KOINEU Logo
Multi-agent Adaptive Mechanism Design

Multi-agent Adaptive Mechanism Design

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ์ฃผ์ฒด๊ฐ€ ์—์ด์ „ํŠธ๋“ค์˜ ์‚ฌ์ „ ์‹ ๋…์„ ์ „ํ˜€ ๋ชจ๋ฅด๋Š” ์ƒํ™ฉ์—์„œ, ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์—์ด์ „ํŠธ๋“ค์ด ์ง„์‹ค๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ์œ ๋„ํ•˜๋ฉด์„œ๋„ ์ „์ฒด ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€โ€๋ผ๋Š” ์งˆ๋ฌธ์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์—์„œ๋Š” ์‚ฌ์ „ ๋ถ„ํฌ๊ฐ€ ์ฃผ์–ด์ง€๋ฉด ์ตœ์ ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ๋ถ€์žฌํ•˜๊ฑฐ๋‚˜ ๋ณ€๋™์„ฑ์ด ํฌ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๋ถ„์•ผโ€”๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์™€ ์˜จ๋ผ์ธ ํ•™์Šตโ€”์˜ ์•„์ด๋””์–ด๋ฅผ ์œตํ•ฉํ•œ๋‹ค. ๋จผ์ €, DRAM์€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์—์ด์ „ํŠธ๋“ค์˜ ๋ณด๊ณ ๋ฅผ ๊ด€์ฐฐํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ฒ ์ด์ง€์•ˆ ์ถ”์ •

Multi-Rigid-Body Approximation of Human Hands with Application to Digital Twin

Multi-Rigid-Body Approximation of Human Hands with Application to Digital Twin

์ด ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ถ„์•ผ์—์„œ ์ธ๊ฐ„ ์†์˜ ์‹ค์‹œ๊ฐ„ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง ํŒŒ์ดํ”„๋ผ์ธ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ด‘ํ•™ ๋ชจ์…˜ ์บก์ฒ˜๋ฅผ ์ด์šฉํ•ด ๊ฐœ๋ณ„ ์‚ฌ์šฉ์ž์˜ ์† ํ˜•ํƒœ์™€ ์›€์ง์ž„์„ ์ •๋ฐ€ํžˆ ์ธก์ •ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ MANO(Multiโ€‘Abstracted hand model with Neural Operations)๋ผ๋Š” ๊ณ ์ฐจ์› ํŒŒ๋ผ๋ฏธํ„ฐํ™” ๋ชจ๋ธ์„ ๊ฐœ์ธํ™”ํ•œ๋‹ค. MANO๋Š” ๊ด€์ ˆ ํšŒ์ „์„ 3์ฐจ์› ํšŒ์ „๊ตฐ SO(3) ์ƒ์—์„œ ์ž์œ ๋กญ๊ฒŒ ํ‘œํ˜„ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋กœ๋ด‡ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ๋Š” ๊ฐ ๊ด€์ ˆ์ด ์ œํ•œ๋œ ์ž์œ ๋„(์˜ˆ: ๊ตด

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ํš๊ธฐ์ ์ธ ์„ฑ๊ณผ๋ฅผ ๋ณด์—ฌ ์™”์œผ๋ฉฐ, ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ยท๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ์˜ ํ•ฉ์„ฑ์— ๊ฐ•์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ํ™•์‚ฐ ๊ณผ์ •์€ ์ด๋ฏธ์ง€์˜ ๋ชจ๋“  ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ๋™์ผํ•˜๊ฒŒ ๋…ธ์ด์ฆˆํ™”ํ•˜๊ณ  ๋ณต์›ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๊ตฌ์กฐ์  ์ •๋ณด(ํŠนํžˆ ์œ„์ƒ)๋Š” ์†์‹ค๋˜๊ธฐ ์‰ฝ๋‹ค. ์œ„์ƒ์€ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ์™€ ๊ฒฝ๊ณ„, ํ…์Šค์ฒ˜์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•˜๋Š” ์š”์†Œ์ด๋ฉฐ, ํฌ๊ธฐ(magnitude)๋Š” ์ฃผ๋กœ ์ƒ‰์ƒยท๋ช…์•”๊ณผ ๊ฐ™์€ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋‹ด๋‹นํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์œ„์ƒ์„ ๋ณด์กดํ•˜๋ฉด์„œ ํฌ๊ธฐ๋งŒ ๋ฌด์ž‘์œ„ํ™”ํ•˜๋ฉด, ์ƒ์„ฑ ๊ณผ์ •์—์„œ ๊ตฌ์กฐ์  ์ผ

No Image

Optimal Software Pipelining and Warp Specialization for Tensor Core GPUs

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ GPU๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ํ•˜๋“œ์›จ์–ด ์ž์›์„ ํšจ์œจ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์†Œํ”„ํŠธ์›จ์–ด ํŒŒ์ดํ”„๋ผ์ด๋‹์€ ๋ฃจํ”„ ๋ ˆ๋ฒจ์—์„œ ์—ฐ์‚ฐ ๊ฐ„ ์˜์กด์„ฑ์„ ํ•ด์†Œํ•˜๊ณ , ํŒŒ์ดํ”„๋ผ์ธ ๋‹จ๊ณ„๋งˆ๋‹ค ์„œ๋กœ ๋‹ค๋ฅธ ์—ฐ์‚ฐ์„ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๋ฐ˜๋ฉด ์›Œํ”„ ํŠน์ˆ˜ํ™”๋Š” ๋™์ผํ•œ ์›Œํ”„ ๋‚ด์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์—ญํ• ์„ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์˜ˆ๋ฅผ ๋“ค์–ด ์ผ๋ถ€ ์Šค๋ ˆ๋“œ๊ฐ€ ๋ฉ”๋ชจ๋ฆฌ ๋กœ๋“œ์— ์ „๋…ํ•˜๊ณ  ๋‹ค๋ฅธ ์Šค๋ ˆ๋“œ๊ฐ€ ๊ณ„์‚ฐ์— ์ „๋…ํ•˜๋„๋ก ํ•˜๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ๋‘ ๊ธฐ๋ฒ•์€ ๊ฐ๊ฐ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋™์‹œ์— ์ ์šฉํ•  ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ์ž์› ์ถฉ๋Œ, ๋ ˆ

PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

PULSE๋Š” ํ˜„์žฌ ์‹ฌ์žฅ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜ํ†ตํ•ฉ์ โ€™ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํ•ด๋ถ€ํ•™์  ๋ถ„ํ• , ์งˆ๋ณ‘ ๋ถ„๋ฅ˜, ๋ณด๊ณ ์„œ ์ƒ์„ฑ ๋“ฑ ๊ฐ๊ฐ์˜ ๊ณผ์ œ๋ฅผ ๋…๋ฆฝ์ ์ธ ๋„คํŠธ์›Œํฌ์— ๋งก๊ฒจ ์™”์œผ๋ฉฐ, ์ด๋Š” ๋ฐ์ดํ„ฐ ๋ผ๋ฒจ๋ง ๋น„์šฉ ์ฆ๊ฐ€์™€ ๋ชจ๋ธ ๊ฐ„ ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. PULSE๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ๊ณตํ†ต backbone์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ๊ณผ์ œ๋ฅผ ๋™์‹œ์— ํ•™์Šตํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ž์ฒด ์ง€๋„ํ•™์Šต(selfโ€‘supervised) ๋ฐฉ์‹์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ์ด๋ฏธ์ง€ ํ‘œํ˜„์ด๋‹ค. ๋Œ€๊ทœ๋ชจ ๋น„๋ผ๋ฒจ ์‹ฌ

Quantifying Uncertainty in Machine Learning-Based Pervasive Systems: Application to Human Activity Recognition

Quantifying Uncertainty in Machine Learning-Based Pervasive Systems: Application to Human Activity Recognition

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ์™€ ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์ธ๊ฐ„ ํ™œ๋™ ์ธ์‹(HAR) ์‹œ์Šคํ…œ์—์„œ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”(UQ)๋ฅผ ํ†ตํ•ด ๋Ÿฐํƒ€์ž„ ์‹ ๋ขฐ์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ตœ๊ทผ ํผ์ŠคํŽœ์‹œ ์ปดํ“จํŒ…๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹(ML)์˜ ๊ฒฐํ•ฉ์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ํ˜์‹ ์ ์ธ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ด์™€ ๋™์‹œ์— ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ํŠนํžˆ, ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋‚˜ ์žก์Œ ๋“ฑ์œผ๋กœ ์ธํ•ด ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค. 2. ์ฃผ์š” ์—ฐ๊ตฌ ๋ฌธ์ œ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”(UQ)์˜ ํ•„์š”์„ฑ: ML ๋ชจ๋ธ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ํ•™์Šต๋˜๋ฏ€๋กœ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

Learning System
Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ •์น˜์ ยท์‚ฌํšŒ์ ์œผ๋กœ ๋ฏผ๊ฐํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•ด โ€œ๊ฑฐ๋ถ€โ€ ํ˜น์€ โ€œ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์ง€ ์•Š์Œโ€์ด๋ผ๋Š” ๋ฐ˜์‘์„ ๋ณด์ด๋Š” ํ˜„์ƒ์„, ๋ชจ๋ธ ์ž์ฒด๋ฅผ ์žฌํ•™์Šตํ•˜๊ฑฐ๋‚˜ ํŒŒ์ธํŠœ๋‹ํ•˜์ง€ ์•Š๊ณ ๋„ ์ธํผ๋Ÿฐ์Šค ๋‹จ๊ณ„์—์„œ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฑฐ๋ถ€ ํƒ์ง€๋Š” ์ •๊ทœํ‘œํ˜„์‹์ด๋‚˜ ํ‚ค์›Œ๋“œ ๋งค์นญ ๋“ฑ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์ƒˆ๋กœ์šด ํ‘œํ˜„์ด๋‚˜ ์€์œ ์  ์งˆ๋ฌธ์— ์ทจ์•ฝํ•˜๊ณ , ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ ์‹œ๋งˆ๋‹ค ์žฌ์กฐ์ •์ด ํ•„์š”ํ–ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด LLM ์ž์ฒด๋ฅผ โ€œํŒ์‚ฌ(judge)โ€ ์—ญํ• ๋กœ ํ™œ์šฉํ•œ๋‹ค. ๊ตฌ

SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks

SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ์˜ ํ•ด์„์„ฑ๊ณผ ์ œ์–ด์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ SALVE๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” โ„“1 ์ •๊ทœํ™” ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋‚ด์—์„œ ์ค‘์š”ํ•œ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ๋ฐœ๊ฒฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ํ–‰๋™์„ ํ•ด์„์ ์ด๊ณ  ์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Grad FAM์ด๋ผ๋Š” ์‹œ๊ฐํ™” ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜๋Š”์ง€ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. SALVE์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด ์ค‘ ํ•˜๋‚˜๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„์—์„œ์˜ ์ •ํ™•ํ•œ ๊ฐœ์ž…์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํŠน์ • ํด๋ž˜์Šค๋ฅผ

Network
No Image

Seismology modeling agent: A smart assistant for geophysical researchers

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋ฃจ์—ˆ๋‹ค. MCP ์„œ๋ฒ„๋Š” SPECFEM์ด๋ผ๋Š” ๊ณ ๊ธ‰ ์ง€์ง„ ๋ชจ๋ธ๋ง ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ†ตํ•ฉ๋˜์–ด, ์ด๋ฅผ ํ˜„๋Œ€์ ์ธ AI ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์— ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ์ž๋™ํ™”๋œ ์ž‘์—…๊ณผ ์ธ๊ฐ„์˜ ์ฐธ์—ฌ๊ฐ€ ํ•„์š”ํ•œ ์ž‘์—…์„ ๋ชจ๋‘ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ ์›Œํฌํ”Œ๋กœ๋ฅผ ๊ฐœ๋ฐœํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ง€์ง„ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ ๋ณต์žกํ•˜๊ณ  ์ „๋ฌธ์ ์ธ ์ง€์‹์ด ์š”๊ตฌ๋˜๋Š” ์ž‘์—…์„ ๋‹จ์ˆœํ™”ํ•จ์œผ๋กœ์จ, ํ•ด๋‹น ๋ถ„์•ผ์— ๋Œ€ํ•œ ์ง„์ž… ์žฅ๋ฒฝ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ”๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค. ๋˜ํ•œ, ์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ž˜์˜ ๊ณผํ•™์  ์—ฐ๊ตฌ๊ฐ€ ์ž๋™ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด๋‘๊ณ  ์žˆ์–ด

Model
SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation

SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation

SpidRโ€‘Adapt ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์˜์•„๊ฐ€ ๊ทนํžˆ ์ œํ•œ๋œ ์ฒญ๊ฐ ์ž…๋ ฅ๋งŒ์œผ๋กœ๋„ ์–ธ์–ด์˜ ๊ธฐ๋ณธ ๋‹จ์œ„๋ฅผ ๋น ๋ฅด๊ฒŒ ์Šต๋“ํ•œ๋‹ค๋Š” ์ธ์ง€๊ณผํ•™์  ๊ด€์ฐฐ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„, ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œ์„ฑ ํ‘œํ˜„ ๋ชจ๋ธ์ด ์ง๋ฉดํ•œ โ€œ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ ๊ฒฉ์ฐจโ€๋ฅผ ๋ฉ”ํƒ€ํ•™์Šต์ด๋ผ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ•ด์†Œํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ์ €์ž์› ์–ธ์–ด ์ ์‘ ๋ฌธ์ œ๋ฅผ โ€œ๋‹ค์ค‘ ๊ณผ์ œ ์ ์‘ ์‚ฌ์ „ํ•™์Šต(MAdaPT)โ€์ด๋ผ๋Š” ํ˜•ํƒœ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ ๊ณผ์ œ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์–ธ์–ด ํ˜น์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋ฐฉ์‹์„ ์˜๋ฏธํ•˜๋ฉฐ, ์ด๋“ค์„ ๋™์‹œ์— ํ•™์Šตํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์–ธ์–ด ๊ฐ„ ๋ณดํŽธ์ ์ธ ์Œ์„ฑ ํŠน์„ฑ์„ ๋‚ด์žฌํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค. ํ•ต์‹ฌ

Model
Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring

Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ์ถ”๋ก  ๋ชจ๋ธ(LRMs)์ด ๊ณผ๋„ํ•˜๊ฒŒ ์ƒ์„ฑํ•˜๋Š” ๊ฒ€์ฆ ๋ฐ ๋ฐ˜์„ฑ ๋‹จ๊ณ„๋กœ ์ธํ•ด ํšจ์œจ์„ฑ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์— ์ฃผ๋ชฉํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ Step Tagging ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ€๋ฒผ์šด ๋ฌธ์žฅ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ LRMs์ด ์ƒ์„ฑํ•˜๋Š” ์ถ”๋ก  ๋‹จ๊ณ„์˜ ์œ ํ˜•์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ถ„๋ฅ˜ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์˜ ๋น„ํšจ์œจ์„ฑ์„ ์ค„์ด๊ณ  ํšจ์œจ์ ์ธ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Rea sonType์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ถ”๋ก  ๋‹จ๊ณ„ ๋ถ„๋ฅ˜๋ฒ•์€ ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด LRMs์˜ ํ–‰๋™์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํ‰๊ฐ€ ๊ฒฐ๊ณผ, Step Tagging

Model
Strategic Self-Improvement for Competitive Agents in AI Labour Markets

Strategic Self-Improvement for Competitive Agents in AI Labour Markets

์ด ๋…ผ๋ฌธ์€ ๊ธ‰์†ํžˆ ํ™•์‚ฐ๋˜๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ์‹ค์ œ ๊ฒฝ์ œ ์‹œ์Šคํ…œ์— ์ง„์ž…ํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋“ค์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € โ€˜์—ญ์„ ํƒ(adverse selection)โ€™๊ณผ โ€˜๋„๋•์  ์œ„ํ—˜(moral hazard)โ€™์ด๋ผ๋Š” ์ „ํ†ต์ ์ธ ์‹œ์žฅ ์‹คํŒจ ์š”์ธ์„ AI ์—์ด์ „ํŠธ์—๊ฒŒ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€, ๊ธฐ์กด ๊ฒฝ์ œํ•™ ์ด๋ก ์ด ์ธ๊ฐ„ ํ–‰์œ„์ž์— ๊ตญํ•œ๋œ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด AI ํ–‰์œ„์ž์—๋„ ๋™์ผํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์ž‘๋™ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์—ญ์„ ํƒ์€ ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ๋Šฅ๋ ฅ์„ ๊ณผ๋Œ€ ํ˜น์€ ๊ณผ์†Œ ํ‰๊ฐ€ํ•ด ์‹œ์žฅ์—

The Dead Salmons of AI Interpretability

The Dead Salmons of AI Interpretability

์ด ๋…ผ๋ฌธ์€ โ€œ์ฃฝ์€ ์—ฐ์–ดโ€ ์‹คํ—˜์„ ๊ณ„๊ธฐ๋กœ ํ†ต๊ณ„์  ์˜ค๋ฅ˜๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ณผํ•™์  ๊ฒฐ๋ก ์„ ์™œ๊ณกํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ๋ณด์—ฌ์ค€๋‹ค. MRI ์‹คํ—˜์—์„œ ์ธ๊ฐ„์˜ ์‚ฌํšŒ์  ์˜์ƒ์ด ์—ฐ์–ด์˜ ๋‡Œ ํ™œ๋™๊ณผ ์—ฐ๊ด€๋œ๋‹ค๋Š” ๊ฒฐ๊ณผ๋Š”, ์‹ค์ œ๋กœ๋Š” ์‹ ํ˜ธโ€‘๋Œ€โ€‘๋…ธ์ด์ฆˆ ๋น„๊ฐ€ ๋‚ฎ์€ ์ƒํ™ฉ์—์„œ ๋‹ค์ค‘ ๋น„๊ต์™€ ๋ถ€์ ์ ˆํ•œ ํ†ต๊ณ„ ๊ฒ€์ •์ด ๊ฒฐํ•ฉ๋œ ์ „ํ˜•์ ์ธ โ€˜pโ€‘ํ•ดํ‚นโ€™ ์‚ฌ๋ก€์ด๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ AI ํ•ด์„ ๋ถ„์•ผ์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•œ๋‹ค. ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ๋Œ€ํ•œ ํ•ด์„ ๊ธฐ๋ฒ•โ€”์˜ˆ๋ฅผ ๋“ค์–ด Gradโ€‘CAM, Integrated Gradients, probing classifiersโ€”์€ ๋Œ€๋ถ€๋ถ„ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋ฅผ ํ†ต๊ณ„์  ์ถ”์ •๋Ÿ‰

Thermal RGB Fusion for Micro-UAV Wildfire Perimeter Tracking with Minimal Comms

Thermal RGB Fusion for Micro-UAV Wildfire Perimeter Tracking with Minimal Comms

๋ณธ ๋…ผ๋ฌธ์€ ์ œํ•œ๋œ ๋Œ€์—ญํญ ํ™˜๊ฒฝ์—์„œ ์‚ผ๋ฆผ ํ™”์žฌ ๊ฐ์‹œ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฏธ์„ธ ๋“œ๋ก  ํŒ€์„ ์œ„ํ•œ ๊ฒฝ๋Ÿ‰ ํ™˜๊ฒฝ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์—ดํ™”์ƒ ์ด๋ฏธ์ง€์™€ RGB ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ™”์žฌ ๋ฐœ์ƒ ์ง€์—ญ์˜ ์˜จ๋„ ๋ถ„ํฌ ๋ฐ ๊ฒฝ๊ณ„์„ ์„ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๊ณ  ์ถ”์ ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ดํ™”์ƒ ์ด๋ฏธ์ง€๋Š” ์ ์‘ํ˜• ์ž„๊ณ„๊ฐ’ ์ฒ˜๋ฆฌ์™€ ํ˜•ํƒœํ•™์  ๋ณด์ • ๋‹จ๊ณ„๋ฅผ ํ†ตํ•ด ๊ฑฐ์นœ ์˜จ๋„ ์˜์—ญ ๋งˆ์Šคํฌ๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋Š” ํ™”์žฌ ๋ฐœ์ƒ ์ง€์—ญ์˜ ์œ„์น˜ ๋ฐ ํฌ๊ธฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. RGB ์ด๋ฏธ์ง€์—์„œ๋Š” ๊ฒฝ์‚ฌ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฝ๊ณ„์„  ํžŒํŠธ๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์กฐ์ง์— ๋”ฐ

ThinkTrap: Denial-of-Service Attacks against Black-box LLM Services via Infinite Thinking

ThinkTrap: Denial-of-Service Attacks against Black-box LLM Services via Infinite Thinking

ThinkTrap ๋…ผ๋ฌธ์€ ํ˜„์žฌ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ LLM ์„œ๋น„์Šค๊ฐ€ ์ง๋ฉดํ•œ ๊ฐ€์žฅ ์‹ฌ๊ฐํ•œ ์ธํ”„๋ผ ๋ณด์•ˆ ์œ„ํ˜‘ ์ค‘ ํ•˜๋‚˜์ธ โ€˜๋ฌดํ•œ ์ถ”๋ก  ๊ธฐ๋ฐ˜ DoS ๊ณต๊ฒฉโ€™์— ๋Œ€ํ•ด ์ฒด๊ณ„์ ์ธ ๊ณต๊ฒฉ ๋ชจ๋ธ๊ณผ ์‹ค์ฆ์  ์ฆ๊ฑฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์ €์ž๋“ค์€ LLM์ด ํ…์ŠคํŠธ ์ƒ์„ฑ ๊ณผ์ •์—์„œ ํ† ํฐ ๋‹จ์œ„๋กœ ์ˆœ์ฐจ์ ์œผ๋กœ ํ™•๋ฅ ์„ ์ƒ˜ํ”Œ๋งํ•œ๋‹ค๋Š” ์ ์„ ์ด์šฉํ•ด, ํŠน์ • ํ”„๋กฌํ”„ํŠธ๊ฐ€ ๋ชจ๋ธ์„ ๋น„์ •์ƒ์ ์œผ๋กœ ๊ธด ์ถœ๋ ฅ์œผ๋กœ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ชจ๋ธ ๋‚ด๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ์— ์ ‘๊ทผํ•˜๊ฑฐ๋‚˜, ํ† ํฐ ์ƒ˜ํ”Œ๋ง ์ „๋žต์„ ์กฐ์ž‘ํ•˜๋Š” ๋ฐฉ์‹์— ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, ThinkTrap์€ ์™„์ „ํ•œ ๋ธ”๋ž™๋ฐ•์Šค ์ƒํ™ฉ์—์„œ๋„ ์„ฑ๊ณต์ ์ธ

TrafficSimAgent: A Hierarchical Agent Framework for Autonomous Traffic Simulation with MCP Control

TrafficSimAgent: A Hierarchical Agent Framework for Autonomous Traffic Simulation with MCP Control

๋ณธ ๋…ผ๋ฌธ์€ ๊ตํ†ต ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•œ ์ž๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ์ธ TrafficSimAgent๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๊ตํ†ต ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์ธ SUMO์™€ MATโ€‘Sim์€ ๊ฐ•๋ ฅํ•œ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ์‚ฌ์šฉ์ž๊ฐ€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •, ์‹œ๋‚˜๋ฆฌ์˜ค ๊ตฌ์„ฑ, ๊ฒฐ๊ณผ ํ•ด์„ ๋“ฑ์„ ์ผ์ผ์ด ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๋†’์€ ์ง„์ž… ์žฅ๋ฒฝ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๋‹จ๊ณ„์˜ ์ „๋ฌธ๊ฐ€ ์—์ด์ „ํŠธ ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. ๊ณ ์ˆ˜์ค€ ์ „๋ฌธ๊ฐ€ ์—์ด์ „ํŠธ๋Š” ์ž์—ฐ์–ด ์ž…๋ ฅ์„ ๋ฐ›์•„ ์‚ฌ์šฉ์ž์˜ ์˜๋„๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ์‹คํ—˜ ๋ชฉํ‘œ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฒ”์œ„, ํ‰๊ฐ€ ์ง€ํ‘œ ๋“ฑ์„ ์ถ”์ถœํ•œ๋‹ค.

Framework
Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion

Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion

๋ณธ ๋…ผ๋ฌธ์€ ๋น„๋””์˜ค ์ฝ˜ํ…์ธ ์˜ ๊ธ‰์†ํ•œ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ํšจ์œจ์ ์ธ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์ˆœ๊ฐ„ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ํ•„์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ํ˜์‹ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ๋กœ, BEiT 3์™€ SigLIP๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์บ์Šค์ผ€์ด๋“œ ๋“€์–ผ ์ž„๋ฒ ๋”ฉ ํŒŒ์ดํ”„๋ผ์ธ์€ ๋‹ค์–‘ํ•œ ๋ชจ๋‹ฌ ๊ฐ„์˜ ์ •๋ณด ์œตํ•ฉ์„ ํ†ตํ•ด ๊ด‘๋ฒ”์œ„ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , BLIP 2 ๊ธฐ๋ฐ˜ ์žฌ์ˆœ์œ„ํ™”๋Š” ํšŒ์ˆ˜์œจ๊ณผ ์ •๋ฐ€๋„๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ์กฐ์ ˆํ•œ๋‹ค. ๋‘˜์งธ๋กœ, ์‹œ๊ฐ„ ์ธ์‹ ์ ์ˆ˜๋ง ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํฐ ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์— ๋Œ€ํ•œ ์ง€์ˆ˜ ๊ฐ์†Œ ์ฒ˜๋ฒŒ์„ ์ ์šฉํ•˜์—ฌ ๋น„ํ˜„์‹ค์ ์ธ ์‚ฌ๊ฑด ์‹œํ€€์Šค๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ์ผ๊ด€๋œ ์‚ฌ๊ฑด ์ˆœ์„œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค.

Universal Hirschberg for Width Bounded Dynamic Programs

Universal Hirschberg for Width Bounded Dynamic Programs

๋ณธ ๋…ผ๋ฌธ์€ Hirschberg์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ๊ณตํ•˜๋Š” ๊ณต๊ฐ„ ๋ณต์žก๋„ ๊ฐ์†Œ ์•„์ด๋””์–ด๋ฅผ ๋‹ค์–‘ํ•œ ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ฌธ์ œ๋กœ ํ™•์žฅ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ํƒ๊ตฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐฉํ–ฅ์„ฑ ๋ฌดACYCLIC ๊ทธ๋ž˜ํ”„(DAG) ์ƒ์—์„œ ๊ตญ์†Œ์ ์ธ ์ข…์†์„ฑ์„ ๊ฐ€์ง„ DP ๋ฌธ์ œ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ฐ˜ํ™”๋œ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์œ„์ƒ์ ์œผ๋กœ ์ˆœ์„œํ™”๋œ DAG๋กœ ๋ชจ๋ธ๋งํ•˜๋ฉฐ, ๊ฒฝ๊ณ„ ํญ ฯ‰์™€ ์ œํ•œ๋œ ์ž…๋„๋ฅผ ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ฒฐ์ •์ ์ธ ํ‹ฐ๋ธŒ๋ ˆ์ดํ‚น(max ํ˜• ์„ธ๋ฏธ๋ง)์„ ์‚ฌ์šฉํ•˜์—ฌ DP์˜ ์—ญ์ถ”์  ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ์ตœ์†Œํ™”ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

VLM in a flash: I/O-Efficient Sparsification of Vision-Language Model via Neuron Chunking

VLM in a flash: I/O-Efficient Sparsification of Vision-Language Model via Neuron Chunking

๋ณธ ๋…ผ๋ฌธ์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์— ๋Œ€๊ทœ๋ชจ VLM์„ ๋ฐฐ์น˜ํ•  ๋•Œ ์ง๋ฉดํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ณ‘๋ชฉ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ฒซ์งธ, ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๋Š” ์ „ํ†ต์ ์ธ DRAM๊ณผ ๋‹ฌ๋ฆฌ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ์‹œ ์—ฐ์†์„ฑ(contiguity)์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ž‘์€ ์กฐ๊ฐ์œผ๋กœ ํฉ์–ด์ง„ ์ฝ๊ธฐ ์š”์ฒญ์€ ํŽ˜์ด์ง€ ๋ ˆ๋ฒจ์˜ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ๋‚ด๋ถ€ ์ •๋ ฌ ๋น„์šฉ์„ ๊ธ‰์ฆ์‹œ์ผœ ์ „์ฒด ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋‘˜์งธ, ๊ธฐ์กด ํ™œ์„ฑํ™” ํฌ์†Œํ™” ๊ธฐ๋ฒ•์€ ๋‰ด๋Ÿฐ์˜ ์ ˆ๋Œ€๊ฐ’ ํฌ๊ธฐ๋งŒ์„ ๊ธฐ์ค€์œผ๋กœ ์ค‘์š”๋„๋ฅผ ํŒ๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ŠคํŒŒ์Šค ๋งˆ์Šคํฌ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธโ€‘์ค‘์‹ฌ ์ ‘๊ทผ์€ ์‹ค์ œ ์ €์žฅ ์žฅ์น˜์˜ I/O ํŠน์„ฑ์„ ๋ฌด์‹œํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํฌ์†Œํ™”๊ฐ€

Model
When to compute in space

When to compute in space

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์šฐ์ฃผ ํ™˜๊ฒฝ์—์„œ ์ปดํ“จํŒ… ์ž์›์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์–‘ํ•œ ์ปดํ“จํŒ… ์œ„์น˜(์šฐ์ฃผ์„  ๋‚ด๋ถ€ ์ปดํ“จํ„ฐ, ๊ถค๋„ ๋ฐ์ดํ„ฐ ์„ผํ„ฐ, ์ง€์ƒ ๊ธฐ์ง€ ์—ฃ์ง€ ๋…ธ๋“œ, ์œก์ง€ ํด๋ผ์šฐ๋“œ ์ธํ”„๋ผ)์—์„œ ์ž‘์—… ๋ถ€ํ•˜๋ฅผ ์‹คํ–‰ํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ์—ฌ๋Ÿฌ ์š”์†Œ๋“ค์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ์ตœ์ ํ™”ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๊ฒƒ ์ด์ƒ์œผ๋กœ, ํ†ต์‹  ์ œ์•ฝ ์กฐ๊ฑด, ๋น„์šฉ, ๊ทธ๋ฆฌ๊ณ  ๊ทœ์ œ ์ ํ•ฉ์„ฑ์„ ํฌํ•จํ•œ ๋ณต์žกํ•œ ์š”์ธ๋“ค๊นŒ์ง€๋„ ํฌ๊ด„์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ์š”์†Œ๋“ค์„ ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ฉ”ํŠธ๋ฆญ์„ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜๊ณ 

No Image

Measuring What Matters: Scenario-Driven Evaluation for Trajectory Predictors in Autonomous Driving

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์—์„œ ์ฃผ๋ณ€ ์—์ด์ „ํŠธ์˜ ๋™์ž‘์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋“ค์€ ์˜ค๋ฅ˜ ๊ธฐ๋ฐ˜ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›„์‹œ์ ์œผ๋กœ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์‹ค์ œ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰(SDV)์ด ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์•ˆ์ „ํ•˜๊ฒŒ ์šดํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์˜ˆ์ธก์˜ ๋‹ค์–‘์„ฑ๊ณผ ๊ด€๋ จ๋œ ์ •๋ณด๋ฅผ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ •ํ™•์„ฑ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์˜ˆ์ธก์˜ ๋‹ค์–‘์„ฑ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ข…ํ•ฉ์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์šด์ „ ์„ฑ๋Šฅ์— ๋” ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋œ ์˜ˆ์ธก๊ธฐ ์„ฑ๋Šฅ ํ‰

State Space Models for Bioacoustics: A comparative Evaluation with Transformers

State Space Models for Bioacoustics: A comparative Evaluation with Transformers

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” Mamba ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋ฐ”์ด์˜ค์Œํ–ฅ ๋ถ„์•ผ์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๊ณผ์˜ ํšจ์œจ์„ฑ ๋ฐ ์„ฑ๋Šฅ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ ๋ฐฉ๋Œ€ํ•œ ์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•ด ์ž๊ธฐ์ง€๋„ํ•™์Šต(selfโ€‘supervised learning) ๋ฐฉ์‹์œผ๋กœ Mamba ๊ธฐ๋ฐ˜ ์˜ค๋””์˜ค ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ์‚ฌ์ „ํ•™์Šต(preโ€‘training)ํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ Mamba๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ƒํƒœ๊ณต๊ฐ„ ๋ชจ๋ธ(stateโ€‘space model) ๊ธฐ๋ฐ˜์˜ ์žฅ๊ธฐ ์˜์กด์„ฑ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด, ์ „ํ†ต์ ์ธ Transformer๊ฐ€ ๊ฒช๋Š” ๋ฉ”๋ชจ๋ฆฌ

Model
TrajMoE: Scene-Adaptive Trajectory Planning with Mixture of Experts and Reinforcement Learning

TrajMoE: Scene-Adaptive Trajectory Planning with Mixture of Experts and Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ๊ณ„ํš ์˜์—ญ์—์„œ ๊ธฐ์กด ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ฐœ์„ ์ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐœ์„ ์ ์€ โ€˜์ „๋ฌธ๊ฐ€ ๋ชจ๋ธ(๋ชจ๋ธโ€‘์˜ค๋ธŒโ€‘์ „๋ฌธ๊ฐ€, MoE)โ€™์„ ํ™œ์šฉํ•ด ์ƒํ™ฉ๋ณ„ ๋งž์ถคํ˜• ๊ถค์  ์‚ฌ์ „์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ž์œจ์ฃผํ–‰์€ ๋„์‹ฌ, ๊ณ ์†๋„๋กœ, ๊ต์ฐจ๋กœ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ๋™์  ์ œ์•ฝ๊ณผ ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์ด ํ•˜๋‚˜์˜ ๊ณ ์ •๋œ ๊ถค์  ์‚ฌ์ „๋งŒ์„ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด, MoE๋Š” ๊ฐ ์ƒํ™ฉ์— ํŠนํ™”๋œ ์ „๋ฌธ๊ฐ€ ๋„คํŠธ์›Œํฌ๋ฅผ ๋™์ ์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ์‚ฌ์ „ ๋ถ„ํฌ์˜ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ณต์žกํ•œ ๊ต์ฐจ๋กœ๋‚˜ ๊ธ‰๊ฒฉํ•œ ์ฐจ์„  ๋ณ€ํ™˜

Learning
Large Language Models as Discounted Bayesian Filters

Large Language Models as Discounted Bayesian Filters

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ •์ ์ธ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ž‘์—…์—์„œ ๋›ฐ์–ด๋‚œ ์†Œ์ˆ˜ ์ƒท ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด, ์‹ค์ œ ์„ธ๊ณ„์™€ ๊ฐ™์ด ์ง€์†์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ํ™•๋ฅ ์  ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ๋ฏฟ์Œ์„ ์—…๋ฐ์ดํŠธํ•˜๋Š”์ง€๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋ฒ ์ด์ง€์•ˆ ํ•„ํ„ฐ๋ง์ด๋ผ๋Š” ํ†ต๊ณ„์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ฐจ์šฉํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ด€์ธก๋œ ๋ฐ์ดํ„ฐ์™€ ์‚ฌ์ „ ์ง€์‹์„ ๊ฒฐํ•ฉํ•ด ์‚ฌํ›„ ๋ถ„ํฌ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฐฑ์‹ ํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์ด ๋‚ด๋ถ€์ ์œผ๋กœ ๋ฒ ์ด์ง€์•ˆ ์—…๋ฐ์ดํŠธ๋ฅผ ์ •ํ™•ํžˆ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋Š”์ง€๋Š” ์•„์ง ๋ช…ํ™•ํ•˜์ง€ ์•Š์•˜๋‹ค. ์‹คํ—˜ ์„ค๊ณ„๋Š” ๋‘ ๊ฐ€์ง€ ์ถ•์„ ์ค‘์‹ฌ์œผ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋‹ค๋ณ€๋Ÿ‰

Model
Mitigating Gender Bias in Depression Detection via Counterfactual Inference

Mitigating Gender Bias in Depression Detection via Counterfactual Inference

๋ณธ ์—ฐ๊ตฌ๋Š” ์Œ์„ฑ ์‹ ํ˜ธ๋งŒ์„ ์ด์šฉํ•ด ์šฐ์šธ์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” ์‹œ์Šคํ…œ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์„ฑ๋ณ„ ํŽธํ–ฅ ๋ฌธ์ œ๋ฅผ ์ธ๊ณผ๋ก ์  ๊ด€์ ์—์„œ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ ๋‹จ์ˆœํžˆ ์žฌ์ƒ˜ํ”Œ๋งํ•˜๊ฑฐ๋‚˜ ์†์‹ค ํ•จ์ˆ˜์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํŽธํ–ฅ์„ ์™„ํ™”ํ•˜๋ ค ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ํŽธํ–ฅ์˜ ๊ทผ๋ณธ ์›์ธ์ธ โ€˜์„ฑ๋ณ„์ด ์ง์ ‘์ ์œผ๋กœ ์˜ˆ์ธก์— ๋ฏธ์น˜๋Š” ์ธ๊ณผ ํšจ๊ณผโ€™๋ฅผ ์ œ๊ฑฐํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ €์ž๋Š” ๋จผ์ € ์šฐ์šธ์ฆ ์ง„๋‹จ ๊ณผ์ • ์ „์ฒด๋ฅผ ์ธ๊ณผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๋…ธ๋“œ๋“ค์€ ์„ฑ๋ณ„(G), ์Œํ–ฅ ํŠน์ง•(X), ์ž ์žฌ์  ๋ณ‘๋ฆฌ ์š”์ธ(P), ๊ทธ๋ฆฌ๊ณ  ์ตœ์ข… ์˜ˆ์ธก(Y)์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ

Detection
Enabling Conversational Behavior Reasoning Capabilities in Full-Duplex Speech

Enabling Conversational Behavior Reasoning Capabilities in Full-Duplex Speech

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ๋Œ€ํ™”์˜ ๊ทผ๋ณธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ โ€œ์ƒ๊ฐ์˜ ์‚ฌ์Šฌโ€์ด๋ผ๋Š” ๋ฉ”ํƒ€ํฌ๋กœ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์ด๋ก ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋Œ€ํ™” ์‹œ์Šคํ…œ์€ ์ฃผ๋กœ ๋ฐœํ™”โ€‘์‘๋‹ต ๋งคํ•‘์ด๋‚˜ ์‹œํ€€์Šคโ€‘ํˆฌโ€‘์‹œํ€€์Šค ๋ชจ๋ธ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ๋ฐœํ™” ๊ฐ„ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋‹ค๋ฃจ์ง€๋Š” ๋ชปํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋Œ€ํ™”๋ฅผ โ€˜์˜๋„ โ†’ ํ–‰๋™โ€™์ด๋ผ๋Š” ๋‘ ๋‹จ๊ณ„๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ๊ฐ์„ ๊ณ ์ˆ˜์ค€ ๋ผ๋ฒจ(์˜ˆ: ์งˆ๋ฌธ, ์ œ์•ˆ, ํ™•์ธ)๊ณผ ์ €์ˆ˜์ค€ ๋ผ๋ฒจ(์˜ˆ: ๋ฐœํ™” ์‹œ์ž‘, ์ค‘๋‹จ, ์ฒญ์ทจ)๋กœ ๊ณ„์ธตํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ผ๋ฒจ๋ง์€ ์ธ๊ณผ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋…ธ๋“œ์™€ ์—ฃ์ง€๋ฅผ ์ •์˜ํ•˜๋Š”๋ฐ, ๋…ธ๋“œ๋Š” ํŠน์ • ์‹œ์ ์˜ ์‚ฌ๊ณ ยท์˜๋„ ์ƒํƒœ, ์—ฃ์ง€๋Š” ์‹œ๊ฐ„์ ยท์ธ

iOS as Acceleration

iOS as Acceleration

์ด ๋…ผ๋ฌธ์€ ์ œ์•ฝ๋œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์„œ์˜ ๋Œ€๊ทœ๋ชจ ๋จธ์‹ ๋Ÿฌ๋‹ ํ™œ์šฉ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์ด ์ œ๊ณตํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ์ปดํ“จํŒ… ์ž์›์— ๋Œ€ํ•œ ์˜์กด์„ฑ์„ ์ค„์ด๊ณ , ํŠนํžˆ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํฌํ•จํ•˜๊ฑฐ๋‚˜ ํด๋ผ์šฐ๋“œ ์‚ฌ์šฉ ๋น„์šฉ์ด ๋†’์€ ์ƒํ™ฉ์—์„œ ๋กœ์ปฌ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ํƒ์ƒ‰ํ•ฉ๋‹ˆ๋‹ค. ์ตœ๊ทผ iOS ๊ธฐ๊ธฐ์˜ ๊ฐ•๋ ฅํ•œ ํ”„๋กœ์„ธ์„œ์™€ ๊ทธ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ์ฃผ๋ชฉํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ž์›์„ ๋ถ„์‚ฐ ํŒŒ์ดํ”„๋ผ์ธ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ํ™œ์šฉํ•˜๋Š” ์ฆ๋ช…์šฉ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์•ฝํ•œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์„œ ์ค‘๊ฐ„ ํฌ๊ธฐ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ›ˆ๋ จ, ๋ฐฐ

Mechanistic Interpretability of GPT-2: Lexical and Contextual Layers in Sentiment Analysis

Mechanistic Interpretability of GPT-2: Lexical and Contextual Layers in Sentiment Analysis

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ๋ฐํžˆ๋ ค๋Š” โ€˜๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ•ด์„(mechanistic interpretability)โ€™ ํ๋ฆ„์— ์†ํ•œ๋‹ค. ํŠนํžˆ ๊ฐ์„ฑ ๋ถ„์„์ด๋ผ๋Š” ๋น„๊ต์  ๋ช…ํ™•ํ•œ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด, GPTโ€‘2(12์ธต, 124M ํŒŒ๋ผ๋ฏธํ„ฐ)์˜ ๋‚ด๋ถ€ ํ‘œํ˜„์ด ์–ด๋–ป๊ฒŒ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ณ€ํ˜•๋˜๋Š”์ง€๋ฅผ ์ธ๊ณผ์  ์‹คํ—˜โ€”ํ™œ์„ฑํ™” ํŒจ์นญ(activation patching)โ€”์„ ํ†ตํ•ด ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œ์ดˆ๊ธฐ ์–ดํœ˜ ๊ฐ์ง€ โ†’ ์ค‘๊ฐ„ ๋งฅ๋ฝ ํ†ตํ•ฉโ€์ด๋ผ๋Š” ๋‘ ๋‹จ๊ณ„ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ •ํ•˜๊ณ , ๊ฐ ์ธต์„ ์„ธ ๊ฐœ์˜ ๊ฐ€์„ค ์˜์—ญ(์ค‘๊ฐ„ ์ธต ์ง‘์ค‘, ํ˜„์ƒ ํŠน์ด์„ฑ, ๋ถ„์‚ฐ ์ฒ˜๋ฆฌ)์œผ๋กœ ๋‚˜๋ˆ„์–ด

Analysis
Neural Networks for Predicting Permeability Tensors of 2D Porous Media: Comparison of Convolution- and Transformer-based Architectures

Neural Networks for Predicting Permeability Tensors of 2D Porous Media: Comparison of Convolution- and Transformer-based Architectures

์ด ๋…ผ๋ฌธ์€ ๋‹ค๊ณต์„ฑ ๋งค์ฒด์˜ ํˆฌ๊ณผ์„ฑ ํ…์„œ๋ฅผ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ํˆฌ๊ณผ์„ฑ ์ธก์ • ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ง์ ‘์ ์ธ ์‹คํ—˜ ๋ฐฉ๋ฒ•์œผ๋กœ, ์‹ค์ œ ์‹œ๋ฃŒ์— ์œ ์ฒด๋ฅผ ํ๋ฅด๊ฒŒ ํ•˜์—ฌ ์••๋ ฅ ๊ฐ•ํ•˜์™€ ์œ ์†์„ ์ธก์ •ํ•ด ํˆฌ๊ณผ์„ฑ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋ฌผ๋ฆฌ์  ์‹œ๋ฃŒ ์ค€๋น„, ์‹คํ—˜ ์žฅ๋น„ ๊ตฌ์ถ•, ๋ฐ˜๋ณต ์ธก์ • ๋“ฑ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋น„์šฉ์ด ๋“ ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ํŠนํžˆ Latticeโ€‘Boltzmann Method(LBM)์™€ ๊ฐ™์€ ๋ฏธ์„ธ ํ๋ฆ„ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. LBM์€ ๋ณต์žกํ•œ ๊ธฐ๊ณต ๊ตฌ์กฐ๋ฅผ ์ •ํ™•ํžˆ ์žฌํ˜„ํ•  ์ˆ˜

Network
MindFuse: Towards GenAI Explainability in Marketing Strategy Co-Creation

MindFuse: Towards GenAI Explainability in Marketing Strategy Co-Creation

MindFuse๋Š” ๊ธฐ์กด LLM์ด โ€œ๋ฌด์—‡์„โ€ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด โ€œ์™œโ€์™€ โ€œ์–ด๋–ป๊ฒŒโ€๋ฅผ ๊ณ ๋ฏผํ•˜๋„๋ก ์„ค๊ณ„๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์‹œ์Šคํ…œ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ฒฝ์Ÿ ๊ด‘๊ณ ๋ฅผ ํฌ๋กค๋งํ•ด ํ…์ŠคํŠธ, ์ด๋ฏธ์ง€, ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ ์ฝ˜ํ…์ธ  ํ”ผ๋ผ๋ฏธ๋“œ์™€ ๊ณ ๊ฐ ํŽ˜๋ฅด์†Œ๋‚˜๋ฅผ ์ž๋™ ์ถ”์ถœํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ† ํ”ฝ ๋ชจ๋ธ๋ง๊ณผ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ๊ฒฐํ•ฉํ•ด ํ•ต์‹ฌ ๋ฉ”์‹œ์ง€์™€ ๊ฐ์„ฑ ํ†ค์„ ์‹๋ณ„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ถ”์ถœ๋œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ CTR ์˜ˆ์ธก ๋ชจ๋ธ์ด ์ œ์‹œํ•˜๋Š” KPIโ€‘์ค‘์‹ฌ ๊ฐ€์ด๋“œ๋ผ์ธ์„ LLM์— ์ „๋‹ฌํ•œ๋‹ค. LLM์€ ์ด ๊ฐ€์ด๋“œ๋ผ์ธ์„ ํ”„๋กฌํ”„ํŠธ๋กœ ํ™œ์šฉํ•ด ์ดˆ์•ˆ

Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges

Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges

๋ณธ ์„ค๋ฌธ์€ โ€˜๋‡Œโ€‘๋ชธ ๊ณต๋™ ์ง„ํ™”โ€™๋ผ๋Š” ์ƒ๋ฌผํ•™์  ํ˜„์ƒ์„ ์ธ๊ณต์ง€๋Šฅ ๋ฐ ๋กœ๋ณดํ‹ฑ์Šค ์„ค๊ณ„์— ์ ์šฉํ•œ ๊ตฌํ˜„ํ˜• ๊ณต๋™ ์„ค๊ณ„(Embodied Coโ€‘Design, ์ดํ•˜ ECD) ๋ถ„์•ผ์˜ ์ตœ์‹  ํ๋ฆ„์„ ํฌ๊ด„์ ์œผ๋กœ ์ •๋ฆฌํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ ์ €์ž๋Š” ECD๋ฅผ ๊ธฐ์กด์˜ ํ˜•ํƒœโ€‘์ œ์–ด ๊ณต๋™ ์ตœ์ ํ™”, ์ง„ํ™” ๋กœ๋ณดํ‹ฑ์Šค, ์‹ ๊ฒฝโ€‘ํ˜•ํƒœ ๊ณตํ•™ ๋“ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ•™์  ์ •์˜์™€ ๊ฐœ๋…์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ํ•ต์‹ฌ์€ โ€˜๋‡Œ(์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜)โ€™, โ€˜๋ชธ(ํ˜•ํƒœยท๋ฌผ๋ฆฌ์  ์†์„ฑ)โ€™, โ€˜ํ™˜๊ฒฝ(๊ณผ์ œ)โ€™์ด๋ผ๋Š” ์„ธ ์ถ•์„ ๋…๋ฆฝ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋ฉด์„œ๋„ ์ƒํ˜ธ ์˜์กด์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์‚ผ์› ๊ตฌ์กฐ๋Š” ์„ค๊ณ„ ๊ณต๊ฐ„

Evidence-Driven Decision Support for AI Model Selection in Research Software Engineering

Evidence-Driven Decision Support for AI Model Selection in Research Software Engineering

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๋ชจ๋ธ ์„ ํƒ์˜ ๋ณต์žก์„ฑ์„ ๋‹ค๋ฃจ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ์—ฐ๊ตฌ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด(RSEs)์™€ ๊ด€๋ จ๋œ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. AI ๋ชจ๋ธ์˜ ๊ธ‰์†ํ•œ ๋ฐœ์ „๊ณผ ๋‹ค์–‘ํ™”๋กœ ์ธํ•ด RSEs๋Š” ์ ์ ˆํ•œ ๋ชจ๋ธ์„ ์„ ํƒํ•˜๊ณ  ํ†ตํ•ฉํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋˜๋Š”๋ฐ, ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ  ํˆฌ๋ช…ํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ AI ๋ชจ๋ธ ์„ ํƒ์„ ๋‹ค์ค‘ ๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ •(MCDM) ๋ฌธ์ œ๋กœ ๊ฐœ๋…ํ™”ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ModelSelect๋ผ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ž๋™ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ํŒŒ์ดํ”„

Model
No Image

MatKV: Trading Compute for Flash Storage in LLM Inference

๋ณธ ๋…ผ๋ฌธ์€ LLM ๊ธฐ๋ฐ˜ ์ƒ์„ฑ AI ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ์ถ”์„ธ๋ฅผ ๋ถ„์„ํ•˜๊ณ , ํŠนํžˆ RAG ๋ฐฉ์‹์˜ prefill ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—๋„ˆ์ง€ ์†Œ๋น„์™€ ์‹œ๊ฐ„ ์†Œ๋ชจ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. MatKV ๋ฐฉ์‹์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด ๋ฐฉ์‹์€ key value ๋ฒกํ„ฐ(KVs)๋ฅผ ์‚ฌ์ „ ๊ณ„์‚ฐํ•˜๊ณ  ์ €๋ ดํ•œ ํ”Œ๋ž˜์‹œ ์ €์žฅ ์žฅ์น˜์— ๋ฌผ๋ฆฌํ™”ํ•˜์—ฌ ์ถ”๋ก  ์‹œ๊ฐ„๊ณผ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ด๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์—์„œ๋Š” Hugging Face์˜ Transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•ด ์ตœ์‹  GPU์™€ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ SSD์—์„œ RAG ์ž‘์—…์„

Parallel Multi-Circuit Quantum Feature Fusion in Hybrid Quantum-Classical Convolutional Neural Networks for Breast Tumor Classification

Parallel Multi-Circuit Quantum Feature Fusion in Hybrid Quantum-Classical Convolutional Neural Networks for Breast Tumor Classification

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์žโ€‘ํด๋ž˜์‹ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ์ด ์‹ค์ œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์„์— ์–ด๋–ค ์ด์ ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ์„ ํƒ์ด ์ค‘์š”ํ•œ๋ฐ, BreastMNIST๋Š” 28 ร— 28 ํ”ฝ์…€์˜ ํ‘๋ฐฑ ์œ ๋ฐฉ ์ดˆ์ŒํŒŒ ์ด๋ฏธ์ง€๋ฅผ ํฌํ•จํ•œ ๊ณต๊ฐœ ๋ฒค์น˜๋งˆํฌ๋กœ, ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ์™€ ์ง์ ‘ ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ณ ์ „์ ์ธ CNN์„ ๊ธฐ๋ณธ ๋ฒ ์ด์Šค๋ผ์ธ์œผ๋กœ ์‚ผ๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ๋™์ผํ•˜๊ฒŒ ๋งž์ถค์œผ๋กœ์จ ์–‘์ž ๋ ˆ์ด์–ด ์ž์ฒด๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜์˜€๋‹ค. ์ด๋Š” โ€œparameterโ€‘matchedโ€ ์„ค๊ณ„

Network
Shortest Paths on Convex Polyhedral Surfaces

Shortest Paths on Convex Polyhedral Surfaces

๋ณธ ๋…ผ๋ฌธ์€ ๋ณผ๋ก ๋‹ค๋ฉด์ฒด์˜ ํ‘œ๋ฉด์—์„œ ๋‘ ์  ์‚ฌ์ด์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ด๋Š” ์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค, ๋กœ๋ด‡ ๊ณตํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋กœ, ํŠนํžˆ ๋ณต์žกํ•œ 3D ๋ชจ๋ธ์„ ์ฒ˜๋ฆฌํ•  ๋•Œ ์ค‘์š”ํ•˜๋‹ค. ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” O(n^8+ฯต)์˜ ์ „์ฒ˜๋ฆฌ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ๋ณต์žก๋„๊ฐ€ ํ•„์š”ํ–ˆ์œผ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋ฅผ ๊ฐ๊ฐ O(n^6+ฯต)์œผ๋กœ ํฌ๊ฒŒ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ํŠนํžˆ, ํ•˜๋‚˜์˜ ์งˆ์˜ ์ ์ด ๋ณ€์— ์œ„์น˜ํ•ด์•ผ ํ•˜๋Š” ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ์—์„œ๋Š” ์ „์ฒ˜๋ฆฌ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ๋ณต์žก๋„๋ฅผ ๋” ๋‚˜์•„๊ฐ€ O(n^5+ฯต)๋กœ ์ค„์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„ ์€ ๋ณผ๋ก ๋‹ค๋ฉด์ฒด์—์„œ ์ตœ๋‹จ ๊ฒฝ๋กœ

System Report for CCL25-Eval Task 10: Prompt-Driven Large Language Model Merge for Fine-Grained Chinese Hate Speech Detection

System Report for CCL25-Eval Task 10: Prompt-Driven Large Language Model Merge for Fine-Grained Chinese Hate Speech Detection

์ด ๋…ผ๋ฌธ์€ ์ค‘๊ตญ ๋‚ด ์†Œ์…œ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” ํ˜์˜ค๋ฐœ์–ธ์„ ์ž๋™์œผ๋กœ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์‚ฌ์ „ ์ •์˜๋œ ํ‚ค์›Œ๋“œ๋‚˜ ํ‘œ๋ฉด์ ์ธ ๋ฌธ๋งฅ์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์€์–ดยท์‹ ์กฐ์–ดยท๋น„์œ ์  ํ‘œํ˜„ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์–ธ์–ด ํ˜„์ƒ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ๋‹จ๊ณ„์ ์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ „๋žต์„ ์ฑ„ํƒํ–ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์—์„œ๋Š” โ€œ๋งฅ๋ฝ ์ธ์‹ ํ”„๋กฌํ”„ํŠธโ€๋ฅผ ์„ค๊ณ„ํ•ด LLM์ด ์ž…๋ ฅ ๋ฌธ์žฅ์˜ ์ˆจ์€ ์˜๋ฏธ์™€ ์‚ฌํšŒ๋ฌธํ™”์ 

Model Detection System
A Systematic Characterization of LLM Inference on GPUs

A Systematic Characterization of LLM Inference on GPUs

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLM ์ถ”๋ก ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์‚ฐ์žฌํ•˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์„ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ํ•˜๋‚˜์˜ ์ผ๊ด€๋œ ๋ถ„์„ ์ฒด๊ณ„๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์ธ โ€œ๋‘ ๋‹จ๊ณ„ ์ด์งˆ์„ฑ ๊ด€์ฐฐโ€์€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์„ฑ๋Šฅ ๋ณ€๋™์„ ๋‘ ๋‹จ๊ณ„, ์ฆ‰ ์ž…๋ ฅ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์™€ ์‹ค์ œ ์—ฐ์‚ฐ ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ด์งˆ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ด๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋กœ ์ „์ฒด ์ง€์—ฐ ์‹œ๊ฐ„๋งŒ์„ ๋ณด๊ณ ํ–ˆ์ง€๋งŒ, ์„ธ๋ถ€ ๋‹จ๊ณ„๋ณ„ ๋ณ‘๋ชฉ์„ ๋“œ๋Ÿฌ๋‚ด์–ด ๋ฏธ์„ธ ์กฐ์ •์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค€๋‹ค. ๋‘ ๋ฒˆ์งธ ์ถ•์ธ โ€œ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜ ๊ทผ๋ณธ ์›์ธ ๋ถ„์„โ€์€ CPU, GPU, ๊ฐ€์†๊ธฐ ๋“ฑ ๋‹ค์–‘ํ•œ ํ•˜๋“œ์›จ์–ด ํ”Œ๋žซํผ์—์„œ

System
AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets

AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets

์ด ๋…ผ๋ฌธ์€ ๊ธˆ์œต ์˜์‚ฌ๊ฒฐ์ •์—์„œ LLM์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ์™„์ „ ์ž๋™ํ™”๋œ ๋ฒค์น˜๋งˆํฌ์ธ AI Trader๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ํ™˜๊ฒฝ์—์„œ์˜ ์˜์‚ฌ๊ฒฐ์ • ๋Šฅ๋ ฅ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ๊ธˆ์œต ๋ถ„์•ผ์—์„œ๋Š” ์—„๊ฒฉํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์ด ์žˆ์–ด ์‹ค์ œ ์„ธ๊ณ„ ์ ์šฉ์„ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ํ‰๊ฐ€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. AI Trader๋Š” ๋ฏธ๊ตญ ์ฃผ์‹, A์ฃผ, ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์—์„œ ๋‹ค์–‘ํ•œ ๊ฑฐ๋ž˜ ๋‹จ์œ„๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ํ™˜๊ฒฝ์„ ๋ชจ๋ฐฉํ•˜๋ฉฐ, LLM ์—์ด์ „ํŠธ๋“ค์ด ์ธ๊ฐ„์˜ ๊ฐœ์ž… ์—†์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์†Œ ์ •๋ณด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ

BlendedNet++: A Large-Scale Blended Wing Body Aerodynamics Dataset and Benchmark

BlendedNet++: A Large-Scale Blended Wing Body Aerodynamics Dataset and Benchmark

BlendedNet++๋Š” ํ˜„์žฌ ํ•ญ๊ณต๊ธฐ ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ, ์ฆ‰ ๊ณ ํ•ด์ƒ๋„ ์ ๋ณ„ ๊ณต๊ธฐ์—ญํ•™ ๋ฐ์ดํ„ฐ์˜ ๋ถ€์žฌ์™€ ์—ญ์„ค๊ณ„ ๊ณผ์ •์˜ ์žฌํ˜„์„ฑ ๋ถ€์กฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, 12,000์—ฌ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ BWB ํ˜•์ƒ์„ ํฌํ•จํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์ •๋ฐ€ RANS CFD ํ•ด์„์„ ์ˆ˜ํ–‰ํ•œ 12,490๊ฐœ์˜ ์ƒ˜ํ”Œ์€ ๊ธฐ์กด ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹์ด ๋ช‡ ๋ฐฑ ๊ฐœ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋ €๋˜ ๊ฒƒ์— ๋น„ํ•ด ํš๊ธฐ์ ์œผ๋กœ ๊ทœ๋ชจ๊ฐ€ ํ™•๋Œ€๋œ ์ ์ด ํฐ ์žฅ์ ์ด๋‹ค. ํŠนํžˆ ์••๋ ฅยทํ”ผ๋ถ€๋งˆ์ฐฐ ๊ณ„์ˆ˜์™€ ๊ฐ™์€ ํ‘œ๋ฉด ํ•„๋“œ๋ฅผ ๋ฐ€์ง‘ํ•˜๊ฒŒ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ํ†ตํ•ฉ ๊ณ„์ˆ˜(C L, C D, C M)๋ฟ

Data
CAPTURE: A Benchmark and Evaluation for LVLMs in CAPTCHA Resolving

CAPTURE: A Benchmark and Evaluation for LVLMs in CAPTCHA Resolving

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์‹œ๊ฐ ์–ธ์–ด ๋ชจ๋ธ(LVLM)์„ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด CAPTCHA ๋ฒค์น˜๋งˆํฌ์ธ CAPTURE๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ CAPTCHA ๋ฒค์น˜๋งˆํฌ๋Š” ํŠน์ • ์—ฐ๊ตฌ ๋ชฉํ‘œ์— ๋งž์ถฐ ์„ค๊ณ„๋˜์–ด ์žˆ์–ด, ๋ชจ๋“  CAPTCHA ์œ ํ˜•์„ ํฌ๊ด„ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด CAPTURE๋Š” ๋‹ค์–‘ํ•œ CAPTCHA ์œ ํ˜•๊ณผ ํ•˜์œ„ ์œ ํ˜•์„ ํฌํ•จํ•˜์—ฌ LVLM ์„ฑ๋Šฅ์„ ๋‹ค๊ฐ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๊ธฐ์กด์˜ LVLM์€ CAPTCHA๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์—์„œ ์ œ์•ฝ์ด ์žˆ์—ˆ์ง€๋งŒ, CRRD ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Constant-Time Motion Planning with Manipulation Behaviors

Constant-Time Motion Planning with Manipulation Behaviors

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Bโ€‘CTMP๋Š” ๊ธฐ์กด CTMP ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ์ค‘์š”ํ•œ ์ง„์ „์ด๋‹ค. CTMP๋Š” ์‚ฌ์ „ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์ฟผ๋ฆฌ ๋‹จ๊ณ„์—์„œ ์ผ์ •ํ•œ ์‹คํ–‰ ์‹œ๊ฐ„์„ ๋ณด์žฅํ•œ๋‹ค๋Š” ์ ์—์„œ ์‹ค์‹œ๊ฐ„ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์— ๋งค๋ ฅ์ ์ด์ง€๋งŒ, ์‹ค์ œ ์กฐ์ž‘ ์ž‘์—…์€ ๋‹จ์ˆœํžˆ ์ถฉ๋Œ์„ ํ”ผํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ๋ฌผ์ฒด๋ฅผ ์žก๊ฑฐ๋‚˜ ์‚ฝ์ž…ํ•˜๋Š” ํ–‰๋™์€ ๋กœ๋ด‡์˜ ์—”๋“œ ์ดํŽ™ํ„ฐ์™€ ๋Œ€์ƒ ๋ฌผ์ฒด ์‚ฌ์ด์˜ ๋ณต์žกํ•œ ์ ‘์ด‰ ์—ญํ•™์„ ํฌํ•จํ•˜๋ฉฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ๊ฒฝ๋กœ ๊ณ„ํš ๊ณต๊ฐ„๊ณผ๋Š” ๋ณ„๊ฐœ์˜ ์ฐจ์›์œผ๋กœ ์ทจ๊ธ‰๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. Bโ€‘CTMP๋Š” ์ด๋Ÿฌํ•œ ๋‘ ๋‹จ๊ณ„ ๊ณผ์ •์„ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๋ฌถ์Œ์œผ๋กœ์จ, โ€œ์ด๋™โ€‘ํ–‰๋™โ€ ์—ฐ์‡„

Data-Free Pruning of Self-Attention Layers in LLMs

Data-Free Pruning of Self-Attention Layers in LLMs

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์˜ ๊ตฌ์กฐ์  ํšจ์œจ์„ฑ์„ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”๋ฅผ ์œ„ํ•ด ํŒŒ๋ผ๋ฏธํ„ฐ ์–‘์„ ์ค„์ด๊ฑฐ๋‚˜, ์ง€์‹ ์ฆ๋ฅ˜, ์–‘์žํ™”์™€ ๊ฐ™์€ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ์žฌ์กฐ์ •ํ•˜๊ฑฐ๋‚˜ ๋Œ€๋Ÿ‰์˜ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•„์š”๋กœ ํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ €์ž๋“ค์€ โ€œAttention Suppression Hypothesisโ€(์ฃผ์˜ ์–ต์ œ ๊ฐ€์„ค)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ฐ€์„ค์— ๋”ฐ๋ฅด๋ฉด, ์‚ฌ์ „ ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ผ๋ถ€ ๊นŠ์€ selfโ€‘attention ๋ ˆ์ด์–ด๋Š” ์ž์‹ ์ด ์ƒ์„ฑํ•˜๋Š” ์–ดํ…์…˜ ๊ฐ€์ค‘์น˜๋ฅผ ์˜๋„์ ์œผ๋กœ

Data
Dora: QoE-Aware Hybrid Parallelism for Distributed Edge AI

Dora: QoE-Aware Hybrid Parallelism for Distributed Edge AI

Dora ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์—์ง€ AI ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉ์ž ํ’ˆ์งˆ ๊ฒฝํ—˜(QoE)์„ ์ตœ์ ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ๊ณ„ํš์ž๊ฐ€ ์ฃผ๋กœ ์žฅ์น˜ ํ™œ์šฉ๋„๋‚˜ ์ฒ˜๋ฆฌ๋Ÿ‰์— ์ง‘์ค‘ํ•˜์—ฌ QoE๋ฅผ ๋ฌด์‹œํ•˜๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Dora ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. Dora๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์ด์งˆ์ ์ธ ํ™˜๊ฒฝ์—์„œ์˜ ๊ณ„์‚ฐ๊ณผ ๋„คํŠธ์›Œํฌ ๊ฒฝ์Ÿ ์œ„ํ—˜์„ ๊ด€๋ฆฌํ•˜๋ฉฐ, ๋‹ค์ฐจ์› QoE ๋ชฉํ‘œ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋ชจ๋ธ ๋ถ„ํ• ๊ธฐ๋กœ, ์ด๋Š” ์žฅ์น˜ ๊ฐ„์— ๋ชจ๋ธ ํŒŒํ‹ฐ์…˜์„ ๊ฒฐ์ •ํ•˜๊ณ  ํ• ๋‹นํ•˜์—ฌ QoE ์ค€์ˆ˜ ๊ณ„ํš ์„ธํŠธ๋ฅผ ํ˜•

From Wearables to Warnings: Predicting Pain Spikes in Patients with Opioid Use Disorder

From Wearables to Warnings: Predicting Pain Spikes in Patients with Opioid Use Disorder

๋ณธ ์—ฐ๊ตฌ๋Š” ๋งŒ์„ฑํ†ต์ฆ๊ณผ ์˜คํ”ผ์˜ค์ด๋“œ ์‚ฌ์šฉ์žฅ์• ๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๋ณตํ•ฉ์ ์ธ ๋งŒ์„ฑ ์งˆํ™˜์„ ๋™์‹œ์— ๊ฒช๋Š” ํ™˜์ž๊ตฐ์„ ๋Œ€์ƒ์œผ๋กœ, ์›จ์–ด๋Ÿฌ๋ธ” ๋””๋ฐ”์ด์Šค์—์„œ ์ˆ˜์ง‘๋œ ์ƒ๋ฆฌํ•™์ ยทํ–‰๋™์  ๋ฐ์ดํ„ฐ์™€ ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•ด ํ†ต์ฆ ๊ธ‰์ฆ(pain spikes)์„ ์˜ˆ์ธกํ•˜๊ณ  ๊ทธ ์ž„์ƒ์  ์—ฐ๊ด€์„ฑ์„ ํƒ์ƒ‰ํ•œ ์ตœ์ดˆ์˜ ํŒŒ์ผ๋Ÿฟ ์—ฐ๊ตฌ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ ์„ค๊ณ„ ์ธก๋ฉด์—์„œ, 25๋ช…์˜ ํ™˜์ž๋ฅผ ๋ชจ์ง‘ํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์‹ฌ๋ฐ•๋ณ€์ด๋„(HRV), ํ™œ๋™๋Ÿ‰, ์ˆ˜๋ฉด ํŒจํ„ด, ๊ทธ๋ฆฌ๊ณ  ์ž๊ฐ€ ๋ณด๊ณ ๋œ ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€ ๋“ฑ์„ ๋‹ค๋ณ€๋Ÿ‰ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋กœ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด์˜ ์ •ํ˜•ํ™”๋œ ์„ค๋ฌธ์ง€ ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ, ํ†ต์ฆ์ด

Informing Acquisition Functions via Foundation Models for Molecular Discovery

Informing Acquisition Functions via Foundation Models for Molecular Discovery

๋ณธ ๋…ผ๋ฌธ์€ ๋ถ„์ž์˜ ์†์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ  ์ตœ์  ํ›„๋ณด๋ฅผ ์ฐพ๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”(BO) ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. BO์˜ ์ฃผ์š” ๋ฌธ์ œ์  ์ค‘ ํ•˜๋‚˜๋Š” ๋‚ฎ์€ ๋ฐ์ดํ„ฐ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)๊ณผ ํ™”ํ•™ ๋ถ„์•ผ์— ํŠนํ™”๋œ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ BO์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ์ด ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์› ํŠน์ง•๊ณผ in context ํ•™์Šต์˜ ๋น„์šฉ, ๊นŠ์€ ๋ฒ ์ด์ง€์•ˆ ๋Œ€๋ฆฌ๋ชจ๋ธ์˜ ๊ณ„์‚ฐ ๋ถ€๋‹ด ๋“ฑ LLM๊ณผ ํ™”ํ•™ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์˜ ํ™œ์šฉ์— ๋Œ€ํ•œ ์ฃผ์š” ์žฅ์• ๋ฌผ์„ ๊ทน๋ณต

Model
Interpretable Link Prediction in AI-Driven Cancer Research: Uncovering Co-Authorship Patterns

Interpretable Link Prediction in AI-Driven Cancer Research: Uncovering Co-Authorship Patterns

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๊ธฐ์ˆ ์ด ์•” ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ์˜ ํ˜‘์—… ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํƒ๊ตฌํ•œ๋‹ค. ํŠนํžˆ, ๊ณต๋™์ €์ž ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด, ์ง€์†์ ์ธ, ๊ทธ๋ฆฌ๊ณ  ์ค‘๋‹จ๋œ ํ˜‘์—… ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•จ์œผ๋กœ์จ AI๊ฐ€ ์–ด๋–ป๊ฒŒ ์•” ์—ฐ๊ตฌ์˜ ๋‹คํ•™์ œ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ์žˆ๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณธ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” 2000๋…„๋ถ€ํ„ฐ 2017๋…„๊นŒ์ง€์˜ 7,738๊ฐœ ์ถœํŒ๋ฌผ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ•™๋ฌธ์  ์œ ์‚ฌ๋„ ์ ์ˆ˜์™€ ์ƒ์‚ฐ์„ฑ ๋ฐ ๊ฒฝ๋ ฅ์ด ํ˜‘์—… ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ๊ฒฐ๊ณผ, ํ•™๋ฌธ์  ์œ ์‚ฌ๋„๊ฐ€ ์ƒˆ๋กœ์šด ๋ฐ ์ง€์†์ ์ธ ํ˜‘์—…์—๋Š” ๊ธ์ •์ ์œผ๋กœ ์ž‘์šฉํ•˜์ง€๋งŒ ์ค‘๋‹จ๋œ ํ˜‘

No Image

LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation

์ด ๋…ผ๋ฌธ์€ ๋น„๋””์˜ค ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(VLLMs)์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ธ LinkedOut์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. VLLMs๋Š” ์ธํ„ฐ๋„ท ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์„ธ๊ณ„ ์ง€์‹์„ ํ•™์Šตํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋น„๋””์˜ค ๊ด€๋ จ ์ž‘์—…์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๋‹ค์ค‘ ๋น„๋””์˜ค ์ž…๋ ฅ, ๊ฐ€๋ฒผ์šด ๋ฐฑ๋ณธ, ๋‚ฎ์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„์˜ ์—ฐ์† ์ถ”๋ก  ๋ฐ ์‹ ์†ํ•œ ์‘๋‹ต์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— VLLMs๋ฅผ ํ•˜๋ฅ˜ ์ž‘์—…์ธ ๋น„๋””์˜ค ์ถ”์ฒœ์— ๋ฐฐํฌํ•˜๋Š” ๊ฒƒ์ด ์—ฌ์ „ํžˆ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. LinkedOut๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์„ธ๊ณ„ ์ง€์‹์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”

No Image

MMRAG-RFT: Two-stage Reinforcement Fine-tuning for Explainable Multi-modal Retrieval-augmented Generation

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด MMRAG ๋ฐฉ๋ฒ•๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™”ํ•™์Šต์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ์ด์Šˆ๋Š” ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ์™ธ๋ถ€ ๋‹ค์ค‘๋ชจ๋‹ฌ ์ง€์‹์„ ํ†ตํ•ฉํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”๋ก  ๋…ผ๋ฆฌ์˜ ๋ถˆ๋ช…ํ™•์„ฑ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์—ฐ๊ตฌ์ง„์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ๊ฐ•ํ™” ํ•™์Šต ๋ฏธ์„ธ ์กฐ์ • ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ด ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฌธ์„œ๋“ค ์ค‘์—์„œ ํฌ๊ฒŒ ๊ด€๋ จ์ด ์—†๋Š” ํ•ญ๋ชฉ๋“ค์„ ํ•„ํ„ฐ๋งํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์„ธ๋ฐ€ํ•œ ๋ชฉ๋ก ์ˆœ์œ„์™€ ๋‹ต๋ณ€ ์ƒ์„ฑ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜์—ฌ ์ถ”๋ก  ๋…ผ๋ฆฌ๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘

Multi-LLM Collaboration for Medication Recommendation

Multi-LLM Collaboration for Medication Recommendation

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ํ˜„์žฅ์—์„œ AI ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ • ์ง€์› ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œโ€”๋ชจ๋ธ์˜ ํ™˜๊ฐ ํ˜„์ƒ๊ณผ ์•™์ƒ๋ธ”์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ฐœ๋ณ„ LLM์ด ์ƒ์„ฑํ•˜๋Š” ํ…์ŠคํŠธ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ํ†ต๊ณ„์  ํŒจํ„ด์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํŠนํžˆ ์ „๋ฌธ ์˜๋ฃŒ ์ง€์‹์ด ์š”๊ตฌ๋˜๋Š” ์ƒํ™ฉ์—์„œ ์‚ฌ์‹ค๊ณผ ๋‹ค๋ฅธ ์ •๋ณด๋ฅผ โ€˜ํ™˜๊ฐโ€™์œผ๋กœ ๋‚ด๋†“๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋Š” ํ™˜์ž ์•ˆ์ „์— ์ง์ ‘์ ์ธ ์œ„ํ˜‘์„ ๊ฐ€ํ•˜๋ฏ€๋กœ, ๋‹จ์ˆœํžˆ ๋ชจ๋ธ ๊ทœ๋ชจ๋ฅผ ํ‚ค์šฐ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ๊ทผ๋ณธ์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด ๋˜์ง€ ์•Š๋Š”๋‹ค. ์ „ํ†ต์ ์ธ ์•™์ƒ๋ธ” ๊ธฐ๋ฒ•์€ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ ํ‰๊ท ํ•˜

< Category Statistics (Total: 5012) >

Electrical Engineering and Systems Science
102
General
4156
General Relativity
2
HEP-EX
3
HEP-PH
1
HEP-TH
3
MATH-PH
6
Nonlinear Sciences
1
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut