉ์„ฑ(superposition) ํŠน์„ฑ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๊ฐ ํด๋ผ์ด์–ธํŠธ๋Š” ๋กœ์ปฌ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋ฅผ ๋””์ง€ํ„ธํ™”ํ•˜์ง€ ์•Š๊ณ , ๋ฐ”๋กœ ์ „์†ก ํŒŒ์›Œ์™€ ํ”„๋ฆฌ์•ฐํ”Œ๋ฆฌํŒŒ์ด์–ด๋ฅผ ์กฐ์ •ํ•œ ์•„๋‚ ๋กœ๊ทธ ์‹ ํ˜ธ ํ˜•ํƒœ๋กœ ์ „์†กํ•œ๋‹ค. ๋ฒ ์ด์Šค์Šคํ…Œ์ด์…˜(๋˜๋Š” ์—์ง€ ์„œ๋ฒ„)์€ ์ด ์‹ ํ˜ธ๋“ค์„ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ•ฉ์„ฑ๋œ ํ˜•ํƒœ๋กœ ์ˆ˜์‹ ํ•˜๊ณ , ๋ฐ”๋กœ ํ‰๊ท  ํ˜น์€ ๊ฐ€์ค‘ ํ‰๊ท  ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ โ€œํ†ต์‹ 

Learning
Self-Transparency Failures in Expert-Persona LLMs: How Instruction-Following Overrides Disclosure

Self-Transparency Failures in Expert-Persona LLMs: How Instruction-Following Overrides Disclosure

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด โ€œ์ „๋ฌธ๊ฐ€โ€๋ผ๋Š” ์—ญํ• ์„ ๋ถ€์—ฌ๋ฐ›์•˜์„ ๋•Œ, ์ž์‹ ์ด ์ธ๊ณต์ง€๋Šฅ์ด๋ผ๋Š” ์‚ฌ์‹ค์„ ์–ผ๋งˆ๋‚˜ ํˆฌ๋ช…ํ•˜๊ฒŒ ๊ณ ๋ฐฑํ•˜๋Š”์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ์„ค๊ณ„๋Š” โ€˜commonโ€‘gardenโ€™ ๋ฐฉ์‹์œผ๋กœ, ๋™์ผํ•œ ์‹คํ—˜ ํ”„๋กœํ† ์ฝœ์„ 16๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋ธ์— ์ ์šฉํ•ด 19 200๊ฐœ์˜ ์‘๋‹ต์„ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ๊ฐ„ ๋น„๊ต ๊ฐ€๋Šฅ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ํ•ต์‹ฌ ๋ณ€์ˆ˜๋Š” โ€˜์ž์•„ ๊ณ ๋ฐฑ๋ฅ (disclosure rate)โ€™์ด๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์ฒ˜์Œ ์งˆ๋ฌธ์„ ๋ฐ›์•˜์„ ๋•Œ ์ž์‹ ์˜ ๋น„์ธ๊ฐ„์  ์ •์ฒด์„ฑ์„ ๋ช…์‹œํ•˜๋Š” ๋น„์œจ๋กœ ์ •์˜๋œ๋‹ค. ์ฒซ

Simultaneous Image Quality Improvement and Artefacts Correction in Accelerated MRI

Simultaneous Image Quality Improvement and Artefacts Correction in Accelerated MRI

๋ณธ ๋…ผ๋ฌธ์€ MRI ์ดฌ์˜ ์‹œ๊ฐ„ ๋‹จ์ถ•์ด๋ผ๋Š” ์ž„์ƒ์  ์š”๊ตฌ์™€, ์‹ค์ œ ์Šค์บ” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์žก์Œยท์šด๋™ ์•„ํ‹ฐํŒฉํŠธ๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ’ˆ์งˆ ์ €ํ•˜ ์š”์ธ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ณดํ†ต ์–ธ๋”์ƒ˜ํ”Œ๋ง ๋ณต์›(Compressed Sensing, Deepโ€‘Learning ๊ธฐ๋ฐ˜ ์žฌ๊ตฌ์„ฑ)๊ณผ ์•„ํ‹ฐํŒฉํŠธ ๊ต์ •(denoising, motion correction) ์ค‘ ํ•˜๋‚˜์—๋งŒ ์ง‘์ค‘ํ•ด ์™”์œผ๋ฉฐ, ๋‘ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ๋‹ค๋ฃจ๋Š” ํ†ตํ•ฉ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์—†์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ USArt๋Š” โ€˜dual subโ€‘modelโ€™ ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•œ๋‹ค๋Š” ์ ์—์„œ ๋…์ฐฝ์ 

STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions

STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions

STELLA ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ์—ฐ๊ตฌ๊ฐ€ ์ง๋ฉดํ•œ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๊ฑฐ๋‚˜, ์ •์  ์˜๋ฏธ ์‚ฌ์ „์—์„œ ์œ ์‚ฌํ•œ ์‹œ๊ณ„์—ด ํŒจํ„ด์„ ์ฐพ์•„ ํ”„๋กฌํ”„ํŠธ์— ์‚ฝ์ž…ํ•˜๋Š” ๋ฐฉ์‹์„ ์ทจํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์‹œ๊ณ„์—ด์ด ๊ฐ–๋Š” ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ, ๋น„์„ ํ˜•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๊ณ„์ ˆยท์ถ”์„ธยท์ž”์ฐจ์™€ ๊ฐ™์€ ๊ตฌ์กฐ์  ์š”์†Œ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ LLM์€ โ€œ๋ฌด์—‡์ด ์ผ์–ด๋‚ฌ๋Š”๊ฐ€โ€์— ๋Œ€ํ•œ ์„œ์ˆ ์  ์ •๋ณด๋ฅผ ์–ป์„ ๋ฟ, โ€œ์™œ ๊ทธ๋Ÿฐ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ–ˆ๋Š”๊ฐ€โ€๋ผ๋Š” ์ธ๊ณผ์ ยท๋™์  ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด ๋น„ํŒ๋œ๋‹ค.

Model
Stochasticity in Agentic Evaluations: Quantifying Inconsistency with Intraclass Correlation

Stochasticity in Agentic Evaluations: Quantifying Inconsistency with Intraclass Correlation

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋‹จ์ผ ์—์ด์ „ํŠธ๊ฐ€ ์•„๋‹ˆ๋ผ ๋ณตํ•ฉ์ ์ธ ํ•˜์œ„ ์—์ด์ „ํŠธ๋“ค์˜ ์ง‘ํ•ฉ์œผ๋กœ ์šด์˜๋˜๋Š” โ€˜์—์ด์ „ํŠธ ์‹œ์Šคํ…œโ€™์œผ๋กœ ์ง„ํ™”ํ•จ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ๋‹จ์ผ ์‹คํ–‰ ์ •ํ™•๋„๋งŒ์„ ๋ณด๊ณ ํ•˜๋Š” ํ‰๊ฐ€ ๋ฐฉ์‹์ด ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ธ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํ•˜์œ„ ์—์ด์ „ํŠธ๊ฐ€ ๋ถˆ์•ˆ์ •ํ•˜๊ฑฐ๋‚˜ ์ผ๊ด€๋˜์ง€ ๋ชปํ•˜๋ฉด ์ „์ฒด ์‹œ์Šคํ…œ์˜ ํ–‰๋™์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€๋™ํ•  ์œ„ํ—˜์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€๋™์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•˜๋ฉด, ์—ฐ๊ตฌ์ž์™€ ์‹ค๋ฌด์ž๋Š” ์šฐ์—ฐํžˆ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์–ป์€ ๊ฒฝ์šฐ์™€ ์‹ค์ œ ๋ชจ๋ธ ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋œ ๊ฒฝ์šฐ๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•ด ์ž˜๋ชป๋œ ๊ฒฐ๋ก ์— ๋„๋‹ฌํ•œ๋‹ค๋Š” ์œ„ํ—˜์— ์ฒ˜ํ•œ๋‹ค.

SynCraft: Guiding Large Language Models to Predict Edit Sequences for Molecular Synthesizability Optimization

SynCraft: Guiding Large Language Models to Predict Edit Sequences for Molecular Synthesizability Optimization

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” ํ˜„์žฌ์˜ ์ƒ์„ฑํ˜• ํ™”ํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ์„ค๊ณ„ํ•œ ๋ถ„์ž๋“ค์˜ โ€˜ํ•ฉ์„ฑ ๊ฐ€๋Šฅ์„ฑ(synthesizability)โ€™์ด ๋‚ฎ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ์ ‘๊ทผ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ๋งŒ๋“  ๋ถ„์ž๋ฅผ ์‚ฌํ›„์— ํ•„ํ„ฐ๋งํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ์ด๋Š” ํ•ฉ์„ฑ ๋ถˆ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฑธ๋Ÿฌ๋‚ด์ง€๋งŒ ๋™์‹œ์— ์ƒˆ๋กœ์šด ํ™”ํ•™ ๊ตฌ์กฐ๋ฅผ ํฌ๊ธฐํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋ชฉํ‘œ ํ™”ํ•™ ๊ณต๊ฐ„์„ ๋ฏธ๋ฆฌ ์ •์˜๋œ ํ•ฉ์„ฑ ํ…œํ”Œ๋ฆฟ์— ํˆฌ์˜(projection)ํ•˜๋Š” ๋ฐฉ๋ฒ•์ธ๋ฐ, ์ด๋Š” ํ…œํ”Œ๋ฆฟ์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๋ถ„์ž์˜ ํ•ต์‹ฌ ์•ฝ๋ฌผํ•™์  ํฌํ•ต(pharmacophore)์„ ๋ณ€ํ˜•์‹œ์ผœ ์•ฝํšจ๋ฅผ ์ €ํ•˜์‹œํ‚ฌ ์œ„

Model
UnwrapDiff: A Conditional Diffusion Model for InSAR Phase Unwrapping

UnwrapDiff: A Conditional Diffusion Model for InSAR Phase Unwrapping

์œ„์ƒ ํ’€๊ธฐ๋Š” InSAR(Interferometric Synthetic Aperture Radar)์—์„œ ๊ด€์ธก๋œ ๋ณต์†Œ ์œ„์ƒ์„ ์‹ค์ œ ๋ณ€ํ˜• ์‹ ํ˜ธ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์ด๋ฉฐ, ์ด ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฅ˜๋Š” ์ตœ์ข… ๋ณ€ํ˜• ์ง€๋„ ์ „์ฒด์— ์น˜๋ช…์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” SNAPHU๋Š” ์ตœ์†Œ ๋น„์šฉ ํ๋ฆ„(minimum cost flow) ์›๋ฆฌ๋ฅผ ์ ์šฉํ•ด ์œ„์ƒ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜์ง€๋งŒ, ๊ณ ๋„ ๋ณ€๋™, ๋Œ€๊ธฐ ์ง€์—ฐ, ๋ ˆ์ด๋” ์žก์Œ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๋…ธ์ด์ฆˆ๊ฐ€ ์กด์žฌํ•  ๊ฒฝ์šฐ ์ตœ์  ํ•ด๋ฅผ ์ฐพ๊ธฐ ์–ด๋ ค์›Œ์ง„๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ๋“ฑ์žฅํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€

Model
EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI

EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI

EfficientFlow ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ƒ์„ฑ ๊ธฐ๋ฐ˜ ๋กœ๋ด‡ ์ •์ฑ…์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ณ‘๋ชฉ, ์ฆ‰ ๋ฐ์ดํ„ฐ ๋น„ํšจ์œจ์„ฑ๊ณผ ์ƒ˜ํ”Œ๋ง ์ง€์—ฐ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ๊ธธ์„ ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” ํ๋ฆ„ ๋งค์นญ(flow matching) ํ”„๋ ˆ์ž„์›Œํฌ์— ๋“ฑ๋ณ€์„ฑ(equivariance)์„ ๋„์ž…ํ•œ ์ ์ด๋‹ค. ๋“ฑ๋ณ€์„ฑ์€ ์ž…๋ ฅ ๊ณต๊ฐ„(์˜ˆ: ๋กœ๋ด‡์˜ ๊ด€์ธก์ด๋‚˜ ๋ชฉํ‘œ ์œ„์น˜)์ด ํšŒ์ „ยท์ด๋™ ๋“ฑ ๋ณ€ํ™˜์„ ๋ฐ›์„ ๋•Œ, ์ •์ฑ…์ด ๋™์ผํ•œ ๋ณ€ํ™˜์„ ํ–‰๋™์— ๋ฐ˜์˜ํ•˜๋„๋ก ๋ณด์žฅํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์‹œ์•ˆ ์‚ฌ์ „(p(z) ๐’ฉ(0,I))๊ณผ ๋“ฑ๋ณ€ ์†๋„ ์˜ˆ์ธก ๋„คํŠธ์›Œํฌ vฮธ(x,z)๋ฅผ ๊ฒฐํ•ฉํ•˜๋ฉด, ์ตœ์ข… ํ–‰๋™

Learning
Feasibility of Radio Frequency Based Wireless Sensing of Lead Contamination in Soil

Feasibility of Radio Frequency Based Wireless Sensing of Lead Contamination in Soil

๋ณธ ๋…ผ๋ฌธ์€ ๋„์‹œ ํ™˜๊ฒฝ์—์„œ์˜ ๋‚ฉ(Pb) ์˜ค์—ผ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ํ•ด๊ฒฐ์ฑ…์„ ์ œ์•ˆํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋‚ฉ ์˜ค์—ผ์€ ์‹ํ’ˆ ์•ˆ์ „๊ณผ ๊ณต์ค‘ ๋ณด๊ฑด์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ๋„์‹œ ๊ณต๊ฐ„์˜ ๋…นํ™”๋ฅผ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์ด์Šˆ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋‚ฉ ์ธก์ • ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ๊ทธ ๊ณผ์ •์ด ์‹œ๊ฐ„๊ณผ ๋น„์šฉ ๋ฉด์—์„œ ๋ถ€๋‹ด์Šค๋Ÿฝ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์„  ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ํ† ์–‘ ๋‚ด์˜ ์—ผ ์„ฑ๋ถ„๋“ค์ด ๋‹ค์–‘ํ•œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ๋ฌด์„  ์‹ ํ˜ธ ์ „ํŒŒ์— ๋ฏธ์น˜๋Š”

BookRAG: A Hierarchical Structure-aware Index-based Approach for Retrieval-Augmented Generation on Complex Documents

BookRAG: A Hierarchical Structure-aware Index-based Approach for Retrieval-Augmented Generation on Complex Documents

BookRAG ๋…ผ๋ฌธ์€ ๊ธฐ์กด RAG ์—ฐ๊ตฌ๊ฐ€ ์ผ๋ฐ˜์ ์ธ ํ‰๋ฉด ๋ฌธ์„œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”๋˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš๊ณ , ๊ณ„์ธต์  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฌธ์„œโ€”ํŠนํžˆ ๊ต๊ณผ์„œยทํ•ธ๋“œ๋ถยท๋งค๋‰ด์–ผ ๋“ฑโ€”์— ํŠนํ™”๋œ ๊ฒ€์ƒ‰โ€‘์ฆ๊ฐ• ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ์š”์•ฝํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ๋ฌธ์„œ์˜ ๋…ผ๋ฆฌ์  ๋ชฉ์ฐจ์™€ ์œ ์‚ฌํ•œ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” โ€˜BookIndexโ€™๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ์„น์…˜ยท์ฑ•ํ„ฐยท์ ˆ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ ˆ๋ฒจ์„ ๋ณด์กดํ•จ์œผ๋กœ์จ ์งˆ์˜๊ฐ€ ์š”๊ตฌํ•˜๋Š” ์„ธ๋ถ€ ์ˆ˜์ค€์— ๋งž๋Š” ๋‹จ์œ„๋กœ ์ •๋ณด๋ฅผ ์กฐํšŒํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ๋‘˜์งธ, ์—”ํ„ฐํ‹ฐ ๊ฐ„ ๊ด€๊ณ„๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•ด

Cross-Language Bias Examination in Large Language Models

Cross-Language Bias Examination in Large Language Models

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜•์–ธ์–ด๋ชจ๋ธ(Large Language Models, LLM)์—์„œ ํŽธํ–ฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค๊ตญ์–ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ช…์‹œ์  ํŽธํ–ฅ์„ฑ๊ณผ ์•”๋ฌต์  ํŽธํ–ฅ์„ฑ์„ ์ธก์ •ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์—ฌ, LLM์˜ ํŽธํ–ฅ์„ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ๋‹ค์„ฏ ๊ฐœ ์–ธ์–ด๋กœ ํ”„๋กฌํ”„ํŠธ์™€ ๋‹จ์–ด ๋ชฉ๋ก์„ ๋ฒˆ์—ญํ•จ์œผ๋กœ์จ ๋‹ค์–‘ํ•œ ์–ธ์–ด ๊ฐ„์˜ ํŽธํ–ฅ์„ฑ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ๊ณตํ•œ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๊ฐ๊ฐ์˜ ์–ธ์–ด๊ฐ€ LLM์—์„œ ๋ณด์ด๋Š” ํŽธํ–ฅ์„ฑ์ด ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ์•„๋ž์–ด์™€ ์ŠคํŽ˜์ธ์–ด์—์„œ๋Š” ๊ณ ์ • ๊ด€๋…์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ

Model
Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation

Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation

์ด ๋…ผ๋ฌธ์€ โ€œ์ถ”์ƒ ์‹œ๊ฐ ๊ตฌ์„ฑโ€์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ƒ์„ฑ ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ , ๊ธฐ์กด ํ”ฝ์…€โ€‘๋ ˆ๋ฒจ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์ง๋ฉดํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์  ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ตฌ์„ฑ์˜ ์ •์ฒด์„ฑ์„ โ€œ๊ธฐํ•˜ํ•™์  ๊ด€๊ณ„โ€์— ๋‘๊ณ , ํ…์Šค์ฒ˜๋‚˜ ์ƒ‰์ฑ„์™€ ๊ฐ™์€ ์ €์ฐจ์› ํŠน์„ฑ์€ ๋ถ€์ฐจ์ ์œผ๋กœ ์ทจ๊ธ‰ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Š” ์ธ๊ฐ„์ด ํผ์ฆ ์กฐ๊ฐ์„ ๋งž์ถœ ๋•Œ, ์กฐ๊ฐ์˜ ๋ชจ์–‘ยท์—ฐ๊ฒฐ ๊ด€๊ณ„๋ฅผ ์šฐ์„ ์ ์œผ๋กœ ํŒ๋‹จํ•˜๋Š” ์ธ์ง€ ๊ณผ์ •๊ณผ ์ผ๋งฅ์ƒํ†ตํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ด๊ณ , ๊ฐ€๋Šฅํ•œ ๋ฐฐ์น˜๊ฐ€ ์ด์‚ฐ์ ์ด๋ฉฐ, ๊ฒน์นจ ๋ฐฉ์ง€์™€ ๊ฐ™์€ ์ œ์•ฝ์ด ๊ฐ•ํ•˜๊ฒŒ ์ž‘์šฉํ•˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ์ˆœ์ˆ˜ํžˆ ํ™•๋ฅ ์  ํ”ฝ์…€โ€‘์ŠคํŽ˜์ด์Šค

Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems

Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems

๋ณธ ๋…ผ๋ฌธ์€ RAG ์‹œ์Šคํ…œ์ด ๋ณต์žกํ•œ ์ถ”๋ก  ์ž‘์—…์— ํ•„์š”ํ•œ ๋‹ค๋‹จ๊ณ„ ์ฆ๊ฑฐ๋ฅผ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๊ทธ๋ž˜ํ”„RAG ๋ฐฉ๋ฒ•์€ ๊ณ ํ’ˆ์งˆ ๊ทธ๋ž˜ํ”„ ํ‘œํ˜„์ด ํ•„์š”ํ•˜๊ฑฐ๋‚˜ ์ž๋™ํ™”๋œ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ์ด ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ™•์‚ฐ ํ™œ์„ฑํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด ์ •๋ณด ๊ฒ€์ƒ‰์„ ๊ฐœ์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด RAG ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ž๋™์œผ๋กœ ์ƒ์„ฑ๋œ ์ง€์‹ ๊ทธ๋ž˜ํ”„๋กœ ์—ฐ๊ฒฐ๋œ ๋ฌธ์„œ ์ฝ”ํผ์Šค์—์„œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋ฉฐ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์˜ ๋ณต์žกํ•œ ์ž‘์—…

System
OptPO: Optimal Rollout Allocation for Test-time Policy Optimization

OptPO: Optimal Rollout Allocation for Test-time Policy Optimization

๋ณธ ๋…ผ๋ฌธ์€ ํ…Œ์ŠคํŠธ ์‹œ ์ •์ฑ… ์ตœ์ ํ™”(Testโ€‘time Policy Optimization, TPO)๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉด์„œ, ๊ธฐ์กด์˜ ๊ณ ์ •โ€‘์˜ˆ์‚ฐ ๋‹ค์ˆ˜๊ฒฐ ํˆฌํ‘œ ๋ฐฉ์‹์ด ๊ฐ–๋Š” ๋น„ํšจ์œจ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ๋‹ค์ˆ˜๊ฒฐ ํˆฌํ‘œ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ผ์ • ์ˆ˜์˜ ๋กค์•„์›ƒ์„ ๋ฌด์กฐ๊ฑด ์ˆ˜ํ–‰ํ•œ ๋’ค, ๊ฐ€์žฅ ๋งŽ์ด ์„ ํƒ๋œ ๋‹ต๋ณ€์„ ์ตœ์ข… ์˜ˆ์ธก์œผ๋กœ ์ฑ„ํƒํ•œ๋‹ค. ์ด ๊ณผ์ •์€ โ€œ์ถฉ๋ถ„ํžˆ ํ™•์‹ ์ด ์žˆ๋Š”โ€ ๊ฒฝ์šฐ์—๋„ ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋งŽ์€ ์ถ”๋ก  ์ž์›์„ ์†Œ๋ชจํ•œ๋‹ค๋Š” ์ ์—์„œ, ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์„ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ์šด์˜ํ•  ๋•Œ ๋น„์šฉ ๋ถ€๋‹ด์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. OptPO๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๋ฒ ์ด์ง€์•ˆ

CoPHo: Classifier-guided Conditional Topology Generation with Persistent Homology

CoPHo: Classifier-guided Conditional Topology Generation with Persistent Homology

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ์งธ, ์œ„์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ๊ตฌ์กฐ์  ์†์„ฑ์„ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•œ ํ•ฉ์„ฑ ๊ทธ๋ž˜ํ”„๋ฅผ ๋งŒ๋“ค ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์กฐ๊ฑด๋ถ€ ํ™•์‚ฐ ๋ชจ๋ธ์€ ๊ฐ ์†์„ฑ๋งˆ๋‹ค ๋ณ„๋„์˜ ์žฌํ•™์Šต์„ ์š”๊ตฌํ•ด ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ค์› ์œผ๋ฉฐ, ์‚ฌํ›„์— ๋ถ„๋ฅ˜๊ธฐ ๊ฐ€์ด๋“œ๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐฉ์‹์€ ๊ทธ๋ž˜ํ”„์˜ ์ „์—ญ์ ์ธ ์œ„์ƒ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ๋‘˜์งธ, ์œ„์ƒ ๊ตฌ์กฐ๋Š” ๋‹จ์ˆœํžˆ ๋…ธ๋“œยท์—ฃ์ง€ ์ˆ˜์™€ ๊ฐ™์€ ์ €์ฐจ์› ํ†ต๊ณ„๋Ÿ‰์ด ์•„๋‹ˆ๋ผ, ์—ฐ๊ฒฐ์„ฑยท๊ตฌ๋ฉยท๊ตฌ์กฐ์  ๋ณต์žก์„ฑ ๋“ฑ์„ ํฌ๊ด„ํ•˜๋Š” ๊ณ ์ฐจ์› ํŠน์„ฑ์„ ํฌํ•จํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค

Flux-Preserving Adaptive Finite State Projection for Multiscale Stochastic Reaction Networks

Flux-Preserving Adaptive Finite State Projection for Multiscale Stochastic Reaction Networks

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ™”ํ•™ ์ฃผ.Ma์‹(CME)์˜ ๊ทผ์‚ฌ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ์œ ํ•œ ์ƒํƒœ ํˆฌ์˜(FSP) ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค๋ฃน๋‹ˆ๋‹ค. FSP๋Š” ๋ฌดํ•œํ•œ ์ƒํƒœ ๊ณต๊ฐ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žก์„ฑ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํŠน์ • ํ•˜์œ„ ์ง‘ํ•ฉ์„ ์„ ํƒํ•˜๊ณ  ์ด ๋ฒ”์œ„ ๋‚ด์—์„œ ๋™์—ญํ•™์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋„“๊ฒŒ ๋ถ„๋ฆฌ๋œ ๋ฐ˜์‘ ์†๋„๋ฅผ ๊ฐ€์ง„ ์‹œ์Šคํ…œ์—์„œ๋Š”, ํŠนํžˆ ๋‚ฎ์€ ํ™•๋ฅ ์˜ ์ƒํƒœ๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ณ‘๋ชฉ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๋ฉด FSP ๋ฐฉ๋ฒ•์ด ์ œ์•ฝ์„ ๋ฐ›์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ์œ ๋™ ๊ธฐ๋ฐ˜ ์ ์‘ํ˜• FSP ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•๋ฅ  ์œ ๋™์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋‚ฎ์€ ํ™•๋ฅ  ์ƒํƒœ๋ผ๋„ ํฐ ์™ธ๋ถ€ ์œ 

Network
MetaHGNIE: Meta-Path Induced Hypergraph Contrastive Learning in Heterogeneous Knowledge Graphs

MetaHGNIE: Meta-Path Induced Hypergraph Contrastive Learning in Heterogeneous Knowledge Graphs

์ด ๋…ผ๋ฌธ์€ ์ด์งˆ์ ์ธ ์ง€์‹ ๊ทธ๋ž˜ํ”„์—์„œ ๋…ธ๋“œ ์ค‘์š”๋„๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ์Œ๋ฐฉํ–ฅ ์—ฐ๊ฒฐ์— ์˜์กดํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณ ์ฐจ ๊ด€๊ณ„์™€ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ํ†ตํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ MetaHGNIE๋Š” ๋ฉ”ํƒ€๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ๊ตฌ์กฐ์  ๋ฐ ์˜๋ฏธ ์ •๋ณด๋ฅผ ๋ถ„๋ฆฌํ•˜๊ณ  ์ •๋ ฌํ•˜๋Š” ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ๋Œ€์กฐํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. MetaHGNIE์˜ ํ•ต์‹ฌ์€ ๊ณ ์ฐจ ์ง€์‹ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์„ฑ๊ณผ ์ด๋ฅผ ํ†ตํ•œ ๋‹ค์ค‘ ๊ฐœ์ฒด ๊ด€๊ณ„ ๋งฅ๋ฝ ํฌ์ฐฉ์— ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฉ”ํƒ€๊ฒฝ๋กœ ์‹œํ€€์Šค๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง€๋ฉฐ, ํƒ€์ž…ํ™”

Learning
OPAL: Operator-Programmed Algorithms for Landscape-Aware Black-Box Optimization

OPAL: Operator-Programmed Algorithms for Landscape-Aware Black-Box Optimization

์ด ๋…ผ๋ฌธ์€ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™” ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ Operator Programmed Algorithms (OPAL)์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. OPAL๋Š” ๊ฐ ๋ฌธ์ œ ์ธ์Šคํ„ด์Šค๋ณ„๋กœ ์—ฐ์‚ฐ์ž ํ”„๋กœ๊ทธ๋žจ์„ ํ•™์Šตํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ์ง„ํ™” ๋ฐ ๊ตฐ์ง‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋‹ฌ๋ฆฌ ํŠน์ • ๋ฌธ์ œ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ž‘์€ ์„ค๊ณ„ ์˜ˆ์‚ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋ถ„ ์ง„ํ™”๋ฅผ ํ†ตํ•ด ํ’๊ฒฝ์„ ํƒ์ƒ‰ํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•œ ํŠธ๋ž˜์ ํ† ๋ฆฌ ์ธ์ฝ”๋”ฉ ๋ฐ ๋ฉ”ํƒ€ ํ•™์Šต๊ธฐ๋ฅผ ํ†ตํ•œ ์—ฐ์‚ฐ์ž ์ผ์ • ๊ฒฐ์ •์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. OPAL์˜ ์„ฑ๋Šฅ์€ CEC 2017 ํ…Œ์ŠคํŠธ ์Šค์œ„ํŠธ์—์„œ ๊ฒ€์ฆ

STAR: Semantic-Traffic Alignment and Retrieval for Zero-Shot HTTPS Website Fingerprinting

STAR: Semantic-Traffic Alignment and Retrieval for Zero-Shot HTTPS Website Fingerprinting

์ด ๋…ผ๋ฌธ์€ ์›น์‚ฌ์ดํŠธ ์ง€๋ฌธ ๊ณต๊ฒฉ(Website Fingerprinting, WF)์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ๋„˜์–ด๊ฐ„๋‹ค. ๊ธฐ์กด์˜ WF ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ๊ฐ๋…ํ•™์Šต(supervised learning) ๊ธฐ๋ฐ˜์œผ๋กœ, ๊ฐ ์›น์‚ฌ์ดํŠธ๋ณ„๋กœ ๋ผ๋ฒจ์ด ๋ถ™์€ ํŠธ๋ž˜ํ”ฝ ์ƒ˜ํ”Œ์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ์ ‘๊ทผ๋ฒ•์€ ๋‘ ๊ฐ€์ง€ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ฒซ์งธ, ๋ผ๋ฒจ๋ง ๋น„์šฉ์ด ๋ง‰๋Œ€ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. ์›น์‚ฌ์ดํŠธ ์ˆ˜์ฒœ ๊ฐœ์— ๋Œ€ํ•ด ๋งค์ผ ๋ณ€ํ•˜๋Š” ์ฝ˜ํ…์ธ ๋ฅผ ๋ฐ˜์˜ํ•˜๋ ค๋ฉด ์ง€์†์ ์ธ ์žฌ์ˆ˜์ง‘๊ณผ ์žฌ๋ผ๋ฒจ๋ง์ด ํ•„์š”ํ•˜๋‹ค. ๋‘˜์งธ, ํ›ˆ๋ จ ๋‹จ๊ณ„์— ํฌํ•จ๋˜์ง€ ์•Š์€ โ€˜์ƒˆ๋กœ์šดโ€™ ์‚ฌ์ดํŠธ์— ๋Œ€ํ•ด์„œ๋Š” ๋ชจ๋ธ์ด ์ „ํ˜€ ์ผ๋ฐ˜ํ™”๋˜์ง€

Systematization of Knowledge: Security and Safety in the Model Context Protocol Ecosystem

Systematization of Knowledge: Security and Safety in the Model Context Protocol Ecosystem

๋ชจ๋ธ ์ปจํ…์ŠคํŠธ ํ”„๋กœํ† ์ฝœ(MCP)์€ LLM์ด ์™ธ๋ถ€ ๋ฆฌ์†Œ์Šค์™€ ๋„๊ตฌ๋ฅผ ๋™์ ์œผ๋กœ ํ˜ธ์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ์ธํ„ฐํŽ˜์ด์Šค ๊ณ„์ธต์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ๊ณ„์ธต์€ ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€ ์›์‹œ ์š”์†Œโ€”Resources(๋ฐ์ดํ„ฐยท์„œ๋น„์Šค), Prompts(์ปจํ…์ŠคํŠธ ์ „๋‹ฌ), Tools(์‹คํ–‰ ๊ฐ€๋Šฅํ•œ API)โ€”๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ธ ์ธ์ฆยท๊ถŒํ•œ ๋ถ€์—ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฐ–์ถ”์ง€ ์•Š์€ ๊ฒฝ์šฐ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด์ด ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์œ„ํ—˜์€ โ€œ๊ฐ„์ ‘ ํ”„๋กฌํ”„ํŠธ ์ธ์ ์…˜โ€์ด๋‹ค. ๊ณต๊ฒฉ์ž๋Š” ์ •์ƒ ์‚ฌ์šฉ์ž์™€ ๋™์ผํ•œ ์ปจํ…์ŠคํŠธ ํ๋ฆ„์— ์•…์˜์ ์ธ ํ…์ŠคํŠธ๋ฅผ ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ LLM์ด ๋‚ด๋ถ€์ ์œผ๋กœ ์ƒ์„ฑํ•œ ํ”„๋กฌํ”„ํŠธ

Model System
Variance-Aware Prior-Based Tree Policies for Monte Carlo Tree Search

Variance-Aware Prior-Based Tree Policies for Monte Carlo Tree Search

๋ณธ ๋…ผ๋ฌธ์€ Monte Carlo Tree Search(MCTS)์™€ ๊ฐ•ํ™”ํ•™์Šต(RL) ์‚ฌ์ด์˜ ์‹œ๋„ˆ์ง€๋ฅผ ํ•œ ๋‹จ๊ณ„ ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ์ƒˆ๋กœ์šด ํƒ์ƒ‰ ์ •์ฑ…์„ ์ œ์•ˆํ•œ๋‹ค. AlphaZero๊ฐ€ ๋ณด์—ฌ์ค€ ๋ฐ”์™€ ๊ฐ™์ด, ๊ธฐ์กด UCT๋Š” ํƒ์ƒ‰๊ณผ ํ™œ์šฉ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด UCB1์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์‚ฌ์ „ ํ™•๋ฅ (P)์„ ๊ฒฐํ•ฉํ•œ PUCT๊ฐ€ ์‹ค์ œ๋กœ๋Š” ํƒ์ƒ‰ ํšจ์œจ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ๊ฒฝํ—˜์  ์ฆ๊ฑฐ๊ฐ€ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ PUCT๋Š” โ€œ๊ฒฝํ—˜์ โ€์œผ๋กœ ์„ค๊ณ„๋œ ๊ฒƒ์ด๋ฉฐ, ์ด๋ก ์  ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•ด ๋‹ค๋ฅธ UCB ๋ณ€ํ˜•์„ ์‚ฌ์ „ ๊ธฐ๋ฐ˜ ํ˜•ํƒœ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์› ๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ๊ฐ€ MCTS๋ฅผ ์ •๊ทœํ™” ์ •์ฑ… ์ตœ์ ํ™”(RP

Context-Sensitive Abstractions for Reinforcement Learning with Parameterized Actions

Context-Sensitive Abstractions for Reinforcement Learning with Parameterized Actions

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜ํŒŒ๋ผ๋ฏธํ„ฐํ™”๋œ ํ–‰๋™ ๊ณต๊ฐ„(parameterized action space)โ€™์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ์˜์‚ฌ๊ฒฐ์ • ๊ตฌ์กฐ์ด๋‹ค. ์ „ํ†ต์ ์ธ ๊ฐ•ํ™”ํ•™์Šต์€ ํฌ๊ฒŒ ๋‘ ๊ฐˆ๋ž˜๋กœ ๋‚˜๋‰œ๋‹ค. ํ•˜๋‚˜๋Š” ์ด์‚ฐ ํ–‰๋™ ์ง‘ํ•ฉ์„ ์ „์ œ๋กœ ํ•˜๋Š” Qโ€‘learning, DQN ๋“ฑ์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์—ฐ์† ํ–‰๋™์„ ์ง์ ‘ ์ตœ์ ํ™”ํ•˜๋Š” DDPG, SAC์™€ ๊ฐ™์€ ์ •์ฑ… ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ๋กœ๋ด‡ ์ œ์–ด, ๊ฒŒ์ž„ AI, ์ž๋™ ์šด์ „ ๋“ฑ์—์„œ๋Š” โ€œ์ ํ”„โ€์™€ ๊ฐ™์€ ์ด์‚ฐ ํ–‰๋™๊ณผ ๋™์‹œ์— ๊ทธ ํ–‰๋™์˜ ์„ธ๋ถ€ ์‹คํ–‰ ํŒŒ๋ผ๋ฏธํ„ฐ(์˜ˆ: ์ ํ”„ ๋†’์ด, ๋ฐฉํ–ฅ)๋ฅผ ๊ฒฐ์ •ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค.

Learning
Detecting Perspective Shifts in Multi-agent Systems

Detecting Perspective Shifts in Multi-agent Systems

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์ƒ์„ฑํ˜• ์—์ด์ „ํŠธ์™€ ์™ธ๋ถ€ ๋„๊ตฌ์˜ ๊ฒฐํ•ฉ, ์ฆ‰ โ€˜์—์ด์ „ํŠธโ€™๋ผ๋Š” ๊ฐœ๋…์ด ๋‹จ์ˆœํžˆ ํ•˜๋‚˜์˜ ๋ชจ๋ธ์„ ๋ณด์กฐํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋‹ค์ˆ˜์˜ ์—์ด์ „ํŠธ๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง„ํ™”ํ•˜๋Š” ๋ณตํ•ฉ ์‹œ์Šคํ…œ์œผ๋กœ ์ „์ดํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•œ๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ์€ ์ฃผ๋กœ ์ •์  ํ˜น์€ ๋‹จ์ผ ์‹œ์ ์—์„œ์˜ ์—์ด์ „ํŠธ ํ–‰๋™์„ ์ €์ฐจ์› ์ž„๋ฒ ๋”ฉ์œผ๋กœ ์š”์•ฝํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜์‹œ๊ฐ„์  ๋ฐ์ดํ„ฐ ์ปค๋„ ๊ด€์  ๊ณต๊ฐ„(TDKPS)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ

System
Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers

Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ํƒ€์› ๊ณก์„  ์•”ํ˜ธ(ECC)์˜ ๋น„๋ฐ€ํ‚ค ๋ณต์› ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ECC๋Š” ํ˜„๋Œ€ ์ธํ„ฐ๋„ท ๋ณด์•ˆ๊ณผ ์•”ํ˜ธํ™” ๊ธˆ์œต ๋„๊ตฌ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ, ๊ทธ ์ค‘์š”์„ฑ์€ HTTPS์™€ ๊ฐ™์€ ํ”„๋กœํ† ์ฝœ ๋ฐ ๋น„ํŠธ์ฝ”์ธ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™•์ธ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ์•”ํ˜ธํ™” ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์‹ค์ œ ํ…Œ์ŠคํŠธ๋Š” ๋งค์šฐ ์ œํ•œ์ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜ ์—ญํ• ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด ๋ชจ๋ธ์ด ๊ณต๊ฐœํ‚ค์™€ ๊ฐœ์ธํ‚ค ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•˜๊ณ  ์ด๋ฅผ ์—ญ๊ณตํ•™ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์ฃผ์žฅํ•œ๋‹ค. ํŠนํžˆ, secp256r1 ํ˜•์‹์˜ ํ‚ค ์Œ์— ๋Œ€ํ•ด

QGShap: Quantum Acceleration for Faithful GNN Explanations

QGShap: Quantum Acceleration for Faithful GNN Explanations

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์˜ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ํš๊ธฐ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์–‘์ž ์ปดํ“จํŒ…์„ ๋„์ž…ํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด ์ƒคํ”Œ๋ฆฌ ๊ฐ’ ๊ธฐ๋ฐ˜ ์„ค๋ช… ๊ธฐ๋ฒ•์€ ์ด๋ก ์ ์œผ๋กœ๋Š” ๊ฐ€์žฅ ๊ณต์ •ํ•œ ๊ธฐ์—ฌ๋„ ์ธก์ •์„ ์ œ๊ณตํ•˜์ง€๋งŒ, 2โฟ๊ฐœ์˜ ์—ฐํ•ฉ์„ ๋ชจ๋‘ ํ‰๊ฐ€ํ•ด์•ผ ํ•˜๋Š” ์กฐํ•ฉ ํญ๋ฐœ ๋ฌธ์ œ ๋•Œ๋ฌธ์— ์‹ค์ œ ๋Œ€๊ทœ๋ชจ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ๊ฐ€ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋Š” ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์ƒ˜ํ”Œ๋ง, ๊ทผ์‚ฌ ๋ชจ๋ธ, ํ˜น์€ ์ œํ•œ๋œ ์ˆœ์—ด ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ค๋ช…์˜ ์ถฉ์‹ค๋„๋ฅผ ์ €ํ•˜์‹œํ‚ฌ ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. QGShap์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ์–‘์ž ์ง„ํญ ์ฆํญ(ampli

SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards

SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards

๋ณธ ๋…ผ๋ฌธ์€ AI ์ƒ์„ฑ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ ํ‰๊ฐ€๋ผ๋Š” ๋„“์€ ์˜์—ญ์—์„œ โ€˜๊ณต๊ฐ„ ๋ฏธํ•™(Spatial Aesthetics)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํŠนํžˆ ์‹ค๋‚ด ์žฅ๋ฉด์— ํŠนํ™”๋œ ํ‰๊ฐ€ ๊ธฐ์ค€์„ ์ฒด๊ณ„ํ™”ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด IQA ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ „๋ฐ˜์ ์ธ ์™œ๊ณก ์ •๋„, ์ƒ‰์ƒ ์™œ๊ณก, ๊ตฌ์กฐ์  ์†์‹ค ๋“ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ธ๊ฐ„์ด ์ผ์ƒ์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” โ€˜๊ณต๊ฐ„์  ์•„๋ฆ„๋‹ค์›€โ€™โ€”์˜ˆ๋ฅผ ๋“ค์–ด ๊ฐ€๊ตฌ ๋ฐฐ์น˜์˜ ํ•ฉ๋ฆฌ์„ฑ, ์ƒ‰์ฑ„์™€ ์žฌ์งˆ์˜ ์กฐํ™”, ์กฐ๋ช…์˜ ๋ฐฉํ–ฅ๊ณผ ๊ฐ•๋„, ๊ทธ๋ฆฌ๊ณ  ๋ Œ์ฆˆ ์™œ๊ณก ๋“ฑโ€”์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด

Social Comparison without Explicit Inference of Others' Reward Values: A Constructive Approach Using a Probabilistic Generative Model

Social Comparison without Explicit Inference of Others' Reward Values: A Constructive Approach Using a Probabilistic Generative Model

์ด ๋…ผ๋ฌธ์€ ์˜์žฅ๋ฅ˜ ์‚ฌํšŒ ์ธ์ง€ ์—ฐ๊ตฌ์— ๊ณ„์‚ฐ ๋ชจ๋ธ๋ง์„ ๋„์ž…ํ•จ์œผ๋กœ์จ โ€˜์‚ฌํšŒ์  ๋น„๊ตโ€™๋ผ๋Š” ๋ณตํ•ฉ ํ˜„์ƒ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ•ด์„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ์ž๋Š” ์„ธ ๊ฐ€์ง€ ๋Œ€์•ˆ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ–ˆ๋Š”๋ฐ, ๊ฐ๊ฐ์ด ์‚ฌํšŒ์  ์ •๋ณด ์ฒ˜๋ฆฌ์˜ ๋‹ค๋ฅธ ์ˆ˜์ค€์„ ๋Œ€ํ‘œํ•œ๋‹ค. IPM์€ ํŒŒํŠธ๋„ˆ์˜ ํ–‰๋™์œผ๋กœ๋ถ€ํ„ฐ ์ฃผ๊ด€์  ๊ฐ€์น˜ ํ•จ์ˆ˜๋ฅผ ์—ญ์ถ”์ •ํ•˜๋Š” ๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Š” ์ธ๊ฐ„์˜ ์ด๋ก ์  ๋งˆ์Œ ์ด๋ก (theory of mind)๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ, ํƒ€์ธ์˜ ๋‚ด๋ถ€ ์ƒํƒœ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋ ค๋Š” ์ ‘๊ทผ์ด๋‹ค. ๋ฐ˜๋ฉด NCM์€ ์ „ํ†ต์ ์ธ ๊ฐ•ํ™” ํ•™์Šต ๋ชจ๋ธ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ž๊ธฐ ์ž์‹ ์˜ ๋ณด์ƒ ์‹ ํ˜ธ๋งŒ์„ ์‚ฌ์šฉํ•ด ํ–‰๋™ ์ •์ฑ…์„

Model
The Silent Scholar Problem: A Probabilistic Framework for Breaking Epistemic Asymmetry in LLM Agents

The Silent Scholar Problem: A Probabilistic Framework for Breaking Epistemic Asymmetry in LLM Agents

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ž์œจ ์—์ด์ „ํŠธ๊ฐ€ RAG(๊ฒ€์ƒ‰ ๋ณด๊ฐ• ์ƒ์„ฑ)์™€ ๊ฒฐํ•ฉ๋  ๋•Œ ๊ฒช๋Š” ๊ทผ๋ณธ์ ์ธ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•œ๋‹ค. RAG๋Š” ์™ธ๋ถ€ ์ง€์‹์„ โ€˜์ฝ์–ด๋“ค์—ฌโ€™ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋Š” ์ผ๋ฐฉํ–ฅ์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋ถˆ๊ณผํ•˜๋ฏ€๋กœ, ์—์ด์ „ํŠธ๋Š” ์ •๋ณด๋ฅผ ์†Œ๋น„ํ•˜๋Š” ์—ญํ• ์— ๋จธ๋ฌด๋ฅธ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ โ€˜์ธ์‹ ๋น„๋Œ€์นญ(epistemic asymmetry)โ€™์ด๋ผ ๋ช…๋ช…ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋น„๋Œ€์นญ์ด ์ „ ์„ธ๊ณ„์ ์ธ ์ง€์‹ ์ƒ์‚ฐ ๊ณผ์ •์—์„œ ์ค‘๋ณต๊ณผ ๋น„ํšจ์œจ์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ํŠนํžˆ, ๋™์ผํ•˜๊ฑฐ๋‚˜ ์œ ์‚ฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์—ฌ๋Ÿฌ ๋…๋ฆฝ์ ์ธ ์—์ด์ „ํŠธ๊ฐ€ ์„œ๋กœ์˜ ํ•™์Šต ๊ฒฐ๊ณผ๋ฅผ ๊ณต์œ ํ•˜์ง€ ๋ชปํ•˜๊ณ , ๊ฒฐ๊ตญ ๊ฐ™

Framework
A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback

A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback

MATS ๋…ผ๋ฌธ์€ ํ˜„์žฌ ํ…์ŠคํŠธํˆฌSQL ๋ถ„์•ผ์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋Š” ์ง€๋ฐฐ์ ์ธ ์œ„์น˜๋ฅผ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. LLM์€ ๋ฐฉ๋Œ€ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ ๋•๋ถ„์— ๋ณต์žกํ•œ ์ž์—ฐ์–ด ์ดํ•ด์™€ ๋…ผ๋ฆฌ์  ์ถ”๋ก ์— ๊ฐ•์ ์„ ๋ณด์ด์ง€๋งŒ, ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๋ณด์•ˆ, ๋ผ์ด์„ ์Šค ๋น„์šฉ, ์‘๋‹ต ์ง€์—ฐ ๋“ฑ์˜ ์‹ค์งˆ์ ์ธ ์ œ์•ฝ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์‹ค์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์„ ํ™œ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ์œผ๋‚˜, SLM์€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ์™€ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์ œํ•œ์œผ๋กœ ์ธํ•ด ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ํŠนํžˆ ํ…์ŠคํŠธํˆฌSQL์ฒ˜๋Ÿผ ์ž…๋ ฅ ๋ฌธ์žฅ์˜ ์˜๋ฏธ๋ฅผ ์ •

Model Framework
ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes

ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes

ioPUF+๋Š” ๊ธฐ์กด IC ์„ค๊ณ„์— ๋‚ด์žฌ๋œ ์ž…์ถœ๋ ฅ ์ €ํ•ญ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด PUF ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ „ํ†ต์ ์ธ SRAMโ€‘PUF, Ringโ€‘Oscillatorโ€‘PUF ๋“ฑ์€ ๋ณ„๋„์˜ ํšŒ๋กœ ๋ธ”๋ก์„ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ํŠน์ˆ˜ํ•œ ๋ ˆ์ด์•„์›ƒ์„ ์š”๊ตฌํ•œ๋‹ค. ๋ฐ˜๋ฉด ioPUF+๋Š” ์ œ์กฐ ๊ณต์ •์—์„œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ํ’€์—…ยทํ’€๋‹ค์šด ์ €ํ•ญ๊ฐ’์˜ ๋ฏธ์„ธ ์ฐจ์ด๋ฅผ ์ธก์ •ํ•จ์œผ๋กœ์จ ์ถ”๊ฐ€ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ๋˜๋Š” COTS ๋ถ€ํ’ˆ์„ ์‚ฌ์šฉํ•˜๋Š” ์ €๊ฐ€ํ˜• IoT ๋””๋ฐ”์ด์Šค์— ํฐ ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ์ œ์•ˆ๋œ PUF๋Š” ๋‘ ๋‹จ๊ณ„์˜ ๋ณ€ํ™˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์›

Open-Ended Goal Inference through Actions and Language for Human-Robot Collaboration

Open-Ended Goal Inference through Actions and Language for Human-Robot Collaboration

์ด ์‚ฌ๋ก€๋Š” ์ธ๊ฐ„โ€‘๋กœ๋ด‡ ํ˜‘์—…(HRI) ๋ถ„์•ผ์—์„œ โ€˜์˜๋„ ์ถ”๋ก โ€™๊ณผ โ€˜๋Œ€ํ™” ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •โ€™์ด ์–ด๋–ป๊ฒŒ ํ†ตํ•ฉ๋˜๋Š”์ง€๋ฅผ ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ธ๊ฐ„์€ โ€œ๋น ๋ฅธ ์ดํƒˆ๋ฆฌ์•ˆ ์ €๋…โ€์ด๋ผ๋Š” ๊ณ ์ˆ˜์ค€ ๋ชฉํ‘œ๋งŒ์„ ์ œ์‹œํ•œ๋‹ค. ๋กœ๋ด‡์€ ์‚ฌ์ „ ์ •์˜๋œ ์Œ์‹ ์นดํ…Œ๊ณ ๋ฆฌ(์ดํƒˆ๋ฆฌ์•ˆ ์š”๋ฆฌ)์™€ ์‹œ๊ฐ„ ์ œ์•ฝ(๋น ๋ฅธ ์กฐ๋ฆฌ)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ›„๋ณด ์˜ต์…˜์„ ์ƒ์„ฑํ•˜๊ณ , ํŒŒ์Šคํƒ€์™€ ๋ฐฅ์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ํ•˜์œ„ ๋ชฉํ‘œ ์ค‘ ํŒŒ์Šคํƒ€๋ฅผ ์„ ํ˜ธํ•œ๋‹ค๋Š” ํ™•๋ฅ ์  ํŒ๋‹จ์„ ๋‚ด๋ฆฐ๋‹ค. ์—ฌ๊ธฐ์„œ ๋กœ๋ด‡์€ ์‚ฌ์ „ ์ง€์‹ ๋ฒ ์ด์Šค์™€ ์ƒํ™ฉ ์ธ์‹(๋“๋Š” ๋ฌผ)์ด๋ผ๋Š” ๋ฌผ๋ฆฌ์  ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ๋กœ๋ด‡์€ ํŒŒ์Šคํƒ€๋ฅผ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฐ€์ ธ์˜ด์œผ

A Time-efficient Prioritised Scheduling Algorithm to Optimise Initial Flock Formation of Drones

A Time-efficient Prioritised Scheduling Algorithm to Optimise Initial Flock Formation of Drones

๋“œ๋ก  ๋ฌด๋ฆฌ ๋น„ํ–‰์€ ๊ตฐ์ง‘ ํ–‰๋™์„ ํ†ตํ•ด ๋ณต์žกํ•œ ์ž„๋ฌด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ฃผ์ง€๋งŒ, ์ดˆ๊ธฐ ํ˜•์„ฑ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถฉ๋Œ ์œ„ํ—˜์€ ์‹œ์Šคํ…œ ์ „์ฒด์˜ ์•ˆ์ •์„ฑ์„ ํฌ๊ฒŒ ์œ„ํ˜‘ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ํž˜(์˜ˆ: ์ธ๊ณต์œ„๋ ฅ)์ด๋‚˜ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์„ ํ™œ์šฉํ•œ ๊ฒฐํ•ฉ ์ฐจ์ˆ˜(Coupling Degree) ๊ธฐ๋ฐ˜ ์šฐ์„ ์ˆœ์œ„ ์ง€์ • ๋ฐฉ์‹์„ ์ฑ„ํƒํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋“œ๋ก  ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์—ฐ์‚ฐ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๊ณ , ์ถฉ๋Œ ํšŒํ”ผ๋ฅผ ์œ„ํ•œ ๊ฒฝ๋กœ ์žฌ๊ณ„์‚ฐ์ด ๋นˆ๋ฒˆํžˆ ์ผ์–ด๋‚˜ ๋น„ํšจ์œจ์ ์ธ ๋น„ํ–‰ ํŒจํ„ด์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ, ์ž ์žฌ ์ถฉ๋Œ์ด ๋‹ค์ˆ˜ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ€์ง‘ ํ™˜๊ฒฝ์—์„œ๋Š” ์ผ๋ถ€ ๋“œ๋ก ์ด

AI/ML in 3GPP 5G Advanced -- Services and Architecture

AI/ML in 3GPP 5G Advanced -- Services and Architecture

3GPP๋Š” ์ „ ์„ธ๊ณ„ ์ด๋™ํ†ต์‹  ํ‘œ์ค€์„ ์ •์˜ํ•˜๋Š” ํ•ต์‹ฌ ์กฐ์ง์œผ๋กœ, Release 19์€ โ€˜5G Advancedโ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ๋‹จ๊ณ„์— ์ง„์ž…ํ•˜๋Š” ์ค‘์š”ํ•œ ์ „ํ™˜์ ์ด๋‹ค. ์ด๋ฒˆ ๋ฆด๋ฆฌ์ฆˆ์—์„œ ๋ˆˆ์— ๋„๋Š” ์ ์€ AIยทML ๊ธฐ์ˆ ์„ ๋‹จ์ˆœํžˆ ๋ถ€๊ฐ€ ๊ธฐ๋Šฅ์œผ๋กœ ๋ผ์›Œ๋„ฃ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋„คํŠธ์›Œํฌ ์ž์ฒด์™€ ์„œ๋น„์Šค ์ œ๊ณต ์–‘์ชฝ์„ ๋™์‹œ์— ํ˜์‹ ํ•˜๋Š” ๊ตฌ์กฐ์  ์ ‘๊ทผ์„ ์ฑ„ํƒํ–ˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํŒจ๋Ÿฌ๋‹ค์ž„, ์ฆ‰ โ€˜๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ AI( AI for network )โ€™๋Š” ๊ธฐ์กด 5G ์ธํ”„๋ผ๊ฐ€ ์ง๋ฉดํ•œ ๋ณต์žกํ•œ ์ž์› ๊ด€๋ฆฌ, ํŠธ๋ž˜ํ”ฝ ์˜ˆ์ธก, ์…€ ๊ฐ„ ๊ฐ„์„ญ ์ตœ์†Œํ™” ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ AI ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š”

BEACON: A Unified Behavioral-Tactical Framework for Explainable Cybercrime Analysis with Large Language Models

BEACON: A Unified Behavioral-Tactical Framework for Explainable Cybercrime Analysis with Large Language Models

๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฌ์ด๋ฒ„๋ฒ”์ฃ„ ๋ถ„์„์— ์‹ฌ๋ฆฌํ•™์  ์š”์†Œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋„์ž…ํ•œ ์ตœ์ดˆ์˜ ์‹œ๋„ ์ค‘ ํ•˜๋‚˜๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ๋ชจ๋ธ์€ ์ฃผ๋กœ ์•…์„ฑ ์ฝ”๋“œ, ๋„คํŠธ์›Œํฌ ํŠธ๋ž˜ํ”ฝ, ์ทจ์•ฝ์  ์Šค์บ๋‹ ๋“ฑ ๊ธฐ์ˆ ์  ์ง€ํ‘œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”์œผ๋ฉฐ, ๊ณต๊ฒฉ์ž์˜ ์ „์ˆ ยท๊ธฐ์ˆ ยท์ ˆ์ฐจ(TTP)๋ฅผ ๋งคํ•‘ํ•˜๋Š” ๋ฐ๋Š” ์„ฑ๊ณตํ–ˆ์ง€๋งŒ, ํ”ผํ•ด์ž๋ฅผ ์†์ด๋Š” ์ธ๊ฐ„์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ฑฐ๋‚˜ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. BEACON์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ๋‘ ์ถ•์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์€ โ€˜์‹ฌ๋ฆฌ์  ์กฐ์ž‘ ์นดํ…Œ๊ณ ๋ฆฌโ€™๋กœ, Prospect Theory๊ฐ€ ์ œ์‹œํ•˜๋Š” ์†์‹ค ํšŒํ”ผยท

Model Analysis Framework
rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced Strategy Injection

rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced Strategy Injection

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ๋‹จ์ˆœํžˆ ๋Œ€๊ทœ๋ชจ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํŒจํ„ด์„ ํ•™์Šตํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ์‹ค์ œ ์ธ๊ฐ„๊ณผ ์œ ์‚ฌํ•œ โ€œ์ถ”๋ก โ€ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”๋„๋ก ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์ „๋žต ์ฃผ์ž…โ€™์ด๋‹ค. ๊ธฐ์กด์˜ RLHF(Reinforcement Learning from Human Feedback) ๋ฐฉ์‹์€ ๋ณดํ†ต ์ „์ฒด ๋ชจ๋ธ์„ ์ง์ ‘ ๊ฐ•ํ™” ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐ˜๋ฉด, rSIM์€ ์ž‘์€ ํ”Œ๋ž˜๋„ˆ๋ฅผ ๋ณ„๋„ ์—์ด์ „ํŠธ๋กœ ๋‘๊ณ , ์ด ํ”Œ๋ž˜๋„ˆ๊ฐ€ LLM์˜ CoT ๊ณผ์ •์— ์ „๋žต์„ ์‚ฝ์ž…ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. 1. ๋ฆฌ๋”โ€‘ํŒ”๋กœ์›Œ ๊ตฌ์กฐ์™€ MARL ๋ฆฌ๋”(ํ”Œ๋ž˜๋„ˆ)๋Š” ํ˜„์žฌ ์ƒํ™ฉ

Schoenfeld's Anatomy of Mathematical Reasoning by Language Models

Schoenfeld's Anatomy of Mathematical Reasoning by Language Models

ThinkARM์€ ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ํ† ํฐโ€‘๋ ˆ๋ฒจ์˜ ํ™•๋ฅ  ๋ถ„ํฌ๋‚˜ ์†์‹ค ๊ณก์„ ์— ๋จธ๋ฌด๋Š” ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜์–ด, ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ •์„ ๋ชจ๋ธ๋งํ•œ Schoenfeld์˜ ์—ํ”ผ์†Œ๋“œ ์ด๋ก ์„ ์–ธ์–ด ๋ชจ๋ธ์— ์ ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์—ํ”ผ์†Œ๋“œ ์ด๋ก ์€ ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์ผ๋ จ์˜ ์ธ์ง€์  โ€˜๋‹จ๊ณ„โ€™๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ๋‹จ๊ณ„๊ฐ€ ์–ด๋–ป๊ฒŒ ์ „์ด๋˜๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Analysis(๋ฌธ์ œ ๋ถ„์„)โ€™, โ€˜Explore(๊ฐ€๋Šฅ์„ฑ ํƒ์ƒ‰)โ€™, โ€˜Implement(ํ•ด๋ฒ• ๊ตฌํ˜„)โ€™, โ€˜Verify(๊ฒฐ๊ณผ ๊ฒ€์ฆ)โ€™ ๋“ฑ ๊ตฌ์ฒด์ ์ธ ๋ผ๋ฒจ๋กœ ๋งคํ•‘ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ํ๋ฆ„์„ ์ธ๊ฐ„์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ๋ฆ„๋„

Model
TableGPT-R1: Advancing Tabular Reasoning Through Reinforcement Learning

TableGPT-R1: Advancing Tabular Reasoning Through Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ‘œ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์—์„œ ๊ธฐ์กด LLM์ด ์ง๋ฉดํ•œ ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๊ฐ•ํ™”ํ•™์Šต(RL)์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” โ€œ๊ณ ํ’ˆ์งˆ ์—์ด์ „ํŠธ ๊ฒฝ๋กœโ€์˜ ๋ถ€์žฌ์ด๋‹ค. ํ‘œ ์ž‘์—…์€ ์ข…์ข… SQL ์ฟผ๋ฆฌ ์ƒ์„ฑ, ํŒŒ์ด์ฌ ์ฝ”๋“œ ์‹คํ–‰, ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ฝ”๋“œ์™€ ํ™˜๊ฒฝ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌํ•จํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณตํ•ฉ ์ž‘์—…์„ ์‹ค์ œ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›๋Š” ๋ฐ์ดํ„ฐ๋Š” ์ˆ˜์ง‘ ๋น„์šฉ์ด ๋†’๊ณ , ํŠนํžˆ ๋‹ค์–‘ํ•œ ์Šคํ‚ค๋งˆ์™€ ๋ณต์žกํ•œ ์—ฐ์‚ฐ์„ ํฌํ•จํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋”์šฑ ๋“œ๋ฌผ๋‹ค. ์ €์ž๋“ค์€ ๋‚œ์ด๋„โ€‘๊ณ„์ธตํ™”(stratified difficulty) ๋ฐฉ์‹์„

Learning
A Multi-objective Optimization Approach for Feature Selection in Gentelligent Systems

A Multi-objective Optimization Approach for Feature Selection in Gentelligent Systems

๋ณธ ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์— AI ๊ธฐ๋ฐ˜ ์ง€๋Šฅํ˜• ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. โ€œGentelligent systemโ€์ด๋ผ๋Š” ์šฉ์–ด๋Š” ์ƒ๋ฌผํ•™์  ์œ ์ „์ •๋ณด์™€ ์ œ์กฐ ๊ณต์ •(์—ผ์ƒ‰์ฒด) ์‚ฌ์ด์˜ ์œ ์‚ฌ์„ฑ์„ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ, ๊ฐœ๋ณ„ ๋ถ€ํ’ˆ์˜ ๋‚ด์žฌ๋œ ํŠน์„ฑ(์œ ์ „์ž)๊ณผ ์ž๋™ํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๊ฒฐํ•ฉ๋œ ํ†ตํ•ฉ ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ๋…์  ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋ฉฐ, ์‹œ์Šคํ…œ ์ž์ฒด๊ฐ€ ์Šค์Šค๋กœ ์ง„ํ™”ํ•˜๊ณ  ์ตœ์ ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋‚ดํฌํ•œ๋‹ค. ์šฐ์„ธ ๊ธฐ๋ฐ˜ ๋‹ค๋ชฉํ‘œ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜(Dominanceโ€‘based Multiโ€‘objective E

System
AraToken: Optimizing Arabic Tokenization with Normalization Pipeline and Language Extension for Qwen3

AraToken: Optimizing Arabic Tokenization with Normalization Pipeline and Language Extension for Qwen3

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ์ƒํƒœ๊ณ„์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ํ† ํฌ๋‚˜์ด์ €๊ฐ€ ์˜์–ด ์ค‘์‹ฌ์œผ๋กœ ์„ค๊ณ„๋˜์–ด ์žˆ๋‹ค๋Š” ์ ์„ ๋น„ํŒ์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์˜์–ด์™€ ๋‹ฌ๋ฆฌ ์•„๋ž์–ด๋Š” ์–ด๊ทผ๊ณผ ์ ‘์‚ฌ, ์–ด๋ฏธ๊ฐ€ ๋ณตํ•ฉ์ ์œผ๋กœ ๊ฒฐํ•ฉ๋˜๋Š” ํ˜•ํƒœ์†Œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์•Œ๋ฆฌํ”„(ุง)์™€ ์•Œ๋ฆฌํ”„ ๋งˆํฌ(ุฃ, ุฅ, ุข) ๋“ฑ ๋‹ค์–‘ํ•œ ํ‘œ๊ธฐ ๋ณ€ํ˜•, ๋ชจ์Œ ๋ถ€ํ˜ธ(๋‹ค์ด์•„ํฌ๋ฆฌํ‹ฑ), ๊ทธ๋ฆฌ๊ณ  ์•„๋ผ๋น„์•„ ์ธ๋„ ์ˆซ์ž ์ฒด๊ณ„๊ฐ€ ๊ณต์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋‹จ์–ด๋ผ๋„ ๋ฌธ์ž ์ˆ˜์ค€์—์„œ ์—ฌ๋Ÿฌ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ผ๋ฐ˜ ํ† ํฌ๋‚˜์ด์ €๊ฐ€ ์ด๋Ÿฌํ•œ ๋ณ€ํ˜•์„ ๋ฌด์‹œํ•˜๊ณ  ๊ทธ๋Œ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋ฉด, ๋™์ผ ์–ดํœ˜๊ฐ€

Collaborative Edge-to-Server Inference for Vision-Language Models

Collaborative Edge-to-Server Inference for Vision-Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์™€ ์„œ๋ฒ„ ๊ฐ„์˜ ํ˜‘์—…์„ ํ†ตํ•ด ๋น„์ „ ์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ†ต์‹  ๋น„์šฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ VLM ์ถ”๋ก  ๋ฐฉ๋ฒ•์—์„œ๋Š” ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ ์บก์ฒ˜๋œ ์ด๋ฏธ์ง€๋ฅผ ์„œ๋ฒ„๋กœ ์ „์†กํ•˜๊ณ , ์ด ์ด๋ฏธ์ง€๋Š” ์„œ๋ฒ„ ๋‚ด๋ถ€์˜ ๋น„์ „ ์ธ์ฝ”๋”์— ๋งž๊ฒŒ ๋ฆฌ์‚ฌ์ด์ง•๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ณผ์ •์—์„œ ์„ธ๋ฐ€ํ•œ ์‹œ๊ฐ ์ •๋ณด๊ฐ€ ์†์‹ค๋˜์–ด ์ถ”๋ก  ์ •ํ™•๋„๊ฐ€ ์ €ํ•˜๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์„œ๋ฒ„์—์„œ ์ „์ฒด ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์ดˆ๊ธฐ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜๊ณ , VLM ๋‚ด๋ถ€์˜ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„

Model
CoAgent: Collaborative Planning and Consistency Agent for Coherent Video Generation

CoAgent: Collaborative Planning and Consistency Agent for Coherent Video Generation

CoAgent ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธโ€‘ํˆฌโ€‘๋น„๋””์˜ค ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ๊ฐ„ ์ œ๊ธฐ๋˜์–ด ์˜จ โ€œ์ƒท ๊ฐ„ ์ผ๊ด€์„ฑ ๋ถ€์žฌโ€ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๊ธฐ์กด ๋ชจ๋ธ์ด ๊ฐ–๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์ง„๋‹จํ•˜๊ณ  ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ๊ณ„ํšโ€‘ํ•ฉ์„ฑโ€‘๊ฒ€์ฆโ€‘ํŽธ์ง‘ ๋ผ๋Š” ํ์‡„โ€‘๋ฃจํ”„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ธ๊ฐ„ ๊ฐ๋…์ž๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋˜ โ€˜๊ตฌ์ƒ โ†’ ๊ตฌํ˜„ โ†’ ๊ฒ€์ˆ˜ โ†’ ์ˆ˜์ •โ€™ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•œ๋‹ค. ํŠนํžˆ ์Šคํ† ๋ฆฌ๋ณด๋“œ ํ”Œ๋ž˜๋„ˆ๊ฐ€ ์ถ”์ƒ์ ์ธ ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ๋ฅผ โ€œ์—”ํ‹ฐํ‹ฐ(์ธ๋ฌผยท์˜ค๋ธŒ์ ํŠธ)โ€, โ€œ๊ณต๊ฐ„ ๊ด€๊ณ„(์œ„์น˜ยท๊ฑฐ๋ฆฌ)โ€, โ€œ์‹œ๊ฐ„ ๋‹จ์„œ(๋™์ž‘ ์ˆœ์„œยท

World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty

World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธโ€™์ด ์‹ค์ œ ๋ฌผ๋ฆฌ ๋ฒ•์น™๊ณผ ์–ด๊ธ‹๋‚˜๋Š” ํ”„๋ ˆ์ž„์„ ์ƒ์„ฑํ•  ๋•Œ, ์ด๋ฅผ ์‚ฌ์ „์— ์ธ์ง€ํ•˜๊ณ  ๊ฒฝ๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ถ€์žฌํ•˜๋‹ค๋Š” ์ ์ด๋‹ค. ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์ •์ฑ…์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜ ์˜ˆ์ธกํ•  ๋•Œ, ๋ชจ๋ธ์ด ์ƒ์„ฑํ•œ ์˜์ƒ์ด ํ˜„์‹ค๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด๋ฉด ์ž˜๋ชป๋œ ํ–‰๋™ ๊ณ„ํš์„ ์„ธ์šฐ๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋ธ ์ž์ฒด๊ฐ€ โ€œ์–ผ๋งˆ๋‚˜ ํ™•์‹ ์„ ๊ฐ€์ง€๊ณ โ€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. Cยณ๊ฐ€ ์ œ์‹œํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ํ˜์‹ ์€ โ€˜์—„๊ฒฉํžˆ ์ ํ•ฉํ•œ ์Šค์ฝ”์–ด๋ง ๋ฃฐ(strictly proper scoring rules)โ€™์„ ํ™œ์šฉํ•œ๋‹ค

Model
Comparative Analysis of 47 Context-Based Question Answer Models Across 8 Diverse Datasets

Comparative Analysis of 47 Context-Based Question Answer Models Across 8 Diverse Datasets

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ•™์Šต๋œ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์งˆ๋ฌธ์‘๋‹ต(CBQA) ๋ชจ๋ธ์„ ์ถ”๊ฐ€ ํŒŒ์ธํŠœ๋‹ ์—†์ด ๊ทธ๋Œ€๋กœ ์ ์šฉํ–ˆ์„ ๋•Œ์˜ ์ „๋ฐ˜์ ์ธ ์„ฑ๋Šฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ๋‹ค๋Š” ์ ์—์„œ ์‹ค์šฉ์ ์ธ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € 47๊ฐœ์˜ ๋ชจ๋ธ์„ ์„ ์ •ํ•œ ๊ธฐ์ค€์€ Hugging Face ํ”Œ๋žซํผ์— ๊ณต๊ฐœ๋œ ์ตœ์‹  ๋ชจ๋ธ์ด๋ฉฐ, ๋ชจ๋ธ๊ตฐ์€ Transformer ๊ธฐ๋ฐ˜์˜ BERT, RoBERTa, ELECTRA, DeBERTa, ALBERT ๋“ฑ ๋‹ค์–‘ํ•œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํฌ๊ด„ํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํญ๋„“์€ ๋ชจ๋ธ ํ’€์„ ๊ตฌ์ถ•ํ•จ์œผ๋กœ์จ ํŠน์ • ์•„ํ‚คํ…์ฒ˜๊ฐ€ ํŠน์ • ๋„๋ฉ”์ธ์— ํŽธํ–ฅ๋˜๋Š” ํ˜„์ƒ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์ „๋ฐ˜์ ์ธ ํŠธ๋ Œ๋“œ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค

Model Analysis Data
์ •๋ณด ํ๋ฆ„ ๋ฐœ์‚ฐ์„ ์ด์šฉํ•œ ํ•„ํ„ฐยท๋ ˆ์ด์–ด ํ†ตํ•ฉ ์••์ถ• ๊ธฐ๋ฒ•

์ •๋ณด ํ๋ฆ„ ๋ฐœ์‚ฐ์„ ์ด์šฉํ•œ ํ•„ํ„ฐยท๋ ˆ์ด์–ด ํ†ตํ•ฉ ์••์ถ• ๊ธฐ๋ฒ•

์ด ๋…ผ๋ฌธ์€ ์‹ ๊ฒฝ๋ง ์••์ถ• ๋ถ„์•ผ์—์„œ โ€˜์ •๋ณด ํ๋ฆ„ ๋ฐœ์‚ฐโ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”ํŠธ๋ฆญ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ํ”„๋ฃจ๋‹ยท์ถ•์†Œ ๊ธฐ๋ฒ•์ด ๊ฐ–๋Š” ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ํ•„ํ„ฐ ํ”„๋ฃจ๋‹์€ ์ฃผ๋กœ ๊ฐ€์ค‘์น˜ ํฌ๊ธฐ, L1/L2 ์ •๊ทœํ™”, ํ˜น์€ ๊ทธ๋ผ๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ค‘์š”๋„ ์ง€ํ‘œ์— ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐœ๋ณ„ ํ•„ํ„ฐ๊ฐ€ ๋„คํŠธ์›Œํฌ ์ „์ฒด ์ •๋ณด ์ „๋‹ฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋น„ํŒ์„ ๋ฐ›์•„์™”๋‹ค. ๋ฐ˜๋ฉด ์ €์ž๋“ค์€ ํ…์„œ ํ๋ฆ„ ๋ฐœ์‚ฐ์„ ํ†ตํ•ด ๊ฐ ๋ ˆ์ด์–ด๊ฐ€ ์ž…๋ ฅ ์ •๋ณด๋ฅผ ์–ผ๋งˆ๋‚˜ ๋ณ€ํ˜•ยท์†Œ์‹ค์‹œํ‚ค๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ , ์ด ๊ฐ’์„ โ€˜์ •๋ณด ๋ณด์กด๋„โ€™์˜ ์—ญ์œผ๋กœ ํ•ด์„ํ•œ๋‹ค. ๋ฐœ์‚ฐ์ด ๋‚ฎ์€ ํ•„ํ„ฐ๋Š”

Memories Retrieved from Many Paths: A Multi-Prefix Framework for Robust Detection of Training Data Leakage in Large Language Models

Memories Retrieved from Many Paths: A Multi-Prefix Framework for Robust Detection of Training Data Leakage in Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ์›๋ณธ ํ…์ŠคํŠธ๋ฅผ ๊ทธ๋Œ€๋กœ ์ €์žฅํ•˜๋Š” โ€˜๊ธฐ์–ตโ€™ ํ˜„์ƒ์ด ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ์ €์ž‘๊ถŒ ์ธก๋ฉด์—์„œ ์‹ฌ๊ฐํ•œ ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ์ ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๊ธฐ์–ต์„ โ€œํŠน์ • ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ถœ๋ ฅโ€ ํ˜น์€ โ€œ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ์ง์ ‘์ ์ธ ๋ณต์ œโ€ ๋“ฑ์œผ๋กœ ์ •์˜ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ •์˜๋Š” ๋ชจ๋ธ์ด ์ •๋ ฌ(align) ๊ณผ์ •์—์„œ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์•ˆ์ „์„ฑ ํ•„ํ„ฐ๋ง์ด๋‚˜ ์ถœ๋ ฅ ์ œํ•œ์„ ๋ฐ›๊ฒŒ ๋˜๋ฉด ์‹ค์ œ ๊ธฐ์–ต ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ธฐ ์–ด๋ ค์›Œ์ง„๋‹ค. ์ฆ‰, ๋‹จ์ผ ํ”„๋กฌํ”„ํŠธ์— ์˜์กดํ•˜๋Š” ๋ฐฉ์‹์€ ๊ธฐ์–ต์ด ์กด์žฌํ•˜๋”๋ผ๋„ ํƒ์ง€๋˜์ง€ ์•Š์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ๋…ผ๋ฌธ

Model Data Framework Detection
RevFFN: Memory-Efficient Full-Parameter Fine-Tuning of Mixture-of-Experts LLMs with Reversible Blocks

RevFFN: Memory-Efficient Full-Parameter Fine-Tuning of Mixture-of-Experts LLMs with Reversible Blocks

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ „์ฒด ํŒŒ์ธํŠœ๋‹(full fineโ€‘tuning) ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด์˜ ํŒŒ์ธํŠœ๋‹ ๋ฐฉ์‹์€ ์—ญ์ „ํŒŒ๋ฅผ ์œ„ํ•ด ๊ฐ ๋ ˆ์ด์–ด์˜ ์ž…๋ ฅ ํ™œ์„ฑ๊ฐ’์„ ์ €์žฅํ•ด์•ผ ํ•˜๋Š”๋ฐ, ๋ชจ๋ธ ๊ทœ๋ชจ๊ฐ€ ์ˆ˜์‹ญ์–ต ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋‹ฌํ•˜๋ฉด ์ด ์ €์žฅ ๋น„์šฉ์ด GPU ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ดˆ๊ณผํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด DeepSpeed์˜ ZeRO(Zero Redundancy Optimizer)๋‚˜ FSDP(Fully Sharded Data Parallel)์™€ ๊ฐ™์€ ๋ถ„์‚ฐ ํ•™์Šต ๊ธฐ๋ฒ•์ด ๊ณ ์•ˆ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋“ค์€ ํŒŒ๋ผ

Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling

Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ํ…Œ์ŠคํŠธโ€‘์‹œ ์Šค์ผ€์ผ๋ง ๊ธฐ๋ฒ•, ํŠนํžˆ MindJourney๊ฐ€ ์ œ์‹œํ•œ ํ–‰๋™โ€‘์กฐ๊ฑด๋ถ€ ์‹œ์  ์ƒ์„ฑ๊ณผ ํœด๋ฆฌ์Šคํ‹ฑ ๊ฒ€์ฆ๊ธฐ์˜ ์กฐํ•ฉ์„ ๋น„ํŒ์  ์‹œ๊ฐ์—์„œ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. ๋จผ์ €, ์ €์ž๋“ค์€ ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ(SATโ€‘Real, MMSIโ€‘Bench ๋“ฑ)๋ฅผ ํ™œ์šฉํ•ด ๊ฒ€์ฆ๊ธฐ์˜ ์„ ํƒ ๊ธฐ์ค€์ด ์‹ค์ œ๋กœ ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š”์ง€, ํ˜น์€ ๋‹จ์ˆœํžˆ ์—”ํŠธ๋กœํ”ผ๋ฅผ ๋‚ฎ์ถ”๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌด๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, MindJourney ๊ฒ€์ฆ๊ธฐ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋ณด์ƒ ์‹ ํ˜ธ๋Š” ์‹ค์ œ ์ •๋‹ต ํ™•๋ฅ ๊ณผ ์•ฝํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ฌด์ž‘์œ„ ์ ์ˆ˜ ๋ถ€์—ฌ(random sc

Model
Intelligent Knowledge Mining Framework: Bridging AI Analysis and Trustworthy Preservation

Intelligent Knowledge Mining Framework: Bridging AI Analysis and Trustworthy Preservation

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ๋ฐ์ดํ„ฐ ํญ์ฆ ์†์—์„œ ์–ด๋–ป๊ฒŒ ์˜๋ฏธ ์žˆ๋Š” ์ง€์‹์„ ์ถ”์ถœํ•˜๊ณ , ๋™์‹œ์— ๊ทธ ์ง€์‹์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์žฅํ•  ๊ฒƒ์ธ๊ฐ€โ€์ด๋‹ค. ํ˜„์žฌ ๊ธฐ์—…ยท์—ฐ๊ตฌ๊ธฐ๊ด€ยท๊ณต๊ณต ๋ถ€๋ฌธ์—์„œ๋Š” ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๊ตฌ์กฐํ™”ยท๋น„๊ตฌ์กฐํ™” ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ๊ฐ ๋ณ„๋„ ์‹œ์Šคํ…œ์— ์ €์žฅํ•˜๊ณ  ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ ๋ ˆ์ดํฌ, ๋ฌธ์„œ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ, ๋กœ๊ทธ ํŒŒ์ผ ๋“ฑ์€ ์„œ๋กœ ๋‹ค๋ฅธ ์Šคํ‚ค๋งˆ์™€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ํ‘œ์ค€์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ฐ์ดํ„ฐ ๊ฐ„ ์—ฐ๊ณ„์™€ ์žฌํ™œ์šฉ์ด ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅ์— ๊ฐ€๊น๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ AIยทML ๋ชจ๋ธ์€ ํ’๋ถ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ํ’ˆ์งˆยท์ถœ์ฒ˜ยท๋ฒ„์ „ ๊ด€๋ฆฌ๊ฐ€ ๋ฏธ๋น„ํ•˜๋ฉด ๋ชจ๋ธ์˜ ์‹ 

Analysis Framework
Towards Mass Spectrum Analysis with ASP

Towards Mass Spectrum Analysis with ASP

์ด ๋…ผ๋ฌธ์€ Answer Set Programming (ASP)์„ ์ด์šฉํ•ด ์งˆ๋Ÿ‰ ๋ถ„์„๋ฒ•์œผ๋กœ ์–ป์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํƒ์ง€ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ASP๋Š” ๋ณต์žกํ•œ ์กฐํ•ฉ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ธฐ์ˆ ๋กœ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ํ†ตํ•ด ๋ถ„์ž์˜ ์›์†Œ ๊ตฌ์„ฑ๊ณผ ๊ตฌ์กฐ์  ์กฐ๊ฐ์˜ ์ƒ๋Œ€์  ํ’๋ถ€๋„๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์•ฝํ•˜๊ธฐ ์œ„ํ•ด ์บ๋…ผ์  ํ‘œํ˜„์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜๊ณ  ์ด๋ฅผ ASP์— ํ†ตํ•ฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์บ๋…ผ์  ํ‘œํ˜„์€ ๋ถ„์ž์˜ ๋‹ค์–‘ํ•œ ํ‘œํ˜„

Analysis

< Category Statistics (Total: 5012) >

Electrical Engineering and Systems Science
102
General
4156
General Relativity
2
HEP-EX
3
HEP-PH
1
HEP-TH
3
MATH-PH
6
Nonlinear Sciences
1
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut