KOINEU Logo
Algorithm for Interpretable Graph Features via Motivic Persistent Cohomology

Algorithm for Interpretable Graph Features via Motivic Persistent Cohomology

์ƒ‰์ฑ„ ์ง€์†์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜(CPA)์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก , ์œ„์ƒ์ˆ˜ํ•™, ๊ทธ๋ฆฌ๊ณ  ๊ณ„์‚ฐ๊ธฐํ•˜ํ•™์„ ๊ต์ฐจ์‹œํ‚จ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๊ธฐ์กด์˜ ์ง€์†์„ฑ ๋™์—ญํ•™(persistent homology) ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‹ฌํ”Œ๋ ‰์Šค ๋ณตํ•ฉ์ฒด๋‚˜ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์„ ์‚ฌ์šฉํ•ด ๋ฐ์ดํ„ฐ์˜ ๋‹ค์ค‘ ์Šค์ผ€์ผ ํ† ํด๋กœ์ง€๋ฅผ ์ถ”์ถœํ–ˆ์œผ๋ฉฐ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์— ์ง์ ‘ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„๊ฐ€ ํ•„์š”ํ–ˆ๋‹ค. CPA๋Š” ์ด๋Ÿฌํ•œ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋ฐฐ์ œํ•˜๊ณ , ๊ฐ€์ค‘ ๊ทธ๋ž˜ํ”„ ์ž์ฒด๋ฅผ โ€˜๊ทธ๋ž˜ํ”„ ๋ฐฐ์—ดโ€™์ด๋ผ๋Š” ๊ธฐํ•˜ํ•™์  ๊ตฌ์„ฑ์„ ํ†ตํ•ด ๋ฐ”๋กœ ํ† ํด๋กœ์ง€์  ํ•„ํ„ฐ๋ง ๋Œ€์ƒ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ฐฐ์—ด์€ ๊ฐ ์ •์ ๊ณผ ๊ฐ„์„ ์— ๋Œ€์‘ํ•˜๋Š” ์ดˆํ‰๋ฉด๋“ค์˜ ๋ฐฐ

VisChainBench: A Benchmark for Multi-Turn, Multi-Image Visual Reasoning Beyond Language Priors

VisChainBench: A Benchmark for Multi-Turn, Multi-Image Visual Reasoning Beyond Language Priors

VisChainBench๋Š” ๊ธฐ์กด LVLM ํ‰๊ฐ€ ๋ฐฉ์‹์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ณด์™„ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, โ€œ๋ฉ€ํ‹ฐ ์ด๋ฏธ์ง€ยท๋ฉ€ํ‹ฐ ํ„ดโ€์ด๋ผ๋Š” ์„ค์ •์€ ์ธ๊ฐ„์ด ์ผ์ƒ์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๋ชจ๋ธ์—๊ฒŒ ์š”๊ตฌํ•œ๋‹ค. ๋‹จ์ˆœํžˆ ํ•œ ์žฅ์˜ ์ด๋ฏธ์ง€๋ฅผ ๋ณด๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์—ฐ์†๋œ ์ด๋ฏธ์ง€ ํ๋ฆ„ ์†์—์„œ ์ด์ „ ๋‹จ๊ณ„์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ์–ตํ•˜๊ณ , ๊ทธ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ ๋‹จ๊ณ„์˜ ์งˆ๋ฌธ์„ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์žฅ๊ธฐ ๊ธฐ์–ต ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ๋™์  ์ปจํ…์ŠคํŠธ ์œตํ•ฉ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์—ˆ๋Š”์ง€๋ฅผ ํ…Œ์ŠคํŠธํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์ •์  ๋ฒค์น˜๋งˆํฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ๋‘˜์งธ, VisChain

Neural emulation of gravity-driven geohazard runout

Neural emulation of gravity-driven geohazard runout

์ด ๋…ผ๋ฌธ์€ ์ค‘๋ ฅ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ง€์งˆ์žฌํ•ด์˜ ํ™•์‚ฐ์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ๊ณ„์‚ฐ ํšจ์œจ์„ฑ๊ณผ ๋ฌผ๋ฆฌ์  ์ •ํ™•์„ฑ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฐ˜๋ฉด, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๊ทœ๋ชจ์˜ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ›ˆ๋ จ๋œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์ด๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋ชจ๋ธ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ณด๋‹ค 10ยฒ 10โด๋ฐฐ ๋” ๋น ๋ฅธ ์†๋„๋กœ ์ง€์งˆ์žฌํ•ด์˜ ํ™•์‚ฐ ๋ฒ”์œ„์™€ ํ‡ด์  ๋‘๊ป˜๋ฅผ ์˜ˆ์ธกํ•˜๋ฉฐ, ์‹ค์ œ ์ž์—ฐ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์œ ํ˜•๊ณผ ํฌ๊ธฐ์˜ ์žฌํ•ด์— ๋Œ€ํ•ด ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹ ์†ํ•œ ์œ„ํ—˜ ํ‰๊ฐ€์™€ ์˜ํ–ฅ ๊ธฐ๋ฐ˜์˜ ์˜ˆ๋ณด ์‹œ์Šค

A Multimodal Conversational Agent for Tabular Data Analysis

A Multimodal Conversational Agent for Tabular Data Analysis

Talk2Data ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋„๊ตฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์˜ ๋น„์ „๋ฌธ์„ฑ ๊ณผ ๋ถ„์„ ๊ฒฐ๊ณผ์˜ ๋ถˆํˆฌ๋ช…์„ฑ ์„ LLM ๊ธฐ๋ฐ˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์—์ด์ „ํŠธ๋ฅผ ํ†ตํ•ด ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ € ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ดํŽด๋ณด๋ฉด, ์ž…๋ ฅ ๋‹จ๊ณ„์—์„œ Whisper ASR์ด ์Œ์„ฑ ๋ช…๋ น์„ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด ํ…์ŠคํŠธ๋Š” ๋Œ€ํ™” ๊ด€๋ฆฌ ๋ชจ๋“ˆ์— ์ „๋‹ฌ๋œ๋‹ค. ๋Œ€ํ™” ๊ด€๋ฆฌ ๋ชจ๋“ˆ์€ ํ˜„์žฌ ๋Œ€ํ™” ์ƒํƒœ์™€ ๋ฐ์ดํ„ฐ์…‹ ์Šคํ‚ค๋งˆ ์ •๋ณด๋ฅผ ํ”„๋กฌํ”„ํŠธ์— ํฌํ•จ์‹œ์ผœ Qwenโ€‘coder์—๊ฒŒ ์ฝ”๋“œ ์ƒ์„ฑ ์„ ์š”์ฒญํ•œ๋‹ค. ์ƒ์„ฑ๋œ ํŒŒ์ด์ฌ ์ฝ”๋“œ๋Š” ๊ฒฉ๋ฆฌ๋œ ์ƒŒ๋“œ๋ฐ•์Šค ํ™˜๊ฒฝ์—์„œ ์‹คํ–‰๋˜๋ฉฐ, ์‹คํ–‰ ๊ฒฐ๊ณผ(ํ”Œ

Analysis Data
VeruSAGE: A Study of Agent-Based Verification for Rust Systems

VeruSAGE: A Study of Agent-Based Verification for Rust Systems

๋ณธ ์—ฐ๊ตฌ๋Š” LLM์ด ์‹ค์ œ ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ํ˜•์‹ ๊ฒ€์ฆ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ฒซ์งธ, VeruSAGEโ€‘Bench๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๊ธฐ์กด Verusโ€‘๊ฒ€์ฆ ํ”„๋กœ์ ํŠธ๋Š” ์šด์˜์ฒด์ œ ์ปค๋„, ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น์ž, ์Šคํ† ๋ฆฌ์ง€ ์‹œ์Šคํ…œ, ๋ถ„์‚ฐ ์‹œ์Šคํ…œ ๋“ฑ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๊ณ  ์žˆ์—ˆ์ง€๋งŒ, ๊ฐ ์ฆ๋ช… ๊ณผ์ œ๊ฐ€ ํ”„๋กœ์ ํŠธ ์ „์ฒด์™€ ๊ฐ•ํ•˜๊ฒŒ ๊ฒฐํ•ฉ๋ผ ์žˆ์–ด ๊ฐœ๋ณ„ LLM์˜ ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ์—ฐ๊ตฌํŒ€์€ 849๊ฐœ์˜ ์ฆ๋ช… ํ•จ์ˆ˜๋ฅผ ๋…๋ฆฝ์ ์ธ Rust ํŒŒ์ผ๋กœ ์ถ”์ถœํ•˜๊ณ , ๋ชจ๋“  ์ข…์†์„ฑ์„ ํฌํ•จ์‹œ์ผœ ์ปดํŒŒ์ผ ๋ฐ ๊ฒ€์ฆ์ด ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ

System
Quantitative Analysis of Technical Debt and Pattern Violation in Large Language Model Architectures

Quantitative Analysis of Technical Debt and Pattern Violation in Large Language Model Architectures

๋ณธ ๋…ผ๋ฌธ์€ LLM์ด ๋‹จ์ˆœ ์ฝ”๋“œ ์ž๋™์™„์„ฑ ์ˆ˜์ค€์„ ๋„˜์–ด ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ์  ์„ค๊ณ„๋ฅผ ๋‹ด๋‹นํ•˜๊ฒŒ ๋˜์—ˆ์„ ๋•Œ, ๊ทธ ์„ค๊ณ„ ํ’ˆ์งˆ์ด ์žฅ๊ธฐ์ ์ธ ์œ ์ง€๋ณด์ˆ˜์™€ ๊ธฐ์ˆ  ๋ถ€์ฑ„์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์ตœ์ดˆ๋กœ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € โ€˜ํ—ฅ์‚ฌ๊ณ ๋‚  ์•„ํ‚คํ…์ฒ˜โ€™๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์‚ผ์•„, ๋„๋ฉ”์ธ, ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜, ์ธํ”„๋ผ, ์–ด๋Œ‘ํ„ฐ ๋„ค ๊ฐœ์˜ ๋ ˆ์ด์–ด๊ฐ€ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋˜๊ณ  ์˜์กด์„ฑ ๊ทœ์น™์ด ์—„๊ฒฉํžˆ ์ ์šฉ๋˜๋Š” ๋งˆ์ดํฌ๋กœ์„œ๋น„์Šค ํ…œํ”Œ๋ฆฟ์„ ์ •์˜ํ•˜์˜€๋‹ค. ์ด ํ…œํ”Œ๋ฆฟ์€ ๋„๋ฉ”์ธ ์—”ํ‹ฐํ‹ฐ์™€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ทœ์น™์ด ํ•ต์‹ฌ ๋ ˆ์ด์–ด์— ๋จธ๋ฌผ๊ณ , ์™ธ๋ถ€ ์‹œ์Šคํ…œ๊ณผ์˜ ํ†ต์‹ ์€ ์–ด๋Œ‘ํ„ฐ๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ตฌ์กฐ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ์„ธ ๋ชจ

Model Analysis
SensHRPS: Sensing Comfortable Human-Robot Proxemics and Personal Space With Eye-Tracking

SensHRPS: Sensing Comfortable Human-Robot Proxemics and Personal Space With Eye-Tracking

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„๊ณผ ์ธ๊ฐ„ํ˜• ๋กœ๋ด‡ ๊ฐ„์˜ ๊ทผ์ ‘ ๊ฑฐ๋ฆฌ ๋ณ€ํ™”๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์ฃผ๊ด€์  ํŽธ์•ˆํ•จ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ณ , ์•ˆ๊ตฌ ์ถ”์  ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ž๋™ ํŽธ์•ˆํ•จ ์ถ”์ • ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค. ์‹คํ—˜์€ 19๋ช…์˜ ์ฐธ๊ฐ€์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ Ameca ๋กœ๋ด‡ ์•ž์— ์„œ์„œ 0.5 m, 1.0 m, 1.5 m, 2.0 m ๋„ค ๊ฐ€์ง€ ๊ฑฐ๋ฆฌ์—์„œ ๊ฐ๊ฐ 2๋ถ„์”ฉ ์ƒํ˜ธ์ž‘์šฉํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ๋ชจ๋ฐ”์ผ ์•ˆ๊ตฌ ์ถ”์ ๊ธฐ(30 Hz)๋ฅผ ์ฐฉ์šฉํ•ด ๋™๊ณต ์ง๊ฒฝ, ๋™๊ณต ๋ณ€๋™์„ฑ, ์‹œ์„  ๊ณ ์ • ์‹œ๊ฐ„, ๋ˆˆ ๊นœ๋นก์ž„ ๋นˆ๋„ ๋“ฑ 12๊ฐœ์˜ ์‹œ์„  ํŠน์„ฑ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ธฐ๋กํ•˜์˜€๋‹ค. ์‹คํ—˜ ์งํ›„์—๋Š” 7์  ๋ฆฌ์ปคํŠธ ์ฒ™

Extracting Disaster Impacts and Impact Related Locations in Social Media Posts Using Large Language Models

Extracting Disaster Impacts and Impact Related Locations in Social Media Posts Using Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์žฌ๋‚œ ์ƒํ™ฉ์—์„œ ์†Œ์…œ๋ฏธ๋””์–ด๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋น„์ •ํ˜• ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ โ€˜์ง€์˜คโ€‘์„ผ์„œโ€™๋กœ ํ™œ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ์žฌ๋‚œ ๊ฐ์‹œ ์ฒด๊ณ„๋Š” ์œ„์„ฑ ์˜์ƒยทํ˜„์žฅ ์„ผ์„œยท๊ณต๊ณต GIS ๋ฐ์ดํ„ฐ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ„์„ฑ์€ ๊ตฌ๋ฆ„ยท์—ฐ๋ฌด ๋“ฑ ๋Œ€๊ธฐ ํ˜„์ƒ์— ์ทจ์•ฝํ•˜๊ณ , ์žฌ๋ฐฉ๋ฌธ ์ฃผ๊ธฐ๊ฐ€ ๊ธธ์–ด ์‹ค์‹œ๊ฐ„ ๊ฐ์‹œ๊ฐ€ ์–ด๋ ต๋‹ค. ํ˜„์žฅ ์„ผ์„œ๋Š” ์„ค์น˜ ๋น„์šฉยท์ „๋ ฅยทํ†ต์‹  ์ธํ”„๋ผ ์ œ์•ฝ์ด ์žˆ์œผ๋ฉฐ, ์žฌ๋‚œ ํ˜„์žฅ์—์„œ ์†์ƒ๋  ์œ„ํ—˜๋„ ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์ผ๋ฐ˜ ๋Œ€์ค‘์ด ์Šค๋งˆํŠธํฐ์œผ๋กœ ์˜ฌ๋ฆฌ๋Š” ํŠธ์œ—ยทํŽ˜์ด์Šค๋ถยท์ธ์Šคํƒ€๊ทธ๋žจ ๋“ฑ์€ ์‹ค์‹œ๊ฐ„์„ฑ, ๊ณต๊ฐ„์  ์„ธ๋ถ„์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ธ๊ฐ„์˜ ์ฃผ๊ด€์  ์ธ์‹์„ ๋™์‹œ์— ๋‹ด๊ณ  ์žˆ๋‹ค.

Model
PROVEX: Enhancing SOC Analyst Trust with Explainable Provenance-Based IDS

PROVEX: Enhancing SOC Analyst Trust with Explainable Provenance-Based IDS

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹œ๊ณ„์—ด ์นจ์ž… ํƒ์ง€ ์‹œ์Šคํ…œ์ด ์‹ค์ œ ๋ณด์•ˆ ํ˜„์žฅ์—์„œ ์ง๋ฉดํ•˜๊ณ  ์žˆ๋Š” โ€˜์„ค๋ช… ๊ฐ€๋Šฅ์„ฑโ€™ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด์˜ GNN ๊ธฐ๋ฐ˜ IDS๋Š” ๋†’์€ ํƒ์ง€ ์ •ํ™•๋„์™€ ๋ณต์žกํ•œ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋Šฅ๋ ฅ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›์•„ ์™”์ง€๋งŒ, ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ค์›Œ SOC ๋ถ„์„๊ฐ€๊ฐ€ ๊ฒฝ๋ณด๋ฅผ ์‹ ๋ขฐํ•˜๊ณ  ๋น ๋ฅด๊ฒŒ ๋Œ€์‘ํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ์ „๋žต์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ฒซ์งธ, KAIROS๋ผ๋Š” ์ตœ์‹  ์‹œ๊ณ„์—ด ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ IDS ์œ„์— XAI

Auditing Reproducibility in Non-Targeted Analysis: 103 LC/GC--HRMS Tools Reveal Temporal Divergence Between Openness and Operability

Auditing Reproducibility in Non-Targeted Analysis: 103 LC/GC--HRMS Tools Reveal Temporal Divergence Between Openness and Operability

๋ณธ ์—ฐ๊ตฌ๋Š” ๋น„ํ‘œ์  ๋ถ„์„(nonโ€‘targeted analysis, NTA)์˜ ์‹ค์šฉ์  ์žฌํ˜„์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฉ”ํƒ€โ€‘ํ‰๊ฐ€๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋จผ์ €, ๋ฉœ๋ผ๋ฏผ, ์ˆ˜๋‹จ ์—ผ๋ฃŒ, ๋‹ˆํŠธ๋กœ์‚ฌ๋ฏผ ๋“ฑ ๊ณผ๊ฑฐ์— ๊ธ‰๋ฐ•ํ•œ ๊ทœ์ œ ๋Œ€์‘์„ ์š”๊ตฌํ–ˆ๋˜ ์‚ฌ๋ก€๋“ค์„ ๋ฐฐ๊ฒฝ์œผ๋กœ ์‚ผ์•„, NTA๊ฐ€ ๋‹จ์ˆœํžˆ ์ƒˆ๋กœ์šด ๋ฌผ์งˆ์„ ํƒ์ง€ํ•˜๋Š” ๊ธฐ์ˆ ์  ์ˆ˜๋‹จ์„ ๋„˜์–ด, ๊ทœ์ œ ๊ณผํ•™์—์„œ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ด์•ผ ํ•จ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์—ฐ๊ตฌ์ง„์€ LCโ€‘HRMS์™€ GCโ€‘HRMS ๊ธฐ๋ฐ˜์˜ 103๊ฐœ ์†Œํ”„ํŠธ์›จ์–ดยทํ”Œ๋Ÿฌ๊ทธ์ธยท์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์„ ์ •ํ–ˆ์œผ๋ฉฐ, ์ด๋“ค์„ FAIR(Findable, Accessible, In

Analysis
No Image

RoboSafe: Safeguarding Embodied Agents via Executable Safety Logic

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์‹œ๊ฐโ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ๊ธฐ๋ฐ˜ ๊ตฌํ˜„ ์—์ด์ „ํŠธ๊ฐ€ ์‹ค์ œ ๋ฌผ๋ฆฌ ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜๋Š” ๋ณต์žกํ•œ ์ž‘์—…์„ ์•ˆ์ „ํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋ณด์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ •์  ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์ด๋‚˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์„ ํ†ตํ•ด ์œ„ํ—˜ ๋ช…๋ น์„ ์ฐจ๋‹จํ•˜๋ ค ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ์ •์  ๊ทœ์น™์€ ์‚ฌ์ „์— ์ •์˜๋œ ์œ„ํ—˜ ์ƒํ™ฉ์—๋งŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ์–ด, ์ƒˆ๋กœ์šด ํ˜น์€ ๋ณ€ํ˜•๋œ ์œ„ํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค์— ์ทจ์•ฝํ•˜๋‹ค. ๋‘˜์งธ, ํ”„๋กฌํ”„ํŠธ ์ˆ˜์ค€ ์ œ์–ด๋Š” ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์ถ”๋ก  ๊ณผ์ •์„ ์ง์ ‘ ๊ด€์ฐฐํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์—, ์‹œ๊ฐ„์—

PAACE: A Plan-Aware Automated Agent Context Engineering Framework

PAACE: A Plan-Aware Automated Agent Context Engineering Framework

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์—์ด์ „ํŠธ์˜ ๋ณต์žกํ•œ ๋‹ค๋‹จ๊ณ„ ์›Œํฌํ”Œ๋กœ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ปจํ…์ŠคํŠธ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์š”์•ฝ ๋ฐ ์••์ถ• ๋ฐฉ๋ฒ•๋“ค์ด ๊ณ„ํš ์ธ์‹์„ฑ๊ณผ ๋‹ค๋‹จ๊ณ„ ์‚ฌ๊ณ ๋ฅผ ๋ฌด์‹œํ•ด ์™”๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด PAACE๋ผ๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. PAACE๋Š” ๋‹ค์Œ k ๋‹จ๊ณ„ ๊ด€๋ จ์„ฑ ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋ฏธ๋ž˜์˜ ์ž‘์—…์— ํ•„์š”ํ•œ ์ •๋ณด๋งŒ ์œ ์ง€ํ•˜๊ณ  ๋ถˆํ•„์š”ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๊ณ„ํš ๊ตฌ์กฐ ๋ถ„์„๊ณผ ์ง€์‹œ์–ด ๊ณต๋™ ์ •์ œ๋ฅผ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”

Framework
Towards Robust Protective Perturbation against DeepFake Face Swapping

Towards Robust Protective Perturbation against DeepFake Face Swapping

๋”ฅํŽ˜์ดํฌ ๊ธฐ์ˆ ์ด ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ•˜๋ฉด์„œ ์–ผ๊ตด ๊ตํ™˜์„ ํ†ตํ•œ ์‹ ์› ์œ„์กฐ๊ฐ€ ์‹ค์‹œ๊ฐ„ ์˜์ƒยท์ด๋ฏธ์ง€์—์„œ ๊ฑฐ์˜ ๊ตฌ๋ถ„์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์— ์ด๋ฅด๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ์–ด ์ „๋žต์€ ์ด๋ฏธ์ง€์— ์ธ๊ฐ„์ด ๊ฐ์ง€ํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฏธ์„ธ ๊ต๋ž€(perturbation)์„ ์‚ฝ์ž…ํ•ด ๋”ฅํŽ˜์ดํฌ ํƒ์ง€ ๋ชจ๋ธ์ด๋‚˜ ๋ณ€์กฐ ๋ฐฉ์ง€ ๋ชจ๋ธ์„ ์†์ด๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต๋ž€์€ JPEG ์••์ถ•, ๋ฆฌ์‚ฌ์ด์ง•, ํšŒ์ „, ์ƒ‰์ƒ ๋ณ€ํ™˜ ๋“ฑ ์ผ์ƒ์ ์ธ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์—์„œ ์‰ฝ๊ฒŒ ์‚ฌ๋ผ์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ๋ณ€ํ™˜์— ๋Œ€ํ•œ ๊ฐ•์ธ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด Expectation over Transformation(EOT)

A 3D virtual geographic environment for flood representation towards risk communication

A 3D virtual geographic environment for flood representation towards risk communication

๋ณธ ์—ฐ๊ตฌ๋Š” ์žฌ๋‚œ ์œ„ํ—˜์†Œํ†ต ๋ถ„์•ผ์—์„œ โ€˜์ „๋ฌธ๊ฐ€์™€ ๋น„์ „๋ฌธ๊ฐ€ ์‚ฌ์ด์˜ ์ •๋ณด ๊ฒฉ์ฐจโ€™๋ฅผ ํ•ด์†Œํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๋กœ์„œ, ๊ธฐ์ˆ ์  ๋ณต์žก์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ๋„ ๊ณผํ•™์  ์ •ํ™•์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ํ™์ˆ˜ ๋ชจ๋ธ๋ง ๋‹จ๊ณ„์—์„œ ๊ธฐ์กด์˜ 1์ฐจ์› ํ˜น์€ 2์ฐจ์› ์ˆ˜์น˜ ๋ชจ๋ธ์„ ๋„˜์–ด 3์ฐจ์› ์ง€ํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ณ ํ•ด์ƒ๋„ ๋””์ง€ํ„ธ ๊ณ ๋„ ๋ชจ๋ธ(DEM)๊ณผ GIS ๊ธฐ๋ฐ˜ ํ† ์ง€ ์ด์šฉ ์ •๋ณด๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ , ์œ ์—ญ ๋‚ด ๊ฐ•์šฐโ€‘์œ ์ถœโ€‘์ „ํŒŒ ๊ณผ์ •์„ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฐฉ์ •์‹์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ๋ณ‘๋ ฌ ์ปดํ“จํŒ…์„ ๋„์ž…ํ•ด ๊ณ„์‚ฐ ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ๋‹จ์ถ•ํ•œ ๊ฒƒ์ด๋‹ค

A Mechanistic Analysis of Transformers for Dynamical Systems

A Mechanistic Analysis of Transformers for Dynamical Systems

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์„ ๊ธฐ์กด์˜ ๊ณ ์ „์  ์ž๊ธฐํšŒ๊ท€(AR) ๋ฐ ์ƒํƒœ๊ณต๊ฐ„ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜๋ฉด์„œ, ํŠนํžˆ ๋™์—ญํ•™ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ•ด์„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์ธ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์ธ๊ณผ์  ์ž๊ธฐโ€‘์ฃผ์˜(causal selfโ€‘attention)โ€™๋ฅผ โ€œ์„ ํ˜•์ด๋ฉฐ ๊ณผ๊ฑฐ์— ์˜์กดํ•˜๋Š” ์žฌ๊ท€ ์—ฐ์‚ฐโ€์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ, ํŠธ๋žœ์Šคํฌ๋จธ๊ฐ€ ์‹œ๊ฐ„ ์ถ•์„ ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ์ •๋ณด๋ฅผ ์ถ•์ ํ•˜๊ณ  ์ „๋‹ฌํ•˜๋Š”์ง€๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ช…์‹œํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋จผ์ € ์„ ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋ถ„์„์—์„œ๋Š”, ์†Œํ”„ํŠธ๋งฅ์Šค ํ•จ์ˆ˜๊ฐ€ ์ถœ๋ ฅ ๊ฐ€์ค‘์น˜๋ฅผ ํ™•๋ฅ  ๋ถ„ํฌ ํ˜•ํƒœ๋กœ

Analysis System
A Women's Health Benchmark for Large Language Models

A Women's Health Benchmark for Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)๋“ค์ด ์—ฌ์„ฑ ๊ฑด๊ฐ• ์ •๋ณด์˜ ์ฃผ์š” ์ถœ์ฒ˜๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋“ค์˜ ์ •ํ™•์„ฑ์ด ์ œ๋Œ€๋กœ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜์Œ์„ ์ง€์ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Women's Health Benchmark (WHB)์„ ๊ฐœ๋ฐœํ•˜์—ฌ LLM์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. WHB์€ ๋‹ค์„ฏ ๊ฐ€์ง€ ์˜๋ฃŒ ์ „๋ฌธ ๋ถ„์•ผ์™€ ์„ธ ๊ฐ€์ง€ ์ฟผ๋ฆฌ ์œ ํ˜•, ๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿ ๊ฐ€์ง€ ์˜ค๋ฅ˜ ์œ ํ˜•์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด, ์—ฌ์„ฑ ๊ฑด๊ฐ• ์ •๋ณด ์ œ๊ณต์—์„œ LLM์ด ์–ด๋–ค ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ๋Š”์ง€ ์ž์„ธํžˆ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํ‰๊ฐ€ ๊ฒฐ๊ณผ, ํ˜„์žฌ์˜ LLM๋“ค์€ WHB์—์„œ ์•ฝ 60%์˜ ์‹คํŒจ์œจ์„

Model
Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction

Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction

๋ ˆ์ง ์ „ํ™˜(regime transition)์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ํ‰๊ท , ๋ถ„์‚ฐ, ์ž๊ธฐ์ƒ๊ด€ ๊ตฌ์กฐ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ฐ”๋€Œ๋Š” ํ˜„์ƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„์ •์ƒ์„ฑ์€ ์ „ํ†ต์ ์ธ ์‹œ๊ณ„์—ด ๋ชจ๋ธ์ด ๊ฐ€์ •ํ•˜๋Š” ์ •์ (stationary) ํŠน์„ฑ์„ ์œ„๋ฐฐํ•˜๋ฏ€๋กœ, ์˜ˆ์ธก๊ฐ’ ์ž์ฒด์˜ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ์˜ˆ์ธก ๋ถˆํ™•์‹ค์„ฑ์˜ ์ •ํ™•ํ•œ ์ถ”์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ํŠนํžˆ, ์‹ค์‹œ๊ฐ„ ์˜์‚ฌ๊ฒฐ์ •์ด๋‚˜ ์œ„ํ—˜ ๊ด€๋ฆฌ์™€ ๊ฐ™์ด ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์‹ ๋ขฐ ๊ตฌ๊ฐ„์ด ์ง์ ‘์ ์ธ ๋น„์šฉยท์ด์ต์— ์—ฐ๊ฒฐ๋˜๋Š” ๋ถ„์•ผ์—์„œ๋Š” โ€œ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๋œโ€ ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ •์ด ํ•ต์‹ฌ ์š”๊ตฌ์‚ฌํ•ญ์ด ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ์ˆ ์„ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Deep Swi

Model
Adversarial Attack-Defense Co-Evolution for LLM Safety Alignment via Tree-Group Dual-Aware Search and Optimization

Adversarial Attack-Defense Co-Evolution for LLM Safety Alignment via Tree-Group Dual-Aware Search and Optimization

๋ณธ ๋…ผ๋ฌธ์€ LLM ์•ˆ์ „์„ฑ ์—ฐ๊ตฌ์—์„œ โ€œ๊ณต๋™์ง„ํ™”(coโ€‘evolution)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ํƒˆ์˜ฅ ๊ณต๊ฒฉ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •์ ์ธ ํ”„๋กฌํ”„ํŠธ ๋ณ€ํ˜•์ด๋‚˜ ์‚ฌ์ „ ์ •์˜๋œ ๊ณต๊ฒฉ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ๋ฐฉ์–ด ์ธก๋ฉด์—์„œ๋„ ์‚ฌํ›„ ์ฐจ๋‹จ ํ•„ํ„ฐ๋‚˜ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์— ์˜์กดํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๊ณต๊ฒฉ์ž๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ƒˆ๋กœ์šด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ , ๋ฐฉ์–ด ์‹œ์Šคํ…œ์ด ์ด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋”ฐ๋ผ์žก๊ธฐ ์–ด๋ ค์šด โ€˜๋™์  ๊ฒฝ์Ÿ ๊ตฌ๋„โ€™๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ACEโ€‘Safety๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋‘ ๋‹จ๊ณ„์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ

AMS-IO-Bench and AMS-IO-Agent: Benchmarking and Structured Reasoning for Analog and Mixed-Signal Integrated Circuit Input/Output Design

AMS-IO-Bench and AMS-IO-Agent: Benchmarking and Structured Reasoning for Analog and Mixed-Signal Integrated Circuit Input/Output Design

AMSโ€‘IOโ€‘Agent๋Š” ๊ธฐ์กด์˜ ์•„๋‚ ๋กœ๊ทธยทํ˜ผํ•ฉ์‹ ํ˜ธ(IC) ์„ค๊ณ„ ํ๋ฆ„์—์„œ ๊ฐ€์žฅ ์‹œ๊ฐ„๊ณผ ์ธ๋ ฅ์ด ๋งŽ์ด ์†Œ๋ชจ๋˜๋Š” I/O ์„œ๋ธŒ์‹œ์Šคํ…œ ์„ค๊ณ„ ๋‹จ๊ณ„์— LLM(๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ)์„ ์ ์šฉํ•œ ํ˜์‹ ์ ์ธ ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์š”์†Œ๋Š” ๋„๋ฉ”์ธ ์ง€์‹๋ฒ ์ด์Šค์ด๋‹ค. ์„ค๊ณ„ ๊ทœ์น™, ๋ ˆ์ด์•„์›ƒ ์ œ์•ฝ, ์ „๊ธฐ์  ์ŠคํŽ™, ํŒจํ‚ค์ง• ๊ด€๋ก€ ๋“ฑ AMS ์„ค๊ณ„์— ํŠนํ™”๋œ ์ •๋ณด๋ฅผ ๊ตฌ์กฐํ™”๋œ ํ˜•ํƒœ(์˜ˆ: ํŠธ๋ฆฌํ˜• ์Šคํ‚ค๋งˆ)๋กœ ์ €์žฅํ•จ์œผ๋กœ์จ LLM์ด โ€œํ๋ฆฟํ•œโ€ ์ž์—ฐ์–ด ๋ช…๋ น์„ ๋ฐ›๋”๋ผ๋„ ์ผ๊ด€๋œ ์„ค๊ณ„ ํŒ๋‹จ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์ด๋Š” ์ „ํ†ต์ ์ธ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์— ์˜์กดํ•˜๋Š” ์ผ๋ฐ˜ LLM๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋Š” ์ ์ด๋‹ค. ๋‘

Anatomy-Guided Representation Learning Using a Transformer-Based Network for Thyroid Nodule Segmentation in Ultrasound Images

Anatomy-Guided Representation Learning Using a Transformer-Based Network for Thyroid Nodule Segmentation in Ultrasound Images

SSMT Net์€ ์ดˆ์ŒํŒŒ ์ด๋ฏธ์ง€์—์„œ ๊ฐ‘์ƒ์„  ์ข…์–‘์˜ ๋ถ„ํ• ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ํŠนํžˆ ์–ด๋…ธํ…Œ์ด์…˜์ด ๋ถ€์กฑํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ๋Š” ๋ฏธํ‘œ์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ณ€ํ™˜๊ธฐ ๊ธฐ๋ฐ˜ ์ธ์ฝ”๋”์˜ ํŠน์ง• ์ถ”์ถœ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ˜๊ฐ๋… ํ•™์Šต์„ ์ ์šฉํ•œ๋‹ค. ์ด๋กœ์จ ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ์ข…์–‘ ํฌ๊ธฐ์™€ ํ˜•ํƒœ์— ๋Œ€ํ•ด ๋” ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, SSMT Net์€ ๊ฐ‘์ƒ์„  ์„ ์ฒด์˜ ์ „์ฒด์ ์ธ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ „์—ญ์  ๋ฌธ๋งฅ ์ •๋ณด์™€ ์ข…์–‘์˜ ์„ธ๋ถ€ ํŠน์ง•์„ ํŒŒ์•…ํ•˜๋Š” ์ง€์—ญ์  ๋ฌธ๋งฅ

Network Learning
AQUA-Net: Adaptive Frequency Fusion and Illumination Aware Network for Underwater Image Enhancement

AQUA-Net: Adaptive Frequency Fusion and Illumination Aware Network for Underwater Image Enhancement

๋ณธ ๋…ผ๋ฌธ์€ ์ˆ˜์ค‘ ์ด๋ฏธ์ง€ ๋ณต์› ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๊ด‘ํ•™์  ์™œ๊ณก๊ณผ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ˆ˜์ค‘ ์ด๋ฏธ์ง€ ํ–ฅ์ƒ ๋ชจ๋ธ์€ RGB ๊ณต๊ฐ„์—์„œ๋งŒ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , ์ƒ‰ ์™œ๊ณก์„ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด๋‚˜ ๋Œ€๊ทœ๋ชจ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ด์— ๋น„ํ•ด AQUAโ€‘Net์€ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜์„ ์ด์šฉํ•œ ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ ์ •๋ณด๋ฅผ ์ธ์ฝ”๋”์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ, ์ €์ฃผํŒŒ์—์„œ๋Š” ์ „๋ฐ˜์ ์ธ ์ƒ‰์กฐ์™€ ์กฐ๋ช…์„, ๊ณ ์ฃผํŒŒ์—์„œ๋Š” ํ…์Šค์ฒ˜์™€ ๊ฐ€์žฅ์ž๋ฆฌ ์ •๋ณด๋ฅผ ๋ณ„๋„๋กœ ๊ฐ•ํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฃผํŒŒ์ˆ˜ ์œตํ•ฉ์€ ํŠนํžˆ ๊นŠ์€

Network
ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization

ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization

ARIAL์€ ๋ฌธ์„œ VQA ๋ฌธ์ œ๋ฅผ โ€œํ…์ŠคํŠธ ์ถ”์ถœ โ†’ ์ปจํ…์ŠคํŠธ ๊ฒ€์ƒ‰ โ†’ ๋‹ต๋ณ€ ์ƒ์„ฑ โ†’ ์œ„์น˜ ์ง€์ •โ€์ด๋ผ๋Š” ๋„ค ๋‹จ๊ณ„๋กœ ๋ช…ํ™•ํžˆ ๋ถ„ํ•ดํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ๋ชจ๋ธ๊ณผ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ TrOCR๋ฅผ ์ด์šฉํ•ด ๊ณ ํ•ด์ƒ๋„ ๋ฌธ์„œ ์ด๋ฏธ์ง€์—์„œ ๋ฌธ์ž ์ˆ˜์ค€์˜ ํ…์ŠคํŠธ๋ฅผ ์ถ”์ถœํ•˜๋Š”๋ฐ, ์ด๋Š” ์ตœ์‹  OCR ๋ชจ๋ธ์ด ์ œ๊ณตํ•˜๋Š” ๋†’์€ ์ธ์‹๋ฅ ์„ ๊ทธ๋Œ€๋กœ ํ™œ์šฉํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ์˜๋ฏธ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ ์—”์ง„์„ ํ†ตํ•ด ์งˆ๋ฌธ๊ณผ ๊ฐ€์žฅ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ ๋ฌธ์„œ ๊ตฌ๊ฐ„์„ ์„ ๋ณ„ํ•จ์œผ๋กœ์จ, ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต ์–ธ์–ด ๋ชจ๋ธ์ด ๋ถˆํ•„์š”ํ•œ ์ •๋ณด์— ๋…ธ์ถœ๋˜๋Š” ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” Gemma

Framework
BugSweeper: Function-Level Detection of Smart Contract Vulnerabilities Using Graph Neural Networks

BugSweeper: Function-Level Detection of Smart Contract Vulnerabilities Using Graph Neural Networks

BugSweeper ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ๊ณ„์•ฝ ๋ณด์•ˆ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์ „์ฒ˜๋ฆฌ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” Functionโ€‘Level Abstract Syntax Graph(FLAG)๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ทธ๋ž˜ํ”„ ํ‘œํ˜„์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ AST ํ˜น์€ ๋‹จ์ˆœํ•œ ์ œ์–ด ํ๋ฆ„ ๊ทธ๋ž˜ํ”„(CFG)๋งŒ์„ ์‚ฌ์šฉํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์ฝ”๋“œ์˜ ๊ตฌ์กฐ์  ์ •๋ณด๋Š” ํฌ์ฐฉํ•˜์ง€๋งŒ ๋ณ€์ˆ˜ ๊ฐ„ ์˜์กด์„ฑ์ด๋‚˜ ๋ฐ์ดํ„ฐ ํ๋ฆ„์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. FLAG๋Š” AST๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉด์„œ, ๊ฐ ๋…ธ๋“œ์— ๋Œ€ํ•ด ๋ณ€์ˆ˜ ์ •์˜ยท์‚ฌ์šฉ, ํ•จ์ˆ˜ ํ˜ธ์ถœ, ์กฐ๊ฑด ๋ถ„๊ธฐ ๋“ฑ ๋ฐ์ดํ„ฐ ํ

Network Detection
Chat with UAV -- Human-UAV Interaction Based on Large Language Models

Chat with UAV -- Human-UAV Interaction Based on Large Language Models

์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ž์—ฐ์–ด๋ฅผ ๊ณ ๋„์ ์œผ๋กœ ์ดํ•ดํ•˜๊ณ  ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ ์ธ๊ฐ„โ€‘๋กœ๋ด‡(HRI) ๋ฐ ์ธ๊ฐ„โ€‘UAV ์ƒํ˜ธ์ž‘์šฉ(HUI) ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ์ „ํ™˜์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด HUI ์‹œ์Šคํ…œ์€ ์ฃผ๋กœ ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์‚ฌ์ „์— ์ •์˜ํ•œ ์ธํ„ฐํŽ˜์ด์Šค์™€ ์ž‘์—… ํ๋ฆ„์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์‚ฌ์šฉ์ž๊ฐ€ ๋ณต์žกํ•œ UAV ์ž„๋ฌด๋ฅผ ์ง๊ด€์ ์œผ๋กœ ์ง€์ •ํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ๋Š” โ€œ์ด์ค‘ ์—์ด์ „ํŠธโ€๋ผ๋Š” ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์šฉ์ž์˜ ์ž์—ฐ์–ด ์ž…๋ ฅ์„ ํ•ด์„ํ•ด ๊ณ ์ˆ˜์ค€์˜ ์ž„๋ฌด ๋ชฉํ‘œ์™€

Model
No Image

CogniSNN: Enabling Neuron-Expandability, Pathway-Reusability, and Dynamic-Configurability with Random Graph Architectures in Spiking Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ์ŠคํŒฉํ‚น ์‹ ๊ฒฝ๋ง(SNNs)์˜ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ธ CogniSNN์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋Š” ๋‡Œ์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ฐฉํ•˜๋ ค๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด SNN ์—ฐ๊ตฌ์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์ธ๊ณต์‹ ๊ฒฝ๋ง(ANNs)์˜ ๊ฒฝ์ง๋œ ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ๊ทธ๋Œ€๋กœ ๋”ฐ๋ฅด๊ณ  ์žˆ์ง€๋งŒ, CogniSNN์€ ๋žœ๋ค ๊ทธ๋ž˜ํ”„ ์•„ํ‚คํ…์ฒ˜(RGA)๋ฅผ ํ†ตํ•ด ์ƒ๋ฌผํ•™์  ๋‰ด๋Ÿฐ์˜ ํ™•๋ฅ ์  ์—ฐ๊ฒฐ์„ฑ์„ ๋ฐ˜์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋„คํŠธ์›Œํฌ๋Š” Neuron Expandability(๋‰ด๋Ÿฐ ํ™•์žฅ์„ฑ), Pathway Reusability(๊ฒฝ๋กœ ์žฌ์‚ฌ์šฉ์„ฑ), Dynamic Configurability(๋™์  ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ์„)๋ฅผ ๊ฐ–๊ฒŒ ๋˜์–ด,

Network
Composite Classifier-Free Guidance for Multi-Modal Conditioning in Wind Dynamics Super-Resolution

Composite Classifier-Free Guidance for Multi-Modal Conditioning in Wind Dynamics Super-Resolution

๋ณธ ๋…ผ๋ฌธ์€ ํ’์† ๋ฐ์ดํ„ฐ์™€ ๊ฐ™์€ ๋‹ค์ฑ„๋„ ์‹œ๊ณ„์—ดยท๊ณต๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ ํ•ด์ƒ๋„๋กœ ๋ณต์›ํ•˜๋Š” ๋ฌธ์ œ์— ํ™•์‚ฐ ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋ฉด์„œ, ๊ธฐ์กด ํด๋ž˜์Šคํ”„๋ฆฌ ๊ฐ€์ด๋˜์Šค(CFG)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ CFG๋Š” ํ•˜๋‚˜์˜ ์กฐ๊ฑด(์˜ˆ: ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ)๋งŒ์„ ๊ณ ๋ คํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ๋‹ค์ค‘ ์กฐ๊ฑด์ด ๋™์‹œ์— ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ๊ฐ€์ด๋“œ ํšจ๊ณผ๊ฐ€ ํฌ์„๋œ๋‹ค. ํ’์† ์ดˆํ•ด์ƒ๋„์—์„œ๋Š” ์ง€ํ˜• ๊ณ ๋„, ์˜จ๋„, ์Šต๋„, ๋Œ€๊ธฐ์•• ๋“ฑ 10๊ฐœ ์ด์ƒ์˜ ๋ณด์กฐ ๋ณ€์ˆ˜๋“ค์ด ๋ชจ๋ธ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๋ฉฐ, ์ด๋“ค ๊ฐ๊ฐ์ด ์žฌ๊ตฌ์„ฑ ํ’ˆ์งˆ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ์กฐ๊ฑด์„ ํ•˜๋‚˜์˜ ๋ณตํ•ฉ

Compressed Causal Reasoning: Quantization and GraphRAG Effects on Interventional and Counterfactual Accuracy

Compressed Causal Reasoning: Quantization and GraphRAG Effects on Interventional and Counterfactual Accuracy

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ณ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๊ฒฝ๋Ÿ‰ํ™”ยท์–‘์žํ™”๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉ๋˜๋Š” ์ถ”์„ธ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ์—ฐ๊ตฌ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ํŠนํžˆ ์ธ๊ณผ ์ถ”๋ก ์„ Pearl์ด ์ œ์‹œํ•œ โ€˜์ธ๊ณผ ์‚ฌ๋‹ค๋ฆฌโ€™(์—ฐ๊ด€ โ†’ ๊ฐœ์ž… โ†’ ๋ฐ˜์‚ฌ์‹ค)๋ผ๋Š” ์‚ผ๋‹จ๊ณ„ ๊ตฌ์กฐ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๋ณ„๋กœ ์–‘์žํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰ํ™”ํ•œ ์ ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ฒซ์งธ, ์‹คํ—˜์— ์‚ฌ์šฉ๋œ CLadder ๋ฒค์น˜๋งˆํฌ๋Š” 3,000๊ฐœ์˜ ์งˆ์˜๋ฅผ ์ธตํ™” ์ถ”์ถœ(stratified sampling)ํ•˜์—ฌ ๊ฐ ์‚ฌ๋‹ค๋ฆฌ ๋‹จ๊ณ„์™€ ๋‹ค์–‘ํ•œ ์ธ๊ณผ ๊ตฌ์กฐ(์˜ˆ: ์ง์ ‘ ํšจ๊ณผ, ๋งค๊ฐœ ํšจ๊ณผ, ์ฝœ

Contemporary Shrinking of Colombia's Highest Mountains: Pico Simon Bolivar and Pico Cristobal Colon

Contemporary Shrinking of Colombia's Highest Mountains: Pico Simon Bolivar and Pico Cristobal Colon

์ด ๋…ผ๋ฌธ์€ ์ฝœ๋Ÿผ๋น„์•„์˜ ์ตœ๊ณ ๋ด‰์ธ ํฌ๋ฆฌ์Šคํ†  ์ฝœ๋ก ๊ณผ ์‹œ๋ฉ”์˜จ ๋ณผ๋ฆฌ๋ฐ”๋ฅด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ณ ๋„ ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ๊ธฐํ›„ ๋ณ€ํ™”๋กœ ์ธํ•ด ๋‘ ์‚ฐ ์ •์ƒ์˜ ๋น™ํ•˜๊ฐ€ ํฌ๊ฒŒ ์ค„์–ด๋“ค์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” 1939๋…„ ์ดํ›„ ์ฒ˜์Œ์œผ๋กœ ์ •ํ™•ํ•œ ์ธก์ •์„ ์ˆ˜ํ–‰ํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ฐจ๋“ฑ GPS์™€ ์•„๋ธŒ๋‹ˆ ๋ ˆ๋ฒจ์ด๋ผ๋Š” ๊ณ ๋„ ์ธก์ • ์žฅ๋น„๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์˜ ํ™œ์šฉ์€ ๊ณผ๊ฑฐ์— ๋น„ํ•ด ํ›จ์”ฌ ๋” ์ •๋ฐ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, ์‹œ๋ฉ”์˜จ ๋ณผ๋ฆฌ๋ฐ”๋ฅด์™€ ํฌ๋ฆฌ์Šคํ†  ์ฝœ๋ก ์˜ ๋น™ํ•˜๊ฐ€ ๊ฐ๊ฐ 53m์™€ 62m ์ค„์–ด๋“ค์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐํ›„

Context-Aware Agentic Power Resources Optimisation in EV using Smart2ChargeApp

Context-Aware Agentic Power Resources Optimisation in EV using Smart2ChargeApp

๋ณธ ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ(EV) ์ถฉ์ „ ์ƒํƒœ๊ณ„๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ CAMAC DRA ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ์ƒํ™ฉ ์ธ์‹ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์กฐ์ •์„ ํ†ตํ•ด ๋™์ ์ธ ํ™˜๊ฒฝ ์กฐ๊ฑด์— ์ ์‘ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์˜ ์š”๊ตฌ๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. CAMAC DRA ํ”„๋ ˆ์ž„์›Œํฌ๋Š” 250๋Œ€์˜ EV์™€ 45๊ฐœ์˜ ์ถฉ์ „์†Œ ๋„คํŠธ์›Œํฌ์— ๊ฑธ์ณ ์ž์œจ์ ์ธ ์ถฉ์ „ ์—์ด์ „ํŠธ๋ฅผ ์กฐ์ •ํ•˜๊ณ , ๋‚ ์”จ ํŒจํ„ด, ๊ตํ†ต ์ƒํ™ฉ, ์ „๋ ฅ๋ง ๋ถ€ํ•˜ ๋ณ€๋™, ์ „๊ธฐ ์š”๊ธˆ ๋“ฑ ๋‹ค์–‘ํ•œ ์ปจํ…์ŠคํŠธ ํŠน

Crack detection by holomorphic neural networks and transfer-learning-enhanced genetic optimization

Crack detection by holomorphic neural networks and transfer-learning-enhanced genetic optimization

์ด ๋…ผ๋ฌธ์€ ๋ณ€ํ˜•๋ฅ  ์ธก์ •๊ฐ’๋งŒ์„ ์ด์šฉํ•ด 2์ฐจ์› ๊ณ ์ฒด ๋‚ด๋ถ€์˜ ๊ท ์—ด์„ ์‹๋ณ„ํ•˜๋Š” ์ „ํ˜€ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ท ์—ด ํƒ์ง€๋ฅผ ์—ญ๋ฌธ์ œ๋กœ ์ •์˜ํ•˜๊ณ , ํ•ด๋‹ต์„ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm, GA)์œผ๋กœ ํƒ์ƒ‰ํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€ ์ „ํ†ต์ ์ธ ์ง์ ‘ ํ•ด์„ ๋ฐฉ์‹๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ „์—ญ ์ตœ์ ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํ˜์‹ ์ ์ธ ๋ถ€๋ถ„์€ ํ‰๋ฉด ํƒ„์„ฑ ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ์ „๋‹จ(holomorphic) ํผํ…์…œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด๋ฅผ ๋‘ ๊ฐœ์˜ ์ „๋‹จ ์‹ ๊ฒฝ๋ง(holomorphic neural networks, HNN)์œผ๋กœ ํ•™์Šตํ•œ๋‹ค๋Š”

Network Learning Detection
CryptoQA: A Large-scale Question-answering Dataset for AI-assisted Cryptography

CryptoQA: A Large-scale Question-answering Dataset for AI-assisted Cryptography

CryptoQA ํ”„๋กœ์ ํŠธ๋Š” ์•”ํ˜ธํ•™์ด๋ผ๋Š” ๊ณ ๋„๋กœ ์ „๋ฌธํ™”๋œ ๋ถ„์•ผ์— ๋Œ€ํ•œ LLM์˜ ์‹ค์ œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์ดˆ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๊ณผ์ •์—์„œ ์—ฐ๊ตฌ์ž๋Š” ๊ต๊ณผ์„œ, ํ•™์ˆ  ๋…ผ๋ฌธ, ํ‘œ์ค€ ๋ฌธ์„œ ๋“ฑ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ถœ์ฒ˜๋ฅผ ์—„์„ ํ•˜๊ณ , ์งˆ๋ฌธโ€‘๋‹ต๋ณ€ ์Œ์„ ์ž๋™ยท์ˆ˜๋™์œผ๋กœ ์ •์ œํ•˜์˜€๋‹ค. ์ด๋•Œ ์งˆ๋ฌธ์€ ์ •์˜ยท์ •๋ฆฌยท์ฆ๋ช…ยท์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„ ๋“ฑ ๋‹ค์–‘ํ•œ ๋‚œ์ด๋„๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ๋‹ต๋ณ€์—๋Š” ์ˆ˜์‹, ์˜์‚ฌ์ฝ”๋“œ, ์ฐธ๊ณ  ๋ฌธํ—Œ ๋“ฑ ๋ฉ”ํƒ€์ •๋ณด๊ฐ€ ํฌํ•จ๋ผ ๋ชจ๋ธ์ด ๋‹จ์ˆœ ํ…์ŠคํŠธ ์ƒ์„ฑ์ด ์•„๋‹ˆ๋ผ ๊ตฌ์กฐํ™”๋œ ์ง€์‹์„ ์žฌํ˜„ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋‘˜์งธ, ํ‰๊ฐ€ ํ”„

Data
DC-Biased Homogenized Harmonic Balance Finite Element Method

DC-Biased Homogenized Harmonic Balance Finite Element Method

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ ์ „์ž๊ธฐ ํ•ด์„์—์„œ ๊ฐ€์žฅ ํฐ ๋ณ‘๋ชฉ ํ˜„์ƒ ์ค‘ ํ•˜๋‚˜์ธ ์™€์ „๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํš๊ธฐ์ ์œผ๋กœ ๊ฐ€์†ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ์‹œ๊ฐ„ ์˜์—ญ ์ „์ด ํ•ด์„์€ ๋ฏธ์„ธํ•œ ๋ž˜๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๋ฅผ ์ง์ ‘ ๋ฉ”์‰ฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ž์œ ๋„๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ , ๋น„์„ ํ˜• ์žฌ๋ฃŒ ํŠน์„ฑ(ํŠนํžˆ ๊ฐ•์ž์„ฑ ํฌํ™”) ๋•Œ๋ฌธ์— ์ˆ˜๋ ด์ด ์–ด๋ ค์›Œ์ง„๋‹ค. ์ €์ž๋“ค์€ ์กฐํ™”๊ท ํ˜•(Harmonic Balance) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์„ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๋‹ค๋ฃจ๋ฉด์„œ, ๋™์‹œ์— ๋™์งˆํ™”(Homogenization) ๊ธฐ๋ฒ•์œผ๋กœ ๋ž˜๋ฏธ๋„ค์ดํŠธ ์ธต์„ ํ‰๊ท ํ™”ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์ „๋ฅ˜๊ฐ€ ํ๋ฅด๋Š” ๊ฐ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์— ๋Œ€ํ•ด ๋“ฑ๊ฐ€ ํˆฌ์ž์œจ

Decoding Human and AI Persuasion in National College Debate: Analyzing Prepared Arguments Through Aristotle's Rhetorical Principles

Decoding Human and AI Persuasion in National College Debate: Analyzing Prepared Arguments Through Aristotle's Rhetorical Principles

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต ์ง€๋Šฅ, ํŠนํžˆ GPT 4๊ฐ€ ์˜์–ด ์–ธ์–ด ์˜ˆ์ˆ (ELA)์—์„œ ํ† ๋ก ์˜ ์ค‘์š”ํ•œ ๊ตฌ์„ฑ ์š”์†Œ์ธ ๋…ผ์ฆ ๊ธฐ์ˆ ์— ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํ•™์ƒ๋“ค์ด ํšจ๊ณผ์ ์ธ ์ฆ๊ฑฐ ์นด๋“œ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ง€์›์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋น„ํŒ์  ์‚ฌ๊ณ ์™€ ๋…ผ์ฆ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ GPT 4๊ฐ€ ์ƒ์„ฑํ•œ ์ฆ๊ฑฐ ์นด๋“œ์™€ ์ธ๊ฐ„ ์ฐธ๊ฐ€์ž๊ฐ€ ๋งŒ๋“  ๊ฒƒ ์‚ฌ์ด์—์„œ ์งˆ์ ์ธ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์•„๋ฆฌ์Šคํ† ํ…”๋ ˆ์Šค์˜ ์ˆ˜์‚ฌํ•™ ์›์น™์ธ ์—ํ† ์Šค, ํŒŒํ† ์Šค, ๋กœ๊ณ ์Šค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ

Delta Sum Learning: an approach for fast and global convergence in Gossip Learning

Delta Sum Learning: an approach for fast and global convergence in Gossip Learning

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์—ฐํ•ฉ ํ•™์Šต(Federated Learning, FL)๊ณผ ๊ฐ€์‹ญ ํ•™์Šต(Gossip Learning)์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํ‰๊ท  ๊ธฐ๋ฐ˜ ์ง‘๊ณ„ ๋ฐฉ์‹์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ง‘๊ณ„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ โ€˜๋ธํƒ€ ํ•ฉ ํ•™์Šต(Delta Sum Learning)โ€™์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด ํ‰๊ท ํ™”๋Š” ๊ฐ ๋…ธ๋“œ๊ฐ€ ์ „์†กํ•˜๋Š” ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋‹จ์ˆœํžˆ ํ‰๊ท ๋‚ด๋Š” ๋ฐฉ์‹์œผ๋กœ, ๋…ธ๋“œ ๊ฐ„ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ์ฐจ์ด์™€ ํ†ต์‹  ์ง€์—ฐ์ด ํด ๊ฒฝ์šฐ ์ „์—ญ ๋ชจ๋ธ์˜ ์ˆ˜๋ ด ์†๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๊ณ , ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ํ† ํด๋กœ์ง€์—์„œ๋Š” ์ •ํ™•๋„ ์†์‹ค์ด ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค.

Learning
No Image

Differences That Matter: Auditing Models for Capability Gap Discovery and Rectification

์ด ๋…ผ๋ฌธ์€ ๋‹ค๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM)์˜ ํ‰๊ฐ€์™€ ๊ฐœ์„ ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ MLLM ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋“ค์€ ํ•ด์„์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ๋ชจ๋ธ ๊ฐ„์˜ ๋Šฅ๋ ฅ ๊ฒฉ์ฐจ๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ด์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ AuditDM์ด๋ผ๋Š” ์ž๋™ํ™”๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. AuditDM์€ ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด MLLM์„ ๊ฐ์‚ฌ์›์œผ๋กœ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์—ฌ, ๋ชจ๋ธ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ์ตœ๋Œ€ํ•œ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์–ด๋ ค์šด ์งˆ๋ฌธ๊ณผ ๋ฐ˜์‚ฌ์‹ค์  ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹คํŒจ ์œ ํ˜•์„ ์ฐพ์•„๋‚ด๊ณ , ์ด๋Ÿฌํ•œ ์‹คํŒจ ์‚ฌ๋ก€๋“ค์€ ์ฃผ์„ ์—†์ด๋„ ๋ฐ

Model
Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test

Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test

์ด ๋…ผ๋ฌธ์€ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์ด ์ด๋ก ์ ์œผ๋กœ๋Š” ์ž…๋ ฅ ์ˆœ์„œ๋ฅผ ๋’ค์ง‘๋Š” ์ž‘์—…๊ณผ ์›๋ž˜ ์ˆœ์„œ๋ฅผ ์œ ์ง€ํ•˜๋Š” ์ž‘์—…์„ ๋™๋“ฑํ•˜๊ฒŒ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‹ค์ œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์‹คํ—˜์—์„œ๋Š” โ€œ์—ญ์ „(curse of reversal)โ€์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ํ˜„์ƒ์ด ์ง€์†์ ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์ด ๋ฐ์ดํ„ฐ ์ž์ฒด์— ๋‚ด์žฌ๋œ ์‹œ๊ฐ„์  ๋น„๋Œ€์นญ์„ฑโ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์„œ์ˆ ์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ์ •๋ณด๊ฐ€ ๋ˆ„์ ๋˜๋Š” ๊ตฌ์กฐโ€”์— ๊ธฐ์ธํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ์ง€๋งŒ, ๋ฐ์ดํ„ฐ์˜ ํ†ต๊ณ„์  ํŠน์„ฑ๊ณผ ๋ชจ๋ธ ๊ตฌ์กฐ ์‚ฌ์ด์˜ ์›์ธ ๊ทœ๋ช…์„ ์œ„ํ•ด์„œ๋Š” ์™„์ „ํžˆ ํ†ต์ œ๋œ ์‹คํ—˜ ํ™˜๊ฒฝ์ด ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ์œ„ํ•ด โ€˜์—”ํŠธ๋กœํ”ผ

Dominating vs. Dominated: Generative Collapse in Diffusion Models

Dominating vs. Dominated: Generative Collapse in Diffusion Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ํ…์ŠคํŠธโ€‘์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ด ๋‹ค์ค‘ ๊ฐœ๋… ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” โ€˜์ง€๋ฐฐโ€‘์ง€๋ฐฐ๋ฐ›์Œ(Dominantโ€‘vsโ€‘Dominated, DvD) ๋ถˆ๊ท ํ˜•โ€™ ํ˜„์ƒ์„ ์‹ฌ์ธต์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ์ด ํ˜„์ƒ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒค์น˜๋งˆํฌ์ธ DominanceBench ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋‹ค์–‘ํ•œ ๊ฐœ๋… ์Œ(์˜ˆ: โ€œ๊ณ ์–‘์ด์™€ ์ž๋™์ฐจโ€, โ€œ์‚ฐ๊ณผ ๋ฐ”๋‹คโ€)์„ ํฌํ•จํ•˜๊ณ , ๊ฐ ๊ฐœ๋…๋ณ„๋กœ ๊ธฐ๋Œ€๋˜๋Š” ์‹œ๊ฐ์  ๋น„์ค‘์„ ์‚ฌ์ „์— ์ •์˜ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ๊ท ํ˜• ์žˆ๊ฒŒ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ์ธก๋ฉด์—์„œ๋Š” ํ•™์Šต ์ฝ”ํผ์Šค

Model
Dual Attention Guided Defense Against Malicious Edits

Dual Attention Guided Defense Against Malicious Edits

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋ฐœ์ „ํ•œ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ด ์ด๋ฏธ์ง€ ํŽธ์ง‘์— ํ˜์‹ ์„ ๊ฐ€์ ธ์™”์ง€๋งŒ, ์ด๋กœ ์ธํ•ด ์†์ž„์ˆ˜๋‚˜ ํ•ด๋กœ์šด ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์œค๋ฆฌ์  ๋„์ „์ด ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ์˜ ๋ฐฉ์–ด ๊ธฐ๋ฒ•๋“ค์€ ์•…์˜์ ์ธ ์กฐ์ž‘์— ๋Œ€ํ•œ ํšจ๊ณผ๊ฐ€ ์ œํ•œ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋…ผ๋ฌธ์€ DANP๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. DANP๋Š” ๋ชจ๋ธ์˜ ์˜๋ฏธ ์ดํ•ด์™€ ์ƒ์„ฑ ๊ณผ์ •์„ ๋ฐฉํ•ดํ•˜๋Š” ์ธ์‹๋˜์ง€ ์•Š๋Š” ๋ณ€ํ˜•์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค. DANP๋Š” ๊ต์ฐจ ์ฃผ์˜๋„ ๋งต๊ณผ ๋…ธ์ด์ฆˆ ์˜ˆ์ธก ๊ณผ์ •์„ ์กฐ์ž‘ํ•˜์—ฌ ํ…์ŠคํŠธ ๊ด€๋ จ ๋ฐ ๋น„๊ด€๋ จ ์˜์—ญ์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž˜๋ชป๋œ ์˜์—ญ์œผ๋กœ ํŽธ

EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection

EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์—…์˜ ํ™˜๊ฒฝ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๋ถ€์ •ํ™•ํ•œ ์ฃผ์žฅ, ์ฆ‰ ๋…น์ƒ‰์„ธํƒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ AI ํ”„๋ ˆ์ž„์›Œํฌ์ธ Emerald Mind๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํŠน์ • ๋ถ„์•ผ์˜ ์ง€์‹ ๊ทธ๋ž˜ํ”„์™€ ๊ฒ€์ƒ‰ ๊ฐ•ํ™” ์ƒ์„ฑ์„ ํ†ตํ•ฉํ•˜์—ฌ ๋…น์ƒ‰์„ธํƒ ์ž๋™ ํƒ์ง€๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์—…๋“ค์˜ ESG ๋ณด๊ณ ์„œ์—์„œ ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌ์„ฑ๋œ EmeraldGraph๊ฐ€ ํ•ต์‹ฌ ์—ญํ• ์„ ํ•˜๋ฉฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ์ง€์‹ ๊ทธ๋ž˜ํ”„์— ๋ถ€์กฑํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ์ฃผ์žฅ์˜ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. Emerald Mind ํ”„๋ ˆ์ž„์›Œ

Framework Detection
ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning

ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ–‰๋™ ๋ณต์ œ(Behaviorโ€‘Cloning) ๊ธฐ๋ฐ˜ ๋น„์ฃผ์–ผ๋ชจํ„ฐ ์ •์ฑ…์ด ์ธ๊ฐ„ ์‹œ์—ฐ์˜ ์ •๋ฐ€์„ฑ์„ ๊ทธ๋Œ€๋กœ ๋ฌผ๋ ค๋ฐ›๋Š” ๋™์‹œ์—, ์ธ๊ฐ„์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ทจํ•˜๋Š” ๋А๋ฆฐ ํ…œํฌ๊ฐ€ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ์ง€์ ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์‹œ์—ฐ์˜ ์†๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ‰๊ท  ์†๋„, ๊ฐ€์†๋„, ํ˜น์€ ์†๋ชฉ ๊ถค์ ๊ณผ ๊ฐ™์€ ํ†ต๊ณ„์  ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ๋‹จ์ˆœํžˆ ์ผ์ • ๊ฐ„๊ฒฉ์œผ๋กœ ํ”„๋ ˆ์ž„์„ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ํœด๋ฆฌ์Šคํ‹ฑ ๋ฐฉ์‹์„ ์ ์šฉํ•ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ž‘์—…์˜ ์˜๋ฏธ์  ๊ตฌ์กฐโ€”์˜ˆ๋ฅผ ๋“ค์–ด โ€œ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ์ˆœ๊ฐ„โ€์ด๋‚˜ โ€œ์ •๋ฐ€ํ•œ ์‚ฝ์ž… ๋‹จ๊ณ„โ€์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ตฌ๊ฐ„โ€”๋ฅผ ๋ฌด์‹œ

Learning Data
From In Silico to In Vitro: Evaluating Molecule Generative Models for Hit Generation

From In Silico to In Vitro: Evaluating Molecule Generative Models for Hit Generation

๋ณธ ๋…ผ๋ฌธ์€ ์‹ ์•ฝ ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ์ธ๊ณต์ง€๋Šฅ, ํŠนํžˆ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์–ด๋–ค ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ์•ฝ ๊ฐœ๋ฐœ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„ ์ค‘ ํ•˜๋‚˜์ธ 'ํƒ€๊ฒŸ ๋ถ„์ž ๋ฐœ๊ตด'์€ ์ „ํ†ต์ ์œผ๋กœ ๋Œ€๊ทœ๋ชจ ํ™”ํ•ฉ๋ฌผ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— ๋Œ€ํ•œ ๊ณ ์† ๊ฒ€์ƒ‰์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ์‹œ๊ฐ„๊ณผ ์ž์› ์†Œ๋น„๊ฐ€ ํฐ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๊ฐ€์ƒ ์Šคํฌ๋ฆฌ๋‹ ๊ธฐ์ˆ ์˜ ๋„์ž…์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์—ฌ์ „ํžˆ ๋งŽ์€ ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ๋ณต์žกํ•œ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜๊ณ  ์ƒˆ๋กœ์šด ํ™”ํ•ฉ๋ฌผ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ์„ฑ ๋ชจ๋ธ๋“ค์ด ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋“ค์ด ์‹ ์•ฝ ๊ฐœ๋ฐœ ์ „์ฒด ๊ณผ์ •์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์€ ์•„์ง

Model
No Image

Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ˆ˜ํ•™์  ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด LLM๋“ค์€ ์ˆ˜ํ•™ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ํ”„๋กœ์„ธ์Šค ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด Generative Adversarial Reasoner๋ผ๋Š” ์˜จ ํด๋ฆฌ์‹œ ํ•ฉ๋™ ํ›ˆ๋ จ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋„์ž…ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ ๋Œ€ ๊ฐ•ํ™”ํ•™์Šต์„ ํ™œ์šฉํ•˜์—ฌ LLM ์ถ”๋ก ๊ธฐ์™€ ํŒ๋ณ„๊ธฐ๋ฅผ ๊ณต๋™์œผ๋กœ ์ง„ํ™”์‹œํ‚ค๋ฉฐ, ๊ฐ ์ถ”๋ก  ์ฒด์ธ์„ ๋…ผ๋ฆฌ์ ์œผ๋กœ ์™„์ „ํ•œ ์Šฌ๋ผ์ด์Šค๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ด๋ฅผ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” LLM ์ถ”๋ก ๊ธฐ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ๋‹ต๋ณ€์„ ์–ป๋Š” ๋ฐ ๋ณด

Learning
Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates

Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates

์ด ๋…ผ๋ฌธ์€ ์–‘์ž ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๊ฐ€์žฅ ์‹ค์งˆ์ ์ธ ์žฅ์• ๋ฌผ ์ค‘ ํ•˜๋‚˜์ธ ๋ณ€๋ถ„ ์–‘์ž ํšŒ๋กœ(VQC)์˜ ์„ค๊ณ„ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ํšŒ๋กœ๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์„ ์„œํ”„๋ผ์ด์ฆˆ ๋ชจ๋ธ๋กœ ํ™œ์šฉํ•œ ๊ฒƒ์€ ๊ธฐ์กด์˜ ๋ฒกํ„ฐ ๊ธฐ๋ฐ˜ ๋ฉ”ํƒ€๋ชจ๋ธ๋ณด๋‹ค ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ์— ๊ธฐ๋Œ€ ํ–ฅ์ƒ(Expected Improvement) ํš๋“ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜๊ณ , ์„œํ”„๋ผ์ด์ฆˆ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ๋“œ๋กญ์•„์›ƒ์œผ๋กœ ์ถ”์ •ํ•จ์œผ๋กœ์จ ํƒ์ƒ‰ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€๋‹ค. ์ด๋Š” ํƒ์ƒ‰ ๊ณต๊ฐ„์ด ๊ธฐํ•˜๊ธ‰์ˆ˜

Hardware Software Optimizations for Fast Model Recovery on Reconfigurable Architectures

Hardware Software Optimizations for Fast Model Recovery on Reconfigurable Architectures

MERINDA๊ฐ€ ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œ์—ฐ์‚ฐ์„ ์ŠคํŠธ๋ฆฌ๋ฐ ๋ฐ์ดํ„ฐํ”Œ๋กœ์šฐ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , FPGA ๋‚ด๋ถ€ ์ž์›์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•œ๋‹คโ€๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด GPU ๊ธฐ๋ฐ˜ MR ๊ตฌํ˜„์€ ๋ฐ˜๋ณต์ ์ธ ์˜์กด์„ฑ ๋•Œ๋ฌธ์— ์ปค๋„ ๊ฐ„ ๋™๊ธฐํ™”๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๊ณ , ์ด๋Š” ์ปค๋„ ๋Ÿฐ์น˜ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ ๋‚ญ๋น„๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ MR์€ ๋งค ๋ฐ˜๋ณต๋งˆ๋‹ค ์ „์ฒด ์ƒํƒœ ๋ฒกํ„ฐ๋ฅผ ์ฝ๊ณ  ์“ฐ๋Š” ํŒจํ„ด์ด ๊ฐ•ํ•ด, ๋ฉ”๋ชจ๋ฆฌ ๊ณ„์ธต ๊ฐ„ ๋ฐ์ดํ„ฐ ์ด๋™์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. MERINDA๋Š” ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ FPGA์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•œ๋‹ค. ์ฒซ์งธ, BRAM์„ ์ด์šฉํ•œ ํƒ€์ผ๋ง ๊ธฐ๋ฒ•์€ ๋Œ€๊ทœ๋ชจ ์ƒํƒœ ๊ณต๊ฐ„

Model
hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware

hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware

hls4ml์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ FPGAยทASIC์— ์ง์ ‘ ํƒ‘์žฌํ•  ์ˆ˜ ์žˆ๋Š” HLS ์ฝ”๋“œ๋กœ ์ž๋™ ๋ณ€ํ™˜ํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ํ๋ฆ„๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ๋”ฅ๋Ÿฌ๋‹ ๊ฐœ๋ฐœ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ํฌ๊ฒŒ ์ค„์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์š”์†Œ๋Š” โ€˜ํ”„๋ ˆ์ž„์›Œํฌ ์ถ”์ƒํ™” ๋ ˆ์ด์–ดโ€™์ด๋‹ค. TensorFlow, PyTorch, Keras ๋“ฑ ๋‹ค์–‘ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ์ •์˜๋œ ๋ชจ๋ธ์„ ๊ณตํ†ต๋œ ์ค‘๊ฐ„ ํ‘œํ˜„(IR)์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด IR์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ ๋ ˆ์ด์–ด(์™„์ „ ์—ฐ๊ฒฐ, ํ•ฉ์„ฑ๊ณฑ, ํ™œ์„ฑํ™” ๋“ฑ)๋ฅผ HLS ์ฝ”๋“œ ํ…œํ”Œ๋ฆฟ์— ๋งคํ•‘ํ•œ๋‹ค. ํ…œํ”Œ๋ฆฟ์€ ํŒŒ๋ผ๋ฏธํ„ฐํ™” ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ๋น„

Learning
Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

ICAR๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ์˜ ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ณ ๋ คํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋น„์ „ ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๋ณต์žก๋„์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ๊ณ ์ •๋œ ๊นŠ์ด์™€ ์—ฐ์‚ฐ๋Ÿ‰์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ๊ฐ„๋‹จํ•œ ํ’๊ฒฝ์ด๋‚˜ ๋‹จ์ผ ๊ฐ์ฒด ์ด๋ฏธ์ง€์—์„œ๋„ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ์ดˆ๋ž˜ํ•ด ์—๋„ˆ์ง€ ์†Œ๋น„์™€ ์ถ”๋ก  ์ง€์—ฐ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ICAR๋Š” ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด โ€˜์กฐ๊ธฐ ์ข…๋ฃŒ(earlyโ€‘exit)โ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋ฏธ์ง€๊ฐ€ โ€˜๋‹จ์ˆœโ€™ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋˜๋ฉด, ๋„คํŠธ์›Œํฌ๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ๋ฐ”๋กœ ์ž„๋ฒ ๋”ฉ์„ ์ถ”์ถœํ•˜๊ณ , ๋ณต์žกํ•œ ๊ฒฝ์šฐ์—๋งŒ ์ „์ฒด ๋ ˆ์ด์–ด๋ฅผ ํ†ต๊ณผํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํฐ ๋‚œ๊ด€์€ ์กฐ๊ธฐ ์ข…

Model
Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning

Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ™”ํ˜• ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋ฐ์ดํ„ฐ ์ธก๋ฉด์—์„œ โ€œ์ƒํ™ฉ ์ค‘์‹ฌโ€์ด๋ผ๋Š” ๊ธฐ์กด ํŒจ๋Ÿฌ๋‹ค์ž„์ด ์‚ฌ์šฉ์ž์˜ ์ง€์†์ ์ธ ์ •์ฒด์„ฑ ์ •๋ณด๋ฅผ ๊ฒฐ์—ฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์‹ค์ œ ์ธ๊ฐ„ ๋Œ€ํ™”์—์„œ๋Š” ๋Œ€ํ™” ์ƒ๋Œ€์˜ ๊ณผ๊ฑฐ ๊ฒฝํ—˜, ๊ฐ€์น˜๊ด€, ์„ฑ๊ฒฉ ํŠน์„ฑ ๋“ฑ์ด ๊ฐ์ • ํ‘œํ˜„๊ณผ ํ•ด์„์— ๊นŠ์ด ๊ด€์—ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„์˜ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹์€ ๋‹จ์ผ ๋ฐœํ™” ํ˜น์€ ์งง์€ ๋Œ€ํ™” ํ๋ฆ„์— ๊ตญํ•œ๋ผ ์žˆ์–ด, ๋ชจ๋ธ์ด ๊ฐœ์ธํ™”๋œ ์ •์„œ ๋ฏธ๋ฌ˜ํ•จ์„ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ํ•™์Šต ๋ชฉํ‘œ ์„ค์ •์—์„œ โ€œ๋ถˆํˆฌ๋ช…ํ•˜๊ณ  ๊ฑฐ์นœโ€ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๊ฐ์ •ยท๊ณต๊ฐ

Learning
Large Language Models as Pokรฉmon Battle Agents: Strategic Play and Content Generation

Large Language Models as Pokรฉmon Battle Agents: Strategic Play and Content Generation

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ํฌ์ผ“๋ชฌ ์ „ํˆฌ๋ผ๋Š” ํŠน์ • ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํฌ์ผ“๋ชฌ ์ „ํˆฌ๋Š” ๋‹ค์–‘ํ•œ ์š”์†Œ, ์ฆ‰ ํƒ€์ž… ํšจ๊ณผ์„ฑ, ํ†ต๊ณ„์  ํŠธ๋ ˆ์ด๋“œ์˜คํ”„, ์œ„ํ—˜ ํ‰๊ฐ€ ๋“ฑ์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ, ์ด๋Š” ์ธ๊ฐ„์˜ ์ „๋žต์  ์‚ฌ๊ณ ์™€ ์œ ์‚ฌํ•˜๋‹ค. ์—ฐ๊ตฌํŒ€์€ LLM์ด ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€ ํ…Œ์ŠคํŠธํ•˜๊ธฐ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ ํฌ์ผ“๋ชฌ ์ „ํˆฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. LLM์€ ์ „ํ†ต์ ์ธ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋กœ์ง ๋Œ€์‹  ์ „ํˆฌ ์ƒํƒœ์— ๋”ฐ๋ผ ์›€์ง์ž„์„ ์„ ํƒํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” LLM์ด ๊ฒŒ์ž„์˜ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜, ์ฆ‰ ํƒ€์ž… ํšจ๊ณผ์„ฑ ๋ฐฐ์œจ, ํ†ต๊ณ„

Model
LLM-Driven Feature-Level Adversarial Attacks on Android Malware Detectors

LLM-Driven Feature-Level Adversarial Attacks on Android Malware Detectors

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ํ˜„์žฌ ์•ˆ๋“œ๋กœ์ด๋“œ ์•…์„ฑ์ฝ”๋“œ ํƒ์ง€ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ ๋Œ€์  ์ทจ์•ฝ์„ฑโ€™์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ํŠน์„ฑ ๋ณ€ํ˜•์„ ์œ„ํ•œ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ต๋ž€์ด ๋น„ํ˜„์‹ค์ ์ด๊ฑฐ๋‚˜ ์•…์„ฑ์ฝ”๋“œ์˜ ๋™์ž‘์„ ์†์ƒ์‹œํ‚ฌ ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. LAMLAD๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ž์—ฐ์–ด ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ด์ค‘ ์—์ด์ „ํŠธ ๊ตฌ์กฐ์ด๋‹ค. โ€˜LLM ์กฐ์ž‘์žโ€™๋Š” Drebin๊ณผ ๊ฐ™์€ ์ •์  ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›์•„, ์‹ค์ œ ์•ˆ๋“œ

Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models

Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models

Sparse Mixtureโ€‘ofโ€‘Experts(MoE) ์•„ํ‚คํ…์ฒ˜๋Š” โ€œ์ „๋ฌธ๊ฐ€(expert)โ€๋ผ๋Š” ๋…๋ฆฝ์ ์ธ ์„œ๋ธŒ๋„คํŠธ์›Œํฌ ์ง‘ํ•ฉ์„ ๊ฐ€์ง€๊ณ , ์ž…๋ ฅ์— ๋”ฐ๋ผ ์ผ๋ถ€๋งŒ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ˆ˜์‹ญ ๋ฐฐ๊นŒ์ง€ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ฃผ์—ˆ์œผ๋ฉฐ, ์ตœ์‹  ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜์ฒœ ๊ฐœ ์ด์ƒ์˜ ์ „๋ฌธ๊ฐ€๋ฅผ ๋‘๊ณ ๋„ ์ถ”๋ก  ๋น„์šฉ์„ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ๋ชจ๋“  ์ „๋ฌธ๊ฐ€๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ๋กœ๋“œํ•ด์•ผ ํ•˜๋Š” ์ •์  ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ํฐ ์žฅ์• ๋ฌผ๋กœ

Model Framework

< Category Statistics (Total: 5012) >

Electrical Engineering and Systems Science
102
General
4156
General Relativity
2
HEP-EX
3
HEP-PH
1
HEP-TH
3
MATH-PH
6
Nonlinear Sciences
1
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut