KOINEU Logo
Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs

Emergent Bayesian Behaviour and Optimal Cue Combination in LLMs

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ์—์„œ ํ™”๋‘๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” โ€œ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋‚ด์žฌ์  ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜โ€์„ ์ •์‹ ๋ฌผ๋ฆฌํ•™์  ๊ด€์ ์—์„œ ์กฐ๋ช…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ์ธ๊ฐ„์ด ์ง€๊ฐ ๊ณผ์ œ์—์„œ ์žก์Œ์ด ์„ž์ธ ์‹ ํ˜ธ๋ฅผ ๋ฒ ์ด์ง€์•ˆ ๋ฐฉ์‹์œผ๋กœ ํ†ตํ•ฉํ•œ๋‹ค๋Š” ์˜ค๋ž˜๋œ ์‹ฌ๋ฆฌํ•™์  ์‚ฌ์‹ค์„ LLM์— ์ ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ๊ธฐ์กด์˜ โ€œํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋งโ€์ด๋‚˜ โ€œํŒŒ์ธํŠœ๋‹โ€ ์ค‘์‹ฌ์˜ ํ‰๊ฐ€์™€๋Š” ์ฐจ๋ณ„ํ™”๋œ ์ ‘๊ทผ์ด๋‹ค. ์—ฐ๊ตฌ์ง„์€ BayesBench๋ผ๋Š” ๋„ค ๊ฐ€์ง€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํฌ๊ธฐ ์ถ”์ • ๊ณผ์ œ๋ฅผ ์„ค๊ณ„ํ–ˆ๋Š”๋ฐ, ์ด๋Š” ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€ ๋‘ ๊ฐ€์ง€ ์ž…๋ ฅ ๋ชจ๋‹ฌ์„ ๋™์‹œ์— ์ œ๊ณตํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ

No Image

Theodosian: A Deep Dive into Memory-Hierarchy-Centric FHE Acceleration

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ FHE์™€ CKKS : CKKS๋Š” ๊ณ ์ •์†Œ์ˆ˜์  ์—ฐ์‚ฐ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ง€์›ํ•ด ํ”„๋ผ์ด๋ฒ„์‹œโ€‘๋ณดํ˜ธ ๋จธ์‹ ๋Ÿฌ๋‹์— ์ ํ•ฉํ•˜์ง€๋งŒ, ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘ ๋‹จ๊ณ„๊ฐ€ ์ „์ฒด ์‹คํ–‰ ์‹œ๊ฐ„์˜ 70 % ์ด์ƒ์„ ์ฐจ์ง€ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ฐ€์†์ด ํ•„์ˆ˜์ ์ด๋‹ค. GPU ๊ฐ€์†์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ์—ฐ๊ตฌ(์˜ˆ: Cheddar, TensorFHE, WarpDrive)๋Š” ์ฃผ๋กœ ์—ฐ์‚ฐ ์ตœ์ ํ™” (NTT ๊ฐ€์†, ํ…์„œ์ฝ”์–ด ํ™œ์šฉ)์™€ ์ปค๋„ ์œตํ•ฉ ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๋ฉ”๋ชจ๋ฆฌ ๊ณ„์ธต ์ „์ฒด๋ฅผ ๊ณ ๋ คํ•œ ์ฒด๊ณ„์ ์ธ ๋ถ„์„์€ ๋ถ€์กฑํ–ˆ๋‹ค. 2. ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜ ๋ถ„์„ | ๋ถ„์„ ํ•ญ๋ชฉ | ์ฃผ์š” ๋ฐœ๊ฒฌ | ์˜๋ฏธ | | | |

Visual Categorization Across Minds and Models: Cognitive Analysis of Human Labeling and Neuro-Symbolic Integration

Visual Categorization Across Minds and Models: Cognitive Analysis of Human Labeling and Neuro-Symbolic Integration

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์ด๋ก ์  ํ† ๋Œ€ | ์ด๋ก  | ํ•ต์‹ฌ ๋‚ด์šฉ | ๋…ผ๋ฌธ์—์„œ์˜ ํ™œ์šฉ | | | | | | Marrโ€™s Triโ€‘Level Hypothesis | (1) ๊ณ„์‚ฐ ์ˆ˜์ค€: ๋ฌธ์ œ ์ •์˜, (2) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆ˜์ค€: ํ‘œํ˜„ยท์ ˆ์ฐจ, (3) ๊ตฌํ˜„ ์ˆ˜์ค€: ๋ฌผ๋ฆฌ์  ๊ตฌํ˜„ | ์ธ๊ฐ„ยทAI ๋ชจ๋‘๋ฅผ 3๋‹จ๊ณ„๋กœ ๋ถ„์„ โ€“ ์ธ๊ฐ„์€ ๊ณ„์‚ฐยท์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆ˜์ค€์—์„œ ์œ ์ถ”ยทํ˜•ํƒœ ์ธ์‹์„, ๊ตฌํ˜„ ์ˆ˜์ค€์—์„œ ์‹ ์ฒดยท๊ฐ๊ฐ ๊ฒฝํ—˜์„ ํ™œ์šฉ. AI๋Š” ๊ณ„์ธต์  CNN ํŠน์ง• ์ถ”์ถœ์„ ๊ตฌํ˜„ ์ˆ˜์ค€์œผ๋กœ ๋งคํ•‘. | | Simonโ€™s Bounded Rationality | ์ธ์ง€ยท์‹œ๊ฐ„ยท์ •๋ณด ์ œ์•ฝ ํ•˜์—์„œ โ€˜์ถฉ๋ถ„ํžˆ ์ข‹์€

Analysis Model
Well-quasi-orders on embedded planar graphs

Well-quasi-orders on embedded planar graphs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ทธ๋ž˜ํ”„ ๋งˆ์ด๋„ˆ ์ •๋ฆฌ (Robertsonโ€‘Seymour)๋Š” ์ถ”์ƒ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•ด ๋งˆ์ด๋„ˆ ๊ด€๊ณ„๊ฐ€ WQO์ž„์„ ๋ณด์—ฌ, ๊ตฌ์กฐ ์ด๋ก ๊ณผ ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„์— ํ˜๋ช…์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ž„๋ฒ ๋””๋“œ ๊ทธ๋ž˜ํ”„ (ํŠนํžˆ ํ‰๋ฉด์— ๊ณ ์ •๋œ ์ž„๋ฒ ๋”ฉ)์—์„œ๋Š” ๋งˆ์ด๋„ˆ ์—ฐ์‚ฐ์ด ์ž„๋ฒ ๋”ฉ์„ ๋ณด์กด ํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๊ธฐ์กด ์ •๋ฆฌ์™€๋Š” ๋‹ค๋ฅธ ๋ณต์žก์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์‹ค์ œ๋กœ ๋งค๋“ญ ์ด๋ก  (knot diagrams)์ด๋‚˜ 3์ฐจ์› ํ‘œ๋ฉด (surfaces in โ„ยณ) ๋“ฑ์—์„œ โ€œ์ž„๋ฒ ๋””๋“œ ๋งˆ์ด๋„ˆโ€๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋“ฑ์žฅํ•˜์ง€๋งŒ, ๊ทธ์— ๋Œ€ํ•œ ์™„์ „ํ•œ ์ฆ๋ช…์€ ๋ถ€์žฌํ•˜๊ฑฐ๋‚˜ ๊ฒฐํ•จ์ด ์žˆ์—ˆ๋‹ค. ๋ณธ

Cyberswarm: a novel swarm intelligence algorithm inspired by cyber community dynamics

Cyberswarm: a novel swarm intelligence algorithm inspired by cyber community dynamics

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ด๋ฒ„ ์‚ฌํšŒ ์‹œ์Šคํ…œ ๋‚ด์—์„œ ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋„์™€ ์ƒํ˜ธ์ž‘์šฉ์˜ ๋ณต์žก์„ฑ์„ ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ์ถ”์ฒœ ์‹œ์Šคํ…œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์Šค์™€rm ์ง€๋Šฅ๊ณผ ์‚ฌํšŒ์‹ฌ๋ฆฌํ•™ ์›์น™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ๋™์  ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋„์™€ ์ปค๋ฎค๋‹ˆํ‹ฐ์˜ ์˜ํ–ฅ๋ ฅ์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ค‘์‹ฌ์„ฑ ์ธก์ •๊ณผ Node2Vec ์ž„๋ฒ ๋”ฉ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋ฐ์ดํ„ฐ์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š”๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ํŠนํžˆ Hit Rate (HR), Mean Reciprocal Rank (MRR), N

IoTEdu: Access Control, Detection, and Automatic Incident Response in Academic IoT Networks

IoTEdu: Access Control, Detection, and Automatic Incident Response in Academic IoT Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ•™๋‚ด IoT ํ™•์‚ฐ : ์‹คํ—˜์‹ค ์„ผ์„œ, ๊ฑด๋ฌผ ์ž๋™ํ™”, ๊ต์œก์šฉ ๋กœ๋ด‡ ๋“ฑ ์ˆ˜๋ฐฑ ๋Œ€์˜ ๋””๋ฐ”์ด์Šค๊ฐ€ ๋„คํŠธ์›Œํฌ์— ์—ฐ๊ฒฐ๋ผ ๊ณต๊ฒฉ ํ‘œ๋ฉด์ด ๊ธ‰์ฆ. ๋ธŒ๋ผ์งˆ ๋Œ€ํ•™์˜ ํ˜„ํ™ฉ : UFRGSยทUnicamp ๋“ฑ์€ ๋””๋ฐ”์ด์Šค ์Šน์ธ์— 2~6์ผ์ด ์†Œ์š”๋˜๋Š” ๋ฐ˜๋ฉด, UNIPAMPAยทUFAM์€ ์ ˆ์ฐจ ์ž์ฒด๊ฐ€ ๋ถ€์žฌ. ์ •์ฑ…ยทSLA ๋ถ€์žฌ๊ฐ€ ์šด์˜ ๋น„ํšจ์œจ ๊ณผ ๋ณด์•ˆ ์œ„ํ—˜ ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด ์†”๋ฃจ์…˜์˜ ํ•œ๊ณ„ : ์ƒ์šฉ ํด๋ผ์šฐ๋“œ IoT ํ”Œ๋žซํผ(AWS IoT Core, Azure IoT Hub)ยท์˜คํ”ˆ์†Œ์Šค(ThingsBoard) ๋“ฑ์€ ํด๋ผ์šฐ๋“œโ€‘๋””๋ฐ”์ด์Šค ํ†ต์‹  ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ 

Network Detection
Q2D2: A Geometry-Aware Audio Codec Leveraging Two-Dimensional Quantization

Q2D2: A Geometry-Aware Audio Codec Leveraging Two-Dimensional Quantization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์–‘์žํ™”์˜ ํ•œ๊ณ„ : VQโ€‘VAE, RVQ ๋“ฑ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ ์–‘์žํ™”๋Š” ์ฝ”๋“œ๋ถ ๋ถ•๊ดดยท๋ฏธ์‚ฌ์šฉ ๋ฌธ์ œ์™€ ํ•™์Šต ๋ถˆ์•ˆ์ •์„ฑ์„ ์•ผ๊ธฐํ•œ๋‹ค. ๋ฐ˜๋ฉด FSQ๋Š” 1์ฐจ์› ์Šค์นผ๋ผ ์–‘์žํ™”๋กœ ์ฝ”๋“œ๋ถ ํ™œ์šฉ์„ ๊ทน๋Œ€ํ™”ํ•˜์ง€๋งŒ, ์ฑ„๋„ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฌด์‹œํ•œ๋‹ค. ๋ชฉํ‘œ : FSQ์˜ ๋‹จ์ˆœ์„ฑ๊ณผ ํ™œ์šฉ ํšจ์œจ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ, ์ฑ„๋„ ๊ฐ„ ์ƒ๊ด€์„ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ์  ์–‘์žํ™” ๋ฐฉ์‹์„ ์ฐพ๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ๋™๊ธฐ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Q2D2 | ์š”์†Œ | ์„ค๋ช… | | | | | ์ฑ„๋„ ์Œ(pairing) | ์ž ์žฌ ๊ณต๊ฐ„์˜ ์ฑ„๋„์„ 2๊ฐœ์”ฉ ๋ฌถ์–ด 2์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋งŒ๋“ ๋‹ค. | | 2์ฐจ์›

Design Space Exploration of DMA based Finer-Grain Compute Communication Overlap

Design Space Exploration of DMA based Finer-Grain Compute Communication Overlap

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ถ„์‚ฐ ML์˜ ๊ธ‰์ฆ : LLaMAโ€‘3 ํ›ˆ๋ จ์— 16 K GPU๊ฐ€ ์‚ฌ์šฉ๋  ์ •๋„๋กœ, ๋ชจ๋ธยท๋ฐ์ดํ„ฐ ๊ทœ๋ชจ๊ฐ€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ์ƒค๋“œโ€‘๋ ˆ๋ฒจ ๊ฒน์นจ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ํ”ผ์–ดโ€‘ํˆฌโ€‘ํ”ผ์–ด(P2P) ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฒˆ์— ํ•˜๋‚˜์˜ GPU์™€๋งŒ ํ†ต์‹ ํ•œ๋‹ค. ์Šค์œ„์น˜ ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ์—์„œ๋Š” ์œ ์—ฐํ•˜์ง€๋งŒ, ์ง์ ‘ ์—ฐ๊ฒฐํ˜•(Directโ€‘Connect) GPU ๋„คํŠธ์›Œํฌ ์—์„œ๋Š” ๋งํฌ ํ™œ์šฉ๋„๊ฐ€ ๋‚ฎ์•„ ์ตœ๋Œ€ 3.9๋ฐฐ ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. 2. FiCCO ๊ฐœ๋…์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์ƒค๋“œโ€‘๋ ˆ๋ฒจ | FiCCO (๋ฏธ์„ธ ์ž…์ž) | | | | | | ํ†ต์‹ 

Linear socio-demographic representations emerge in Large Language Models from indirect cues

Linear socio-demographic representations emerge in Large Language Models from indirect cues

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๋‚ด๋ถ€ ํ‘œํ˜„ ์—ฐ๊ตฌ์˜ ์ƒˆ๋กœ์šด ์ดˆ์  : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์‚ฌ์‹ค์„ฑ, ์‹œ๊ณต๊ฐ„ ๊ด€๊ณ„, ์ •์น˜ ์ด๋… ๋“ฑ ๊ฐ๊ด€์  ๊ฐœ๋… ์— ๋Œ€ํ•œ ๋‚ด๋ถ€ ํ‘œํ˜„์„ ํƒ๊ตฌํ–ˆ์ง€๋งŒ, ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ™” ์ƒ๋Œ€(์‚ฌ์šฉ์ž) ์ž์ฒด ์— ๋Œ€ํ•œ ํ‘œํ˜„์„ ์กฐ๋ช…ํ•œ๋‹ค. ์ด๋Š” ๋Œ€ํ™”ํ˜• AI๊ฐ€ ์‚ฌ์šฉ์ž ์ •๋ณด๋ฅผ ์žฅ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ๋กœ ์ถ•์ ํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐœ์ธํ™” ํŽธํ–ฅ ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ ์ด๋‹ค. ์„ ํ˜• ํ‘œํ˜„ ๊ฐ€์„ค ์ ์šฉ : โ€œhighโ€‘level concepts are encoded as directions in activation spaceโ€๋ผ๋Š” ๊ฐ€์„ค์„ ์‚ฌ์šฉ์ž ์†์„ฑ์—๋„ ์ ์šฉํ•จ์œผ๋กœ์จ, ๋ณต์žกํ•œ ๋น„์„ ํ˜•

Model
Rethinking Supervised Fine-Tuning: Emphasizing Key Answer Tokens for Improved LLM Accuracy

Rethinking Supervised Fine-Tuning: Emphasizing Key Answer Tokens for Improved LLM Accuracy

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ CoT์˜ ์žฅ์  : ์ถ”๋ก  ๊ณผ์ •์„ ๋‹จ๊ณ„๋ณ„๋กœ ์ œ์‹œํ•ด ๋ชจ๋ธ์˜ ๋ณต์žก ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ๋†’์ธ๋‹ค. ๊ธฐ์กด SFT์˜ ํ•œ๊ณ„ : ์ „์ฒด ์‹œํ€€์Šค์— ๋™์ผ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜๋ฉด, ๊ธธ์ด๊ฐ€ ๊ธด CoT ํ† ํฐ์ด ์†์‹ค ํ•จ์ˆ˜์— ๊ณผ๋„ํ•˜๊ฒŒ ๊ธฐ์—ฌํ•ด ์ตœ์ข… ๋‹ต๋ณ€(ํ‚ค) ํ† ํฐ์˜ ํ•™์Šต์ด ํฌ์„๋œ๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„์  : SFTโ€‘GO , Forgetting Framework ๋“ฑ์€ ํ† ํฐ ๊ทธ๋ฃน๋ณ„ ๊ฐ€์ค‘์น˜๋ฅผ ์กฐ์ •ํ•˜์ง€๋งŒ ์ถ”๊ฐ€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์™€ ๋ณต์žกํ•œ ํ† ํฐ ์„ ํƒ ๋กœ์ง์ด ํ•„์š”ํ•˜๋‹ค. Prompt Compression ยท Longโ€‘Short Chain Mixture ๋Š” ํ† ํฐ ์ˆ˜๋ฅผ

A Knowledge-Based Language Model: Deducing Grammatical Knowledge in a Multi-Agent Language Acquisition Simulation

A Knowledge-Based Language Model: Deducing Grammatical Knowledge in a Multi-Agent Language Acquisition Simulation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ง€์‹ ๊ธฐ๋ฐ˜ vs. ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LM) : ํ˜„์žฌ NLP์—์„œ๋Š” GPTยทBERT์™€ ๊ฐ™์€ ๋Œ€๊ทœ๋ชจ ์‹ ๊ฒฝ๋ง์ด ์ฃผ๋ฅ˜์ด์ง€๋งŒ, ์ด๋“ค์€ ๋‚ด๋ถ€ ๋ฌธ๋ฒ• ์ง€์‹์„ ๋ช…์‹œ์ ์œผ๋กœ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. MODOMA๋Š” ๋ช…์‹œ์  ๊ทœ์น™ยท์†์„ฑโ€‘๊ฐ’ ๋งคํŠธ๋ฆญ์Šค ๋ฅผ ์‚ฌ์šฉํ•ด ์Šต๋“๋œ ๋ฌธ๋ฒ•์„ ์ง์ ‘ ์กฐํšŒยท์ˆ˜์ • ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ์œผ๋กœ์จ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ(interpretablity)์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์„ค๊ณ„ : โ€˜์–ด๋จธ๋‹ˆโ€‘๋”ธโ€™ ์ƒํ˜ธ์ž‘์šฉ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•จ์œผ๋กœ์จ ์‹ค์ œ ์ธ๊ฐ„ ์•„๋™์ด ์–ธ์–ด๋ฅผ ์Šต๋“ํ•˜๋Š” ๊ณผ์ •(์ž…๋ ฅ โ†’ ๊ฐ€์„ค โ†’ ํ”ผ๋“œ๋ฐฑ)์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ๋Œ€๊ทœ๋ชจ ์ฝ”ํผ์Šค๋ฅผ

Model
Benchmarking Deep Neural Networks for Modern Recommendation Systems

Benchmarking Deep Neural Networks for Modern Recommendation Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐโ€‘๋ชฉ์  ์š”๊ตฌ : ํ˜„๋Œ€ ์ถ”์ฒœ ์‹œ์Šคํ…œ์€ ๋‹จ์ˆœ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค์–‘์„ฑ, ๊ด€๊ณ„ ๋ชจ๋ธ๋ง, ์‹œ๊ณ„์—ด ์ ์‘, ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ๊นŒ์ง€ ํฌ๊ด„ํ•˜๋Š” ๋ณตํ•ฉ ์š”๊ตฌ๋ฅผ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ๋‹จ์ผ ์ง€ํ‘œ(์ •ํ™•๋„) ํ˜น์€ ์ œํ•œ๋œ ์š”๊ตฌ ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ๋น„๊ต๊ฐ€ ๋‹จํŽธ์ ์ด์—ˆ๋‹ค. ROB ํ”„๋ ˆ์ž„์›Œํฌ : ์š”๊ตฌ์‚ฌํ•ญ์„ ๋ช…์‹œ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์‹คํ—˜ ํŒŒ์ดํ”„๋ผ์ธยทํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์ ์šฉํ•จ์œผ๋กœ์จ ๊ณต์ •ํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ๋น„๊ต ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ | ์š”์†Œ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ์…‹ | โ‘  Retail Eโ€‘commerce (๊ฑฐ๋ž˜ ๋กœ๊ทธ,

System Network
SynRAG: A Large Language Model Framework for Executable Query Generation in Heterogeneous SIEM System

SynRAG: A Large Language Model Framework for Executable Query Generation in Heterogeneous SIEM System

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ด๊ธฐ์ข… SIEM ํ™˜๊ฒฝ์˜ ๋ณต์žก์„ฑ : ๊ฐ SIEM์ด ์ œ๊ณตํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ชจ๋ธยทํ•„๋“œยท์ฟผ๋ฆฌ ๋ฌธ๋ฒ•์ด ์ƒ์ดํ•ด, ๋ถ„์„๊ฐ€๊ฐ€ ๋ชจ๋“  ์‹œ์Šคํ…œ์„ ๋™์‹œ์— ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ง‰๋Œ€ํ•œ ๊ต์œก ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„์  : SQG, PTโ€‘MAML ๋“ฑ์€ ํŠน์ • ๋„๋ฉ”์ธ(์˜ˆ: SPARQL, SQL) ์ฟผ๋ฆฌ ์ƒ์„ฑ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ์ง€๋งŒ, ๋ณด์•ˆ ๋กœ๊ทธ์™€ ๊ฐ™์€ ๋น„์ •ํ˜•ยท๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ์— ํŠนํ™”๋œ SIEM ์ฟผ๋ฆฌ ์ƒ์„ฑ์€ ์•„์ง ์—ฐ๊ตฌ๊ฐ€ ๋ถ€์กฑํ–ˆ๋‹ค. SynRAG๋Š” ์ตœ์ดˆ๋กœ ๋ณด์•ˆ ๋ถ„์•ผ์— RAG๋ฅผ ์ ์šฉํ•ด ํ”Œ๋žซํผโ€‘์ค‘๋ฆฝ ์‚ฌ์–‘ โ†’ ํ”Œ๋žซํผโ€‘ํŠนํ™” ์ฟผ๋ฆฌ ๋ณ€ํ™˜ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌํ˜„ํ•œ

Cryptography and Security Framework System Model Computer Science
Uncertainty-Gated Region-Level Retrieval for Robust Semantic Segmentation

Uncertainty-Gated Region-Level Retrieval for Robust Semantic Segmentation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋„๋ฉ”์ธ ์‹œํ”„ํŠธ : ๊ฑฐ๋ฆฌ ์˜์ƒ์€ ์‹œ๊ฐ„๋Œ€ยท๋‚ ์”จยท์ง€์—ญ์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๋ฉฐ, ๊ธฐ์กด Cityscapesโ€‘๊ณ„์—ด ๋ฐ์ดํ„ฐ๋Š” ์ฃผ๋กœ ๋ง‘์€ ๋‚ฎ ์‚ฌ์ง„์— ๊ตญํ•œ๋ผ ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ์— ์ทจ์•ฝํ•˜๋‹ค. ๋ ˆํŠธ๋ฆฌ๋ฒŒ ๊ธฐ๋ฐ˜ ์ ์‘ : ๋ฉ”๋ชจ๋ฆฌ ๋ฑ…ํฌ์—์„œ ์œ ์‚ฌ ์ƒ˜ํ”Œ์„ ๊ฐ€์ ธ์™€ ์˜ˆ์ธก์„ ๋ณด์ •ํ•˜๋Š” ๋ฐฉ์‹์€ ์ตœ๊ทผ ์˜๋ฃŒยท์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ์œผ๋‚˜, ์ด๋ฏธ์ง€โ€‘๋‹จ์œ„ ๋ ˆํŠธ๋ฆฌ๋ฒŒ ์€ ์—ฐ์‚ฐ๋Ÿ‰์ด ๋ฐฉ๋Œ€ํ•ด ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ต๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. ์ง€์—ญโ€‘๋ ˆ๋ฒจ ๋ถˆํ™•์‹ค์„ฑ ์ธก์ • ํ…Œ์ŠคํŠธโ€‘ํƒ€์ž„ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(ํ”Œ๋ฆฝ, ์Šค์ผ€์ผ, ์ƒ‰์ƒ ๋ณ€ํ˜•) 5๊ฐ€์ง€ ๋ณ€ํ˜•์„ ์ ์šฉํ•˜๊ณ , ์ƒํ˜ธ์ •๋ณด๋Ÿ‰(Mutual

Robust TTS Training via Self-Purifying Flow Matching for the WildSpoof 2026 TTS Track

Robust TTS Training via Self-Purifying Flow Matching for the WildSpoof 2026 TTS Track

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ธโ€‘๋”โ€‘์™€์ผ๋“œ ์Œ์„ฑ ์€ ๋ฐฐ๊ฒฝ ์†Œ์Œ, ์ž”ํ–ฅ, ๋””๋ฐ”์ด์Šค ์ฐจ์ด, ๋ผ๋ฒจ๋ง ์˜ค๋ฅ˜ ๋“ฑ์œผ๋กœ ๊ธฐ์กด ๊ณ ํ’ˆ์งˆ ์ŠคํŠœ๋””์˜ค ๋…น์Œ๊ณผ๋Š” ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๊ธฐ์กด TTS ๋ชจ๋ธ์€ ๊นจ๋—ํ•œ ๋ฐ์ดํ„ฐ์— ์ตœ์ ํ™”๋ผ ์žˆ์–ด, ๋ผ๋ฒจ ๋…ธ์ด์ฆˆ์™€ ์ •๋ ฌ ์˜ค๋ฅ˜๊ฐ€ ๋นˆ๋ฒˆํ•œ ์‹ค์™ธ ๋ฐ์ดํ„ฐ์—์„œ๋Š” ์ •๋ ฌ ๋ถ•๊ดด ์™€ ๋ฐœ์Œ ์˜ค๋ฅ˜ ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. WildSpoof Challenge๋Š” ์ด๋Ÿฌํ•œ ํ˜„์‹ค์ ์ธ ์ƒํ™ฉ์„ ๋ฒค์น˜๋งˆํฌ๋กœ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ง€๋Šฅํ˜• ๋…ธ์ด์ฆˆ ์ฒ˜๋ฆฌ ์™€ ๊ฐ•์ธํ•œ ์ •๋ ฌ ํ•™์Šต ์ด ๊ฐ€๋Šฅํ•œ TTS ์‹œ์Šคํ…œ์„ ์š”๊ตฌํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ  | ๊ธฐ์ˆ  | ์„ค๋ช… | ์žฅ์  | | | | | | Superton

What matters for Representation Alignment: Global Information or Spatial Structure?

What matters for Representation Alignment: Global Information or Spatial Structure?

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ‘œํ˜„ ์ •๋ ฌ(REPA) ์€ ์ตœ๊ทผ ํ™•์‚ฐ ํŠธ๋žœ์Šคํฌ๋จธ ํ•™์Šต์„ ํฌ๊ฒŒ ๊ฐ€์†ํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์œผ๋กœ, ์‚ฌ์ „ํ•™์Šต๋œ ๋น„์ „ ์ธ์ฝ”๋”์˜ ํŠน์ง•์„ diffusion ๋ชจ๋ธ์— ์ „๋‹ฌํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ „์—ญ ์˜๋ฏธ(์ด๋ฏธ์ง€๋„ท ์ •ํ™•๋„) ๊ฐ€ ๋†’์€ ์ธ์ฝ”๋”๊ฐ€ ๋” ์ข‹์€ ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ๋งŒ๋“ ๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์œผ๋ฉฐ, ์ด๋Š” linear probing ์ •ํ™•๋„๋กœ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ €์ž๋“ค์€ โ€œ์ „์—ญ ์˜๋ฏธ๊ฐ€ ์ •๋ง ์ค‘์š”ํ•œ๊ฐ€?โ€๋ผ๋Š” ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜๊ณ , ๊ณต๊ฐ„ ๊ตฌ์กฐ (ํŒจ์น˜ ๊ฐ„ ๊ด€๊ณ„) ๊ฐ€ ์ƒ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ ๋ฐ ๋ฐ์ดํ„ฐ | ์š”์†Œ | ์„ค๋ช… | | | | | ๋Œ€์ƒ ์ธ

CycliST: A Video Language Model Benchmark for Reasoning on Cyclical State Transitions

CycliST: A Video Language Model Benchmark for Reasoning on Cyclical State Transitions

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ฐฐ๊ฒฝ ์ˆœํ™˜ ํ˜„์ƒ์˜ ๋ณดํŽธ์„ฑ : ๊ตํ†ต ์‹ ํ˜ธ, ์œ„์„ฑ ๊ถค๋„, ์ปจ๋ฒ ์ด์–ด ๋ฒจํŠธ, ์‹ฌ์žฅ ๋ฐ•๋™ ๋“ฑ ์ผ์ƒยท์‚ฐ์—…ยท๊ณผํ•™ ์ „๋ฐ˜์— ๊ฑธ์ณ ์ฃผ๊ธฐ์  ํ˜„์ƒ์ด ์กด์žฌํ•œ๋‹ค. ์ธ๊ฐ„์€ ์ด๋Ÿฌํ•œ ํŒจํ„ด์„ ์ง๊ด€์ ์œผ๋กœ ์ธ์‹ยท์˜ˆ์ธกํ•˜์ง€๋งŒ, ํ˜„์žฌ ๋น„๋””์˜ค ์ดํ•ด ๋ชจ๋ธ์€ โ€œ์‹œ๊ฐ„โ€์„ ๋‹จ์ˆœํžˆ ํ”„๋ ˆ์ž„ ์ˆœ์„œ๋กœ๋งŒ ์ฒ˜๋ฆฌํ•œ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด VQAยท๋น„๋””์˜ค ์ดํ•ด ๋ฐ์ดํ„ฐ์…‹(์˜ˆ: ActivityNet, Somethingโ€‘Something)์€ ๋‹ค์–‘ํ•œ ๋™์ž‘์„ ํฌํ•จํ•˜์ง€๋งŒ, ์ฃผ๊ธฐ์„ฑยท๋ฐ˜๋ณต์„ฑ ์„ ๋ช…์‹œ์ ์œผ๋กœ ์„ค๊ณ„ํ•˜์ง€ ์•Š์•„ ์ˆœํ™˜ ํŒจํ„ด์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๊ธฐ ์–ด๋ ต๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹

Model
Harnessing Large Language Models for Biomedical Named Entity Recognition

Harnessing Large Language Models for Biomedical Named Entity Recognition

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ฐฐ๊ฒฝ ๋„๋ฉ”์ธ ๊ฒฉ์ฐจ : GPTโ€‘4ยทQwen3 ๋“ฑ ์ตœ์‹  LLM์€ ์ผ๋ฐ˜ ํ…์ŠคํŠธ์— ๊ฐ•ํ•˜์ง€๋งŒ, ๋ณต์žกํ•œ ์ƒ๋ฌผํ•™ยท์˜ํ•™ ์šฉ์–ด์™€ ๊ด€๊ณ„๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๊ธฐ์กด BioNER ์ „์šฉ ๋ชจ๋ธ(BioMedBERT, Medโ€‘PaLM2 ๋“ฑ)์€ ์‚ฌ์ „ํ•™์Šต ๋‹จ๊ณ„์—์„œ ๋„๋ฉ”์ธ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ๋น„์šฉ๊ณผ ๋ฐ์ดํ„ฐ ์š”๊ตฌ๋Ÿ‰์ด ํฌ๋‹ค. ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ vs. ์–‘ : ์ €์ž๋“ค์€ โ€œ๋ฐ์ดํ„ฐ ์–‘์„ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ๋ณด๋‹ค ํ’ˆ์งˆ์„ ๋†’์ด๋Š” ๊ฒƒ์ด ๋” ํšจ์œจ์ โ€์ด๋ผ๋Š” ๊ฐ€์„ค์„ ์„ธ์šฐ๊ณ , ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด Hybrid Superfiltering ์„ ์„ค๊ณ„ํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• 2.1 Bio

Model
Theory of Mind for Explainable Human-Robot Interaction

Theory of Mind for Explainable Human-Robot Interaction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ | ๋‚ด์šฉ | ํ‰๊ฐ€ | | | | | HRI์—์„œ ToM์˜ ํ•„์š”์„ฑ | ์ธ๊ฐ„๊ณผ ๋กœ๋ด‡ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์ด ์ผ์ƒํ™”๋จ์— ๋”ฐ๋ผ ๋กœ๋ด‡์ด ์ธ๊ฐ„์˜ ์˜๋„ยท์‹ ๋…์„ ํŒŒ์•…ํ•˜๊ณ  ์ ์ ˆํžˆ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ž„์„ ๊ฐ•์กฐ. | | XAI์™€์˜ ์—ฐ๊ด€์„ฑ | ToM๊ณผ XAI ๋ชจ๋‘ โ€œ๋‚ด๋ถ€ ์ถ”๋ก ์„ ์ธ๊ฐ„์—๊ฒŒ ์ „๋‹ฌโ€ํ•œ๋‹ค๋Š” ๊ณตํ†ต ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ. ๊ธฐ์กด XAI๋Š” ๋ชจ๋ธ ์ค‘์‹ฌ, ToM์€ ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์ด๋ผ๋Š” ์ฐจ์ด๋ฅผ ์ง€์ . | | ์—ฐ๊ตฌ ๊ฒฉ์ฐจ | ๊ธฐ์กด ToM ์—ฐ๊ตฌ๋Š” ์„ค๋ช… ์ถฉ์‹ค๋„ ์™€ ์žฌํ˜„์„ฑ ์„ XAI ๊ธฐ์ค€์œผ๋กœ ํ‰๊ฐ€ํ•˜์ง€ ์•Š์Œ. ์ด๋Š” ์‚ฌ์šฉ์ž๋ฅผ ์˜ค๋„ํ•  ์œ„ํ—˜์„ ๋‚ดํฌ. | 2. ์ฃผ

Robotics Computer Science
์‹œ๊ฐ์  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ ํ™˜๊ฐ ํƒ์ง€ ๋ฐ ์ธ๊ฐ„โ€‘์ธโ€‘๋ฃจํ”„ ํ”ผ๋“œ๋ฐฑ ํ”„๋ ˆ์ž„์›Œํฌ

์‹œ๊ฐ์  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ ํ™˜๊ฐ ํƒ์ง€ ๋ฐ ์ธ๊ฐ„โ€‘์ธโ€‘๋ฃจํ”„ ํ”ผ๋“œ๋ฐฑ ํ”„๋ ˆ์ž„์›Œํฌ

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ LLM ํ™˜๊ฐ ๋ฌธ์ œ : ๊ธฐ์—…์šฉ LLM์€ ํ์‡„ํ˜• ๋„๋ฉ”์ธ ์ง€์‹๊ณผ ๊ฒฐํ•ฉ๋ผ ๋†’์€ ์ •ํ™•์„ฑ์„ ๊ธฐ๋Œ€ํ•˜์ง€๋งŒ, ์ปจํ…์ŠคํŠธ ์œˆ๋„์šฐ ์ œํ•œ ยท ์‚ฌ์ „ ํ•™์Šต๊ณผ ์ตœ์‹  ์ง€์‹ ๊ฐ„ ๊ฒฉ์ฐจ ๊ฐ€ ํ™˜๊ฐ์„ ์œ ๋ฐœํ•œ๋‹ค. ๊ธฐ์กด ํ•ด๊ฒฐ์ฑ…์˜ ํ•œ๊ณ„ : Goldโ€‘standard Q&A ๊ตฌ์ถ•์€ ๋น„์šฉยท์‹œ๊ฐ„์ด ๊ณผ๋‹ค. ๋ณด์กฐ ๋ชจ๋ธ ๊ฒ€์ฆ (LLMโ€‘asโ€‘Judge)์€ ํŽธํ–ฅยท์ง€์‹ ์‚ฌ๊ฐ์ง€๋Œ€๊ฐ€ ์กด์žฌํ•ด ํ™•์ •์  ๋ณด์žฅ์„ ๋ชปํ•œ๋‹ค. ์‹œ๊ฐํ™”์˜ ํ•„์š”์„ฑ : ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ๊ฒ€์ฆ์€ ๋น„์ „๋ฌธ๊ฐ€์—๊ฒŒ ์ง๊ด€์„ฑ์ด ๋–จ์–ด์ง€๋ฏ€๋กœ, ์‹œ๊ฐ์  ์ธ์ฝ”๋”ฉ ์„ ํ†ตํ•ด ๋ณต์žกํ•œ ์‚ฌ์‹ค ๊ด€๊ณ„๋ฅผ ํ•œ๋ˆˆ์— ํŒŒ์•…ํ•˜๊ณ , ์ธ๊ฐ„์ด ์ง์ ‘ ๊ฐœ์ž…ํ•  ์ˆ˜ ์žˆ๋Š”

No Image

Thinking on Maps: How Foundation Model Agents Explore, Remember, and Reason Map Environments

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ง€๋„ ๊ธฐ๋ฐ˜ ๊ณต๊ฐ„ ์ธ์ง€๋Š” ์ธ๊ฐ„์ด ๋Œ€๊ทœ๋ชจ ํ™˜๊ฒฝ์„ ์ดํ•ดํ•˜๊ณ  ์˜์‚ฌ๊ฒฐ์ •ํ•˜๋Š” ํ•ต์‹ฌ ๋ฐฉ์‹์ด๋ฉฐ, GISยท๋„์‹œ๊ณ„ํšยท์žฌ๋‚œ ๋Œ€์‘ ๋“ฑ ์‹ค์šฉ ๋ถ„์•ผ์™€ ์ง๊ฒฐ๋œ๋‹ค. ๊ธฐ์กด FM ํ‰๊ฐ€๋Š” ์ •์  ์ž…๋ ฅ (์ „์ฒด ์ง€๋„ ์ด๋ฏธ์ง€, ํ…์ŠคํŠธ ์งˆ์˜) ํ˜น์€ ์‹œ๊ฐยท์˜์ƒ ๊ธฐ๋ฐ˜ (์ด๋ฏธ์ง€ยท๋น„๋””์˜ค) ์ ‘๊ทผ์— ๋จธ๋ฌผ๋Ÿฌ, โ€˜๊ฒฝํ—˜โ€‘๊ธฐ์–ตโ€‘์ถ”๋ก โ€™ ์ด๋ผ๋Š” ์ธ๊ฐ„์‹ ์ธ์ง€ ๊ณผ์ •์„ ์žฌํ˜„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋™์ ยท๋ถ€๋ถ„๊ด€์ฐฐ ์ƒํ™ฉ์—์„œ ์—์ด์ „ํŠธ๊ฐ€ ์Šค์Šค๋กœ ๋‚ด๋ถ€ ์ง€๋„ ๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ  ์ด๋ฅผ ํ™œ์šฉํ•˜๋Š”์ง€๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. 2. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ | ์š”์†Œ | ๊ตฌํ˜„ ๋ฐฉ์‹ |

Model
ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฐ˜ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ชจ๋ธ MedSAM3

ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฐ˜ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ชจ๋ธ MedSAM3

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ผ๋ฐ˜ํ™” ๋ฌธ์ œ : ๊ธฐ์กด ์˜๋ฃŒ ๋ถ„ํ•  ๋ชจ๋ธ์€ ํŠน์ • ์žฅ๊ธฐยท์งˆํ™˜ยท๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์— ํŠนํ™”๋ผ ์žˆ์–ด ์ƒˆ๋กœ์šด ์ƒํ™ฉ์— ์žฌํ•™์Šต์ด ํ•„์š”ํ–ˆ๋‹ค. ํ”„๋กฌํ”„ํŠธ ํ•œ๊ณ„ : SAM 2ยทMedSAMโ€‘2 ๋“ฑ์€ ์ ยท๋ฐ•์Šค ์™€ ๊ฐ™์€ ๊ธฐํ•˜ํ•™์  ํ”„๋กฌํ”„ํŠธ์— ์˜์กดํ•ด, ๋ณต์žกํ•œ ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ง€์ •ํ•˜๊ธฐ ๋ฒˆ๊ฑฐ๋กญ๋‹ค. ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์š”๊ตฌ : ์ž„์ƒ์˜๋Š” โ€œ์ข…์–‘๊ณผ ์ฃผ๋ณ€ ๋ถ€์ข…์„ ํ•จ๊ป˜ ๋ถ„ํ• โ€์ฒ˜๋Ÿผ ์˜๋ฏธ๋ก ์  ์ง€์‹œ๋ฅผ ๋‚ด๋ฆฌ๊ธธ ์›ํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ๊ธฐ์กด ๋ชจ๋ธ | MedSAMโ€‘3 | | | | | | ํ”„๋กฌํ”„ํŠธ ์ข…๋ฅ˜ | ์ , ๋ฐ•์Šค, ๋งˆ์Šคํฌ | ํ…์ŠคํŠธ(๊ฐœ๋…) + ์‹œ๊ฐ์  | |

NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models

NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์‹œ๊ฐ„ ์ถ”๋ก ์˜ ์–ด๋ ค์›€ : LLM์€ ๋ฐฉ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹์„ ๊ฐ–๊ณ  ์žˆ์œผ๋‚˜, ์ •์  ์‚ฌ์ „ํ•™์Šต์œผ๋กœ ์ธํ•ด ์ตœ์‹ ยท์‹œ๊ฐ„โ€‘๋ฏผ๊ฐํ•œ ์ •๋ณด์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ํ™œ์šฉ์ด ์ œํ•œ๋œ๋‹ค. ํŠนํžˆ ์งˆ๋ฌธ์— ๋ช…์‹œ๋œ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„๊ณผ ๋ฌธ๋งฅ ๋‚ด ์‚ฌ๊ฑด๋“ค์˜ ์‹œ๊ฐ„ ๊ด€๊ณ„๋ฅผ ์ผ์น˜์‹œํ‚ค๋Š” ๊ฒƒ์ด ์–ด๋ ค์›Œ, ์ •๋‹ต์ด ์กด์žฌํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ์˜ ํ•œ๊ณ„ ์‹ฌ๋ณผ๋ฆญ ๋ฐฉ์‹ (์˜ˆ: QAaP, Eventโ€‘AL) โ†’ ์ •ํ™•๋„๋Š” ๋†’์ง€๋งŒ, ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋…ผ๋ฆฌ ํ…œํ”Œ๋ฆฟ์— ์˜์กดํ•ด ์ž์—ฐ์–ด์˜ ๋‹ค์–‘ํ•œ ์‹œ๊ฐ„ ํ‘œํ˜„์„ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋ฐ˜์‚ฌ์  ๋ฐฉ์‹ (์˜ˆ: TISER) โ†’ LLM์˜ ์œ ์—ฐ์„ฑ์„ ํ™œ์šฉํ•˜์ง€๋งŒ,

Framework Model
Reeb Graph of Sample Thickenings

Reeb Graph of Sample Thickenings

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Geometric reconstruction ๋ถ„์•ผ์—์„œ๋Š” ์ƒ˜ํ”Œ๋ง๋œ ์ ๊ตฐ์œผ๋กœ๋ถ€ํ„ฐ ์›๋ณธ ๊ณต๊ฐ„์˜ ์œ„์ƒยท๊ธฐํ•˜ ์ •๋ณด๋ฅผ ๋ณต์›ํ•˜๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ๊ณผ์ œ๋‹ค. ๊ธฐ์กด ๊ฒฐ๊ณผ(Niyogiโ€‘Smaleโ€‘Weinberger ๋“ฑ)๋Š” homology ยท homotopy type ๋ณต์›์— ์ดˆ์ ์„ ๋งž์ท„์œผ๋ฉฐ, reach , convexity radius ๋“ฑ ๊ธฐํ•˜ํ•™์  ์ „์ œ์กฐ๊ฑด์ด ํ•„์š”ํ–ˆ๋‹ค. Reeb ๊ทธ๋ž˜ํ”„ ๋Š” ๋ ˆ๋ฒจ์…‹์„ ์—ฐ๊ฒฐ ์„ฑ๋ถ„๋ณ„๋กœ ์ถ•์†Œํ•œ ๊ตฌ์กฐ๋กœ, ํ˜•ํƒœ ๋ถ„์„, ๊ทธ๋ž˜ํ”ฝ์Šค, ์‹ ๊ฒฝ๊ณผํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ์—์„œ ํ•ต์‹ฌ ๋„๊ตฌ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ โ€œ์ƒ˜ํ”Œ๋ง๋œ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ Reeb

No Image

Warp-Cortex: An Asynchronous, Memory-Efficient Architecture for Million-Agent Cognitive Scaling on Consumer Hardware

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ฌธ์ œ ์ •์˜ System 2 ์‚ฌ๊ณ (์ƒ์„ฑ ์ „ ์‚ฌ์ „ ์ถ”๋ก ) ๋ฅผ ๋‹ค์ค‘ ์—์ด์ „ํŠธ๋กœ ๊ตฌํ˜„ํ•˜๋ ค๋ฉด ์ˆ˜์‹ญ~์ˆ˜๋ฐฑ ๊ฐœ์˜ ๋ชจ๋ธ ์ธ์Šคํ„ด์Šค๊ฐ€ ํ•„์š”ํ•ด ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ๊ธ‰์ฆํ•œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ์€ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ (๊ฐ ์—์ด์ „ํŠธ๋งˆ๋‹ค ๋ณ„๋„ ๋ชจ๋ธยทKV)์ด๋ฉฐ, ์ด๋Š” ์†Œ๋น„์ž GPU(โ‰ค24 GB)์—์„œ๋Š” ๋น„ํ˜„์‹ค์ ์ด๋‹ค. ๋…ผ๋ฌธ์€ โ€œ์•„ํ‚คํ…์ฒ˜๊ฐ€ ๋ณ‘๋ชฉโ€์ด๋ผ๋Š” ๊ด€์ ์„ ์ œ์‹œํ•˜๊ณ , ๊ฐ€์ค‘์น˜์™€ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ณต์œ  ํ•จ์œผ๋กœ์จ ๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„๋ฅผ ๊ตฌ์กฐ์ ์œผ๋กœ ํ•ด์†Œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• ํ‰๊ฐ€ | ๊ธฐ๋ฒ• | ์„ค๋ช… | ์žฅ์  | ์ž ์žฌ์  ํ•œ๊ณ„ | | | | | | | Singleton

Computer Science Machine Learning
CAuSE: Decoding Multimodal Classifiers using Faithful Natural Language Explanation

CAuSE: Decoding Multimodal Classifiers using Faithful Natural Language Explanation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ธ”๋ž™๋ฐ•์Šค ๋ฌธ์ œ : VisualBERT์™€ ๊ฐ™์€ ์ตœ์‹  ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ์€ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์˜๋ฃŒยท๋ฒ•๋ฅ ยท์†Œ์…œ ๋ฏธ๋””์–ด ๋“ฑ ๊ณ ์‹ ๋ขฐ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ๋ถ„์•ผ์—์„œ๋Š” ๋‚ด๋ถ€ ๋…ผ๋ฆฌ๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์„ค๋ช…์ด ํ•„์ˆ˜์ด๋‹ค. ๊ธฐ์กด ํ•ด์„ ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„ : ์ž…๋ ฅ ๊ธฐ์—ฌ๋„(Gradโ€‘CAM, SHAP ๋“ฑ)๋Š” ์ €์ˆ˜์ค€ ํŠน์ง•์„ ๊ฐ•์กฐํ•˜์ง€๋งŒ, ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ์ง๊ด€์ ์œผ๋กœ ์ดํ•ดํ•˜๊ธฐ ์–ด๋ ค์šด โ€˜์ˆซ์žโ€™ ํ˜•ํƒœ์ด๋‹ค. ๋˜ํ•œ, ์ธ๊ณผ์  ์—ฐ๊ฒฐ์„ ๋ณด์žฅํ•˜์ง€ ๋ชปํ•ด ๋ชจ๋ธ์ด ์‹ค์ œ๋กœ ์–ด๋–ค ๋…ผ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ–ˆ๋Š”์ง€ ๊ฒ€์ฆํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ž์—ฐ์–ด ์„ค๋ช…(NLE)์˜ ์žฅ์  : ์ธ๊ฐ„์ด ๊ฐ€์žฅ ์ต์ˆ™ํ•œ ์ปค๋ฎค๋‹ˆ

UniCoMTE: A Universal Counterfactual Framework for Explaining Time-Series Classifiers on ECG Data

UniCoMTE: A Universal Counterfactual Framework for Explaining Time-Series Classifiers on ECG Data

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์‹ฌ์ „๋„(ECG) ๋ฐ์ดํ„ฐ ๋Š” 12โ€‘lead, ๊ณ ํ•ด์ƒ๋„ ์‹œ๊ณ„์—ด์ด๋ฉฐ, ์ž‘์€ ๋ณ€๋™๋„ ์ž„์ƒ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด XAI ๊ธฐ๋ฒ•(LIME, SHAP)์€ ํŠน์ง• ๋…๋ฆฝ์„ฑ ๊ฐ€์ • ๊ณผ ์‹œ๊ฐ„์  ์—ฐ๊ด€์„ฑ ๋ฌด์‹œ ๋ผ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด, ์˜๋ฃŒ ํ˜„์žฅ์—์„œ โ€œ์–ด๋””๊ฐ€ ์ค‘์š”ํ•œ๊ฐ€?โ€๋ณด๋‹ค โ€œ์–ด๋–ค ๋ณ€ํ™”๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”๊พธ๋Š”๊ฐ€?โ€์— ๋Œ€ํ•œ ์ง๊ด€์  ํ•ด์„์ด ๋ถ€์กฑํ•˜๋‹ค. Counterfactual ์ ‘๊ทผ์€ โ€œ๋งŒ์•ฝ ~์ด๋ผ๋ฉดโ€์ด๋ผ๋Š” ํ˜•ํƒœ๋กœ ์ž„์ƒ์˜ ์‚ฌ๊ณ ๋ฐฉ์‹์— ๋งž์ถฐ ์„ค๋ช…์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ฐ•์ ์ด ์žˆ๋‹ค. 2. UniCoMTE์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์„ค๋ช… | ๊ธฐ์กด ๋ฐฉ๋ฒ• ๋Œ€๋น„ ์ฐจ

Data Framework
No Image

์†Œ์…œ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜ ๊ด€๊ด‘๊ฐ ์ด๋™ ์˜ˆ์ธก์„ ์œ„ํ•œ ๋ฌธ๋ฒ•์ถ”๋ก  ํžˆ๋“ ๋งˆ์ฝ”ํ”„๋ชจ๋ธ

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ด€๊ด‘ ์‚ฐ์—…์˜ ๊ทœ๋ชจ : 2019๋…„ UNWTO ๊ธฐ์ค€ 15์–ต ๋ช…์˜ ๊ตญ์ œ ๊ด€๊ด‘๊ฐ์ด ๋ฐฉ๋ฌธํ–ˆ์œผ๋ฉฐ, ๊ด€๊ด‘์€ ์„ธ๊ณ„ ๊ฒฝ์ œ์—์„œ ํ•ต์‹ฌ ์„ฑ์žฅ ๋™๋ ฅ์ด๋‹ค. ๋””์ง€ํ„ธ ํŠธ๋ ˆ์ด์Šค ํ™œ์šฉ : ์†Œ์…œ๋ฏธ๋””์–ด(Tripadvisor, Instagram ๋“ฑ)์—์„œ ์ƒ์„ฑ๋˜๋Š” ์ง€์˜คํƒœ๊น… ๋ฐ์ดํ„ฐ๋Š” ์ „ํ†ต์ ์ธ ์„ค๋ฌธยทํ†ต๊ณ„๋ณด๋‹ค ์‹ค์‹œ๊ฐ„ยท์„ธ๋ถ„ํ™”๋œ ํ–‰๋™ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์˜ˆ์ธก์˜ ์‹ค์šฉ์„ฑ : ๊ด€๊ด‘๊ฐ ์ด๋™ ์˜ˆ์ธก์€ ๋งž์ถคํ˜• ๋งˆ์ผ€ํŒ…, ์ˆ˜์š” ์˜ˆ์ธก, ๊ด€๊ด‘ ์ธํ”„๋ผ ์ตœ์ ํ™” ๋“ฑ์— ์ง์ ‘์ ์ธ ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ๊ด€๊ด‘๊ฐ โ€˜

Hands-on Evaluation of Visual Transformers for Object Recognition and Detection

Hands-on Evaluation of Visual Transformers for Object Recognition and Detection

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ CNN์˜ ํ•œ๊ณ„ : ์ง€์—ญ์ ์ธ ์ปจ๋ณผ๋ฃจ์…˜ ์—ฐ์‚ฐ์— ์˜์กดํ•ด ์ „์—ญ์ ์ธ ์ปจํ…์ŠคํŠธ๋ฅผ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ค์›€. ํŠนํžˆ ์ž‘์€ ๊ฐ์ฒด ๊ฒ€์ถœ์ด๋‚˜ ์˜๋ฃŒ ์˜์ƒ์ฒ˜๋Ÿผ ๋ณ‘๋ณ€์ด ๋„“๊ฒŒ ํผ์ ธ ์žˆ๋Š” ๊ฒฝ์šฐ ์„ฑ๋Šฅ ์ €ํ•˜. Transformer์˜ ์žฅ์  : ์…€ํ”„โ€‘์–ดํ…์…˜์„ ํ†ตํ•ด ์ด๋ฏธ์ง€ ์ „์ฒด ํŒจ์น˜ ๊ฐ„์˜ ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ํ•™์Šต, ์ „์—ญ ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ†ตํ•ฉ. 2. ์‹คํ—˜ ์„ค๊ณ„ | ๊ตฌ๋ถ„ | ๋ชจ๋ธ๊ตฐ | ๋Œ€ํ‘œ ๋ชจ๋ธ | ์ฃผ์š” ํŠน์ง• | | | | | | | ์ˆœ์ˆ˜ํ˜• ViT | ViTโ€‘B, ViTโ€‘L | ํŒจ์น˜ ๊ธฐ๋ฐ˜, ์ „์—ญ ์–ดํ…์…˜, ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ํ•„์š” | | ๊ณ„์ธตํ˜• ViT | PVTโ€‘M

Detection
Oogiri-Master: Benchmarking Humor Understanding via Oogiri

Oogiri-Master: Benchmarking Humor Understanding via Oogiri

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ์˜์˜ ์œ ๋จธ ์ฐฝ์˜์  ์‚ฌ๊ณ  : ๋‹จ์ˆœ ํŒจํ„ด ๋งค์นญ์„ ๋„˜์–ด ์ƒํ™ฉยท๋ฌธํ™”์  ๋งฅ๋ฝ์„ ์žฌ๊ตฌ์„ฑํ•ด์•ผ ํ•˜๋Š” ๋ณตํ•ฉ ๊ณผ์ œ๋กœ, LLM์˜ ๊ณ ์ฐจ์› ์ธ์ง€ ๋Šฅ๋ ฅ ํ‰๊ฐ€์— ์ ํ•ฉํ•˜๋‹ค. Oogiri ๋Š” ์งง์€ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ ์ฆ‰ํฅ ์œ ๋จธ ์ƒ์„ฑ ๊ฒŒ์ž„์œผ๋กœ, ํ”„๋กฌํ”„ํŠธโ€‘์‘๋‹ต ํ˜•ํƒœ๊ฐ€ ๋ช…ํ™•ํ•ด ์ž๋™ ํ‰๊ฐ€์™€ ์ธ๊ฐ„ ํ‰๊ฐ€๋ฅผ ๋™์‹œ์— ์„ค๊ณ„ํ•˜๊ธฐ ์šฉ์ดํ•˜๋‹ค. 2. ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹์˜ ํ•œ๊ณ„ | ๋ฌธ์ œ์  | ๊ธฐ์กด Oogiriโ€‘GO | Oogiriโ€‘Corpus (๋ณธ ์—ฐ๊ตฌ) | | | | | | ํ›„๋ณด ์ˆ˜ | ํ‰๊ท  โ‰ˆ 8 | ํ‰๊ท  โ‰ˆ 96 | | ์ธ๊ธฐ ํŽธํ–ฅ | ํˆฌํ‘œ ์ˆ˜ ์‹ค์‹œ๊ฐ„ ๊ณต๊ฐœ โ†’ ๊ตฐ์ง‘ ํšจ๊ณผ |

State over Tokens: Characterizing the Role of Reasoning Tokens

State over Tokens: Characterizing the Role of Reasoning Tokens

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์—์„œ ์ƒ์„ฑ๋˜๋Š” ์ถ”๋ก  ํ† ํฐ์˜ ์—ญํ• ๊ณผ ์˜๋ฏธ์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ค‘๊ฐ„ ๋‹จ๊ณ„๋กœ ์ถ”๋ก  ํ† ํฐ์„ ์ƒ์„ฑํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ํ† ํฐ๋“ค์€ ์ธ๊ฐ„์˜ ์‚ฌ๊ณ  ๊ณผ์ •์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ ์‹ค์ œ ๋ชจ๋ธ์˜ ์ž‘๋™ ๋ฐฉ์‹์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐœ๋…์  ํ”„๋ ˆ์ž„์›Œํฌ์ธ SoT(State over Tokens)๋Š” ์ถ”๋ก  ํ† ํฐ์„ ๋‹จ์ˆœํžˆ ์–ธ์–ด์  ์„ค๋ช…์œผ๋กœ ํ•ด์„ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์˜ ์ƒํƒœ ์—†๋Š” ์ƒ์„ฑ ์‚ฌ์ดํด ๊ฐ„์— ์ง€์†๋˜๋Š” ์ •๋ณด ๋งค๊ฐœ์ฒด๋กœ ์ดํ•ดํ•ด์•ผ ํ•จ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ

Comparison of different segmentation algorithms on brain volume and fractal dimension in infant brain MRIs

Comparison of different segmentation algorithms on brain volume and fractal dimension in infant brain MRIs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์˜์•„ ๋‡Œ MRI ๋Š” ๊ธ‰๊ฒฉํ•œ ๋ฏธ์—˜๋ฆฐํ™”์™€ ์กฐ์ง ๋Œ€๋น„ ๋ณ€ํ™”๋กœ ์ธํ•ด ์ž๋™ ์„ธ๋ถ„ํ™”๊ฐ€ ์–ด๋ ค์šด ๋ถ„์•ผ์ด๋‹ค. ๋ถ€ํ”ผ์™€ ํ”„๋ž™ํ„ธ ์ฐจ์›(FD) ์€ ๋‡Œ ๋ฐœ๋‹ฌ ๋ฐ ์‹ ๊ฒฝ๋ฐœ๋‹ฌ ์žฅ์•  ์—ฐ๊ตฌ์—์„œ ์ค‘์š”ํ•œ ๋ฐ”์ด์˜ค๋งˆ์ปค์ด์ง€๋งŒ, ์„ธ๋ถ„ํ™” ํ’ˆ์งˆ์— ํฌ๊ฒŒ ์ขŒ์šฐ๋œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์„ฑ์ธ ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ–ˆ์œผ๋ฉฐ, ์˜์•„์— ํŠนํ™”๋œ ์„ธ๋ถ„ํ™” ์„ฑ๋Šฅ ๋ฐ FD ์ถ”์ •์— ๋Œ€ํ•œ ์ฒด๊ณ„์  ๋น„๊ต๋Š” ๋ถ€์กฑํ–ˆ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๋ฐ ์‹คํ—˜ ์„ค๊ณ„ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ์…‹ | Baby Open Brains (BOB) โ€“ 71 ์Šค์บ”, 51 ์˜์•„, ์—ฐ๋ น 1โ€‘9๊ฐœ์›” | | ์ „

Predicting Startup-VC Fund Matches with Structural Embeddings and Temporal Investment Data

Predicting Startup-VC Fund Matches with Structural Embeddings and Temporal Investment Data

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์Šคํƒ€ํŠธ์—… ํˆฌ์ž ์˜์‚ฌ๊ฒฐ์ •์˜ ์–ด๋ ค์›€ : ๋น„์ƒ์žฅ ์Šคํƒ€ํŠธ์—…์€ ์‹ค์‹œ๊ฐ„ ์‹œ์žฅ ๊ฐ€๊ฒฉ์ด ์—†๊ณ , ์ •๋Ÿ‰์  ์ง€ํ‘œ๊ฐ€ ๋ถ€์กฑํ•ด ํˆฌ์ž ํŒ๋‹จ์— ์ •์„ฑ์  ์ •๋ณด์™€ ๋„คํŠธ์›Œํฌ ๊ด€๊ณ„๊ฐ€ ํฌ๊ฒŒ ์ž‘์šฉํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„์  : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” (โ‘  ๊ธฐ์—… ์ž„๋ฒ ๋”ฉ, โ‘ก ํˆฌ์ž ๋„คํŠธ์›Œํฌ ๊ทธ๋ž˜ํ”„, โ‘ข ํŽ€๋“œ ํฌํŠธํด๋ฆฌ์˜ค ํžˆ์Šคํ† ๋ฆฌ) ์ค‘ ํ•˜๋‚˜์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด ์„ธ ์š”์†Œ๋ฅผ ๋™์‹œ ์— ํ†ตํ•ฉํ•ด ํŽ€๋“œโ€‘์Šคํƒ€ํŠธ์—… ์Œ์„ ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋กœ ์žฌ์ •์˜ํ•จ์œผ๋กœ์จ ์‹ค๋ฌด์  ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์˜€๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๋ฐ ์ „์ฒ˜๋ฆฌ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ ์ถœ์ฒ˜ |

Data
The changing surface of the world's roads

The changing surface of the world's roads

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ธํ”„๋ผ์™€ SDGs : ๋„๋กœ๋Š” ๋ฌด์—ญยท๋ณด๊ฑดยท๊ต์œก ๋“ฑ ๊ธฐ๋ณธ ์„œ๋น„์Šค ์ œ๊ณต์˜ โ€œ๋™๋งฅโ€์ด๋ฉฐ, ๊ทธ ํ’ˆ์งˆ์€ ๊ฒฝ์ œ ์„ฑ์žฅยท์žฌ๋‚œ ํšŒ๋ณต๋ ฅ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ํ˜„์žฌ ์ „ ์„ธ๊ณ„ ๋„๋กœ ํ‘œ๋ฉด์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ยท์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์žฌํ•จ์€ ์ •์ฑ…ยทํˆฌ์ž ์˜์‚ฌ๊ฒฐ์ •์˜ ํฐ ์ œ์•ฝ์ด๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ํ•œ๊ณ„ : OSM ๋“ฑ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐ์ดํ„ฐ๋Š” ๋„๋กœ ์œ„์น˜๋Š” ํ’๋ถ€ํ•˜์ง€๋งŒ ํ‘œ๋ฉด ์†์„ฑ์€ 30โ€‘40 % ์ˆ˜์ค€์— ๋ถˆ๊ณผํ•˜๊ณ , ์‹œ๊ณ„์—ด ์—…๋ฐ์ดํŠธ๊ฐ€ ๋А๋ฆฌ๋‹ค. ๊ฑฐ๋ฆฌ ์ˆ˜์ค€ ์ด๋ฏธ์ง€(Streetโ€‘View) ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ๋Š” ์ง€์—ญ์  ์ปค๋ฒ„๋ฆฌ์ง€๋งŒ ์ „ ์„ธ๊ณ„์  ์ ์šฉ์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. 2. ๋ฐ์ดํ„ฐ ๋ฐ

No Image

CATCH: A Controllable Theme Detection Framework with Contextualized Clustering and Hierarchical Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ฃผ์ œ ํƒ์ง€ vs. ์˜๋„ ์ธ์‹ : ์˜๋„ ์ธ์‹์€ ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋ผ๋ฒจ์— ๋งคํ•‘ํ•˜๋Š” ๋ฐ˜๋ฉด, ์ฃผ์ œ ํƒ์ง€๋Š” ๋ผ๋ฒจ์ด ์‚ฌ์ „์— ์กด์žฌํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์–ด ์ƒˆ๋กœ์šด ํ† ํ”ฝ์„ ๋ฐœ๊ฒฌ ํ•˜๊ณ  ๋Œ€ํ™” ์ „๋ฐ˜์— ๊ฑธ์นœ ์ผ๊ด€์„ฑ ์„ ์œ ์ง€ํ•ด์•ผ ํ•จ. ์‹ค์ œ ์„œ๋น„์Šค ์š”๊ตฌ : ์€ํ–‰ยท๋ณดํ—˜ยท์—ฌํ–‰ ๋“ฑ ๊ณ ๊ฐ ์„œ๋น„์Šค์—์„œ๋Š” ์งง์€ ๋ฐœํ™”๊ฐ€ ๋นˆ๋ฒˆํ•˜๊ณ , ์‚ฌ์šฉ์ž์˜ ๊ฐœ์ธ ์„ ํ˜ธ(์˜ˆ: โ€œ๊ณ„์ขŒ ์กฐํšŒ๋ณด๋‹ค ์ด์ž์œจ ํ™•์ธ์„ ๋” ์„ ํ˜ธโ€)๊ฐ€ ๋ผ๋ฒจ ์„ ํƒ์— ์˜ํ–ฅ์„ ๋ฏธ์นจ. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ํฌ์†Œ์„ฑ ๊ณผ ๊ฐœ์ธํ™” ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•จ. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | |

Framework Detection
Dual-Stream Spectral Decoupling Distillation for Remote Sensing Object Detection

Dual-Stream Spectral Decoupling Distillation for Remote Sensing Object Detection

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ RS ์ด๋ฏธ์ง€์˜ ํŠน์ˆ˜์„ฑ : ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑยทํ•ญ๊ณต ์‚ฌ์ง„์€ ํ•œ ํ”ฝ์…€์— ์—ฌ๋Ÿฌ ๊ฐ์ฒด์™€ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์ด ํ˜ผ์žฌํ•ด โ€œmixed featuresโ€ ๋ฌธ์ œ๊ฐ€ ์‹ฌ๊ฐํ•˜๋‹ค. ๋˜ํ•œ ์ž‘์€ ๊ฐ์ฒด๊ฐ€ ๋ฐ€์ง‘ํ•ด ์žˆ์–ด ๊ธฐ์กด ๊ฒฝ๋Ÿ‰ํ™” ๊ธฐ๋ฒ•(๊ตฌ์กฐ ์ตœ์ ํ™”, ํ”„๋ฃจ๋‹, ์–‘์žํ™”)๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•œ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ธฐ์กด ์ฆ๋ฅ˜์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ์ฆ๋ฅ˜ ๋ฐฉ๋ฒ•์€ ๋กœ์ง“ ํ˜น์€ ๋‹จ์ผ ์Šค์ผ€์ผ ํŠน์ง• ๋งต์„ ๊ทธ๋Œ€๋กœ ๋ชจ๋ฐฉํ•œ๋‹ค. ์ด๋Š” (1) ์ฃผํŒŒ์ˆ˜(์ŠคํŽ™ํŠธ๋Ÿผ) ์ •๋ณด๋ฅผ ๋ฌด์‹œํ•ด ๊ณ ์ฃผํŒŒ ์„ธ๋ถ€ ์ •๋ณด๊ฐ€ ํฌ์„๋˜๊ณ , (2) ๊ต์‚ฌโ€‘ํ•™์ƒ ๊ฐ„ ๋ฏธ์„ธํ•œ ํŠน์ง• ์ฐจ์ด๊ฐ€ ์‹ค์ œ ์˜ˆ์ธก์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ฐ„๊ณผ

Detection
Exploring the Modular Integration of 'AI + Architecture' Pedagogy in Undergraduate Design Education: A Case Study of Architectural Design III/IV Courses at Zhejiang University

Exploring the Modular Integration of 'AI + Architecture' Pedagogy in Undergraduate Design Education: A Case Study of Architectural Design III/IV Courses at Zhejiang University

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ฐœ์ „ ์ค‘ ํ•˜๋‚˜์ธ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜์™€ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ˜์‹ ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ตœ๊ทผ ๋ช‡ ๋…„ ๋™์•ˆ, ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์˜ ๊ธ‰์†ํ•œ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ๋‹ค์–‘ํ•œ ์‚ฐ์—…๊ณผ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ AI๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์  ์ง„๋ณด๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ ํ–ฅ์ƒ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ๋„ ํฌ๊ฒŒ ๊ฐœ์„ ๋˜์—ˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜์˜ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ด ๊ฐ•์กฐ๋ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ฒ˜๋Š” ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ๋” ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์—ฌ, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์™€ ์ปดํ“จํ„ฐ ๋น„์ „ ๋“ฑ

PARAN: Persona-Augmented Review ANswering system on Food Delivery Review Dataset

PARAN: Persona-Augmented Review ANswering system on Food Delivery Review Dataset

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์‚ฌ์šฉ์ž ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ๋ถ€์žฌ : ๋ฐฐ๋‹ฌ ํ”Œ๋žซํผ์€ ์ฃผ๋ฌธยท๋ฆฌ๋ทฐ ์™ธ์— ๋ณ„๋„ ํ”„๋กœํ•„ ์ •๋ณด๋ฅผ ๊ฑฐ์˜ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๊ตฌ์กฐํ™”๋œ ์‚ฌ์šฉ์ž ํ”„๋กœํ•„์ด๋‚˜ ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ์ „์ œํ–ˆ์ง€๋งŒ, ์‹ค์ œ ์„œ๋น„์Šค์—์„œ๋Š” ์ด๋Ÿฐ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ด๋‹ค. LLM์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„ : GPTโ€‘4ยทClaude ๋“ฑ ์ตœ์‹  LLM์€ ๋›ฐ์–ด๋‚œ ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ๋ณด์ด์ง€๋งŒ, ์ปจํ…์ŠคํŠธ๊ฐ€ ๋ถ€์กฑํ•˜๋ฉด โ€œ๋ฒ”์šฉ์ ์ธโ€ ๋‹ต๋ณ€์„ ๋‚ด๋†“๋Š”๋‹ค. ์ด๋Š” ๊ณ ๊ฐ ๋งŒ์กฑ๋„์™€ ์žฌ๊ตฌ๋งค์œจ์— ๋ถ€์ •์  ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์ฐจ๋ณ„์  | | | | | |โ‘ | ๋‘ ๋‹จ๊ณ„ ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„ โ€“

Data System
Rethinking Prompt Design for Inference-time Scaling in Text-to-Visual Generation

Rethinking Prompt Design for Inference-time Scaling in Text-to-Visual Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ํ…์ŠคํŠธโ€‘ํˆฌโ€‘๋น„์ฃผ์–ผ ๋ชจ๋ธ ์€ ํ˜„์žฌ ๊ณ ํ’ˆ์งˆ ์ด๋ฏธ์ง€ยท์˜์ƒ ์ƒ์„ฑ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋ณต์žกํ•˜๊ณ  ๊ตฌ์ฒด์ ์ธ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•ด ํ•œ ๋ฒˆ์˜ ์‹œ๋„๋งŒ์œผ๋กœ๋Š” ์›ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ธฐ ์–ด๋ ต๋‹ค. ๊ธฐ์กด Inferenceโ€‘time Scaling (์ถ”๋ก  ๋‹จ๊ณ„ ์—ฐ์‚ฐ ํ™•๋Œ€) ์—ฐ๊ตฌ๋Š” ์‹œ๊ฐ์  ์ธก๋ฉด(์ƒ˜ํ”Œ๋ง ์Šคํ…, ์‹œ๋“œ ์ˆ˜, ๋‹ค์ค‘ ํ›„๋ณด ์ƒ์„ฑ)๋งŒ์„ ํ™•๋Œ€ํ–ˆ์œผ๋ฉฐ, ํ”„๋กฌํ”„ํŠธ๋Š” ๊ณ ์ •๋œ ์ฑ„ ์‚ฌ์šฉํ•œ๋‹ค. ์ €์ž๋“ค์€ โ€œํ”„๋กฌํ”„ํŠธ๊ฐ€ ๊ณ ์ •๋œ ์ƒํƒœ์—์„œ ์‹œ๊ฐ์  ์Šค์ผ€์ผ๋ง์„ ํ•˜๋ฉด, ๋™์ผํ•œ ์˜ค๋ฅ˜๊ฐ€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜ ํ’ˆ์งˆ์ด ์ •์ฒดํ•œ๋‹คโ€๋Š” ํ•ต์‹ฌ ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ PRIS

MixFlow Training: Alleviating Exposure Bias with Slowed Interpolation Mixture

MixFlow Training: Alleviating Exposure Bias with Slowed Interpolation Mixture

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋…ธ์ถœ ํŽธํ–ฅ(Exposure Bias) ์€ ํ›ˆ๋ จ ์‹œ ์‚ฌ์šฉ๋˜๋Š” โ€œ์ •๋‹ตโ€ noisy data์™€ ํ…Œ์ŠคํŠธ ์‹œ ๋ชจ๋ธ์ด ์ƒ์„ฑํ•˜๋Š” โ€œ์˜ˆ์ธกโ€ noisy data ์‚ฌ์ด์˜ ๋ถ„ํฌ ์ฐจ์ด์—์„œ ๋น„๋กฏ๋œ๋‹ค. ์ด ์ฐจ์ด๋Š” ํŠนํžˆ ๋‹ค๋‹จ๊ณ„ ์ƒ˜ํ”Œ๋ง์„ ํ•˜๋Š” ํ™•์‚ฐ ๋ชจ๋ธ์—์„œ ์˜ค๋ฅ˜๊ฐ€ ๋ˆ„์ ๋ผ ์ตœ์ข… ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ํฌ๊ฒŒ (i) ํ›ˆ๋ จ ์ž…๋ ฅ์„ ๋ณ€ํ˜• (Input Perturbation, Selfโ€‘Forcing)ํ•˜๊ฑฐ๋‚˜ (ii) ์ƒ˜ํ”Œ๋ง ๊ณผ์ •์„ ๋ณด์ • (Epsilon Scaling, Timeโ€‘Shift Sampler)ํ•˜๋Š” ๋‘ ๊ฐˆ๋ž˜๋กœ ๋‚˜๋‰œ๋‹ค.

The Trust in AI-Generated Health Advice (TAIGHA) Scale and Short Version (TAIGHA-S): Development and Validation Study

The Trust in AI-Generated Health Advice (TAIGHA) Scale and Short Version (TAIGHA-S): Development and Validation Study

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ(AI) ์ƒ์„ฑ ๊ฑด๊ฐ• ์กฐ์–ธ์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž์˜ ์‹ ๋ขฐ์™€ ๋ถˆ์‹ ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด TAIGHA ๋ฐ ๊ทธ์˜ ๋‹จ์ถ•ํ˜•์ธ TAIGHA S๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ฒ€์ฆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ๋„๊ตฌ๋“ค์€ ๊ฑด๊ฐ• ์ •๋ณด๋ฅผ ์–ป๊ธฐ ์œ„ํ•œ AI ๊ธฐ๋ฐ˜ ๋„๊ตฌ์˜ ์ฆ๊ฐ€ํ•˜๋Š” ํ™œ์šฉ๊ณผ ํ•จ๊ป˜, ์ด๋Ÿฌํ•œ ์กฐ์–ธ์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž์˜ ์‹ ๋ขฐ๋„ ํ‰๊ฐ€๋ผ๋Š” ์ค‘์š”ํ•œ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘์—ˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ์ƒ์„ฑ์  ์ธ๊ณต์ง€๋Šฅ ์ ‘๊ทผ๋ฒ•์„ ํ†ตํ•ด ์ดˆ๊ธฐ ํ•ญ๋ชฉ์„ ๊ฐœ๋ฐœํ•˜๊ณ , ์ „๋ฌธ๊ฐ€์™€ ์ผ๋ฐ˜ ์ฐธ๊ฐ€์ž๋“ค์˜ ๊ฒ€์ฆ ๊ณผ์ •์„ ๊ฑฐ์ณค์Šต๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ 28๊ฐœ์˜ ํ•ญ๋ชฉ์ด ์„ ๋ณ„๋˜์—ˆ๊ณ , ์ตœ์ข…์ ์œผ๋กœ 10๊ฐœ๋กœ ์ถ•์†Œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. TAIGHA๋Š”

Adversarially Probing Cross-Family Sound Symbolism in 27 Languages

Adversarially Probing Cross-Family Sound Symbolism in 27 Languages

์ด ์—ฐ๊ตฌ๋Š” ์†Œ๋ฆฌ ์ƒ์ง•์„ฑ์ด๋ผ๋Š” ๊ฐœ๋…์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹จ์–ด์˜ ์†Œ๋ฆฌ์™€ ์˜๋ฏธ ์‚ฌ์ด์˜ ๋น„์ž„์˜์  ์—ฐ๊ฒฐ์„ฑ์„ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ํฌ๊ธฐ ์˜๋ฏธ ์˜์—ญ์—์„œ 27๊ฐœ ์–ธ์–ด๋กœ ์ด๋ฃจ์–ด์ง„ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ, ์ด ์—ฐ๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ์–ธ์–ด ๊ฐ„์— ๊ณตํ†ต์ ์œผ๋กœ ์กด์žฌํ•˜๋Š” ์†Œ๋ฆฌ ์ƒ์ง•์„ฑ ํŒจํ„ด์„ ํ™•์ธํ•˜์˜€์Šต๋‹ˆ๋‹ค. ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ ๋‹จ์–ด์˜ ์Œ์†Œ ๊ตฌ์„ฑ์ด ํฌ๊ธฐ ์˜๋ฏธ๋ฅผ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ์–ธ์–ด ๊ฐ„ ์œ ์ „ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด์„œ๋„ ์†Œ๋ฆฌ ์ƒ์ง•์„ฑ์ด ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ ๋Œ€์  ํ•™์Šต ๊ธฐ๋ฒ•์„

An AI-Powered Autonomous Underwater System for Sea Exploration and Scientific Research

An AI-Powered Autonomous Underwater System for Sea Exploration and Scientific Research

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ•ด์–‘ ํƒ์‚ฌ์˜ ํ˜„ํ™ฉ : ์ „ ์„ธ๊ณ„ ํ•ด์–‘ ๋ฉด์ ์˜ 70 % ์ค‘ ์•ฝ 5 %๋งŒ์ด ์ถฉ๋ถ„ํžˆ ์กฐ์‚ฌ๋œ ์ƒํƒœ์ด๋ฉฐ, ๊ณ ์••ยท์ €์‹œ์•ผยท๋ถˆ๊ทœ์น™ํ•œ ์ง€ํ˜• ๋“ฑ์œผ๋กœ ์ „ํ†ต์  ์ž ์ˆ˜ยทํƒ์‚ฌ๊ฐ€ ๋น„์šฉยท์œ„ํ—˜ ์ธก๋ฉด์—์„œ ๋น„ํšจ์œจ์ ์ด๋‹ค. AIยท์ž์œจ ์‹œ์Šคํ…œ์˜ ๋“ฑ์žฅ : ์ปดํ“จํ„ฐ ๋น„์ „ยท๋จธ์‹ ๋Ÿฌ๋‹ยท์ž๋™ ๋ณด๊ณ  ๊ธฐ์ˆ ์ด ๊ฒฐํ•ฉ๋˜๋ฉด์„œ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ยท๋ถ„์„ยท์ „๋‹ฌ์ด ๊ฐ€๋Šฅํ•ด์กŒ์œผ๋ฉฐ, ์ด๋Š” ํ•ด์–‘ ๊ณผํ•™์˜ ๋ฐ์ดํ„ฐ ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•  ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง„๋‹ค. 2. ์ œ์•ˆ ์‹œ์Šคํ…œ ๊ตฌ์กฐ | ๋ชจ๋“ˆ | ์—ญํ•  | ํ•ต์‹ฌ ๊ธฐ์ˆ  | | | | | | ๊ฐ์ฒด ํƒ์ง€ | ์ˆ˜์ค‘ ์ด๋ฏธ์ง€์—์„œ ์–ด๋ฅ˜ยท์‚ฐํ˜ธยท์ธ๊ณต ๊ตฌ์กฐ๋ฌผ ๋“ฑ ์‹ค์‹œ๊ฐ„ ์‹๋ณ„

System
Web World Models

Web World Models

1. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | โ‘  | Web World Model ๊ฐœ๋… ์ •์˜ โ€“ ๋ฌผ๋ฆฌ(์ฝ”๋“œ)์™€ ์ƒ์ƒ(LLM) ๋ ˆ์ด์–ด๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ์›น ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ โ€œlatent stateโ€์˜ ๊ณ„์•ฝ์œผ๋กœ ํ™œ์šฉ | ๊ธฐ์กด โ€œ๊ณ ์ • ์›นโ€ โ†” โ€œ์™„์ „ ์ƒ์„ฑโ€ ์–‘๊ทน ์‚ฌ์ด์— ์‹ค์šฉ์  ์ค‘๊ฐ„ ์ง€์  ์ œ๊ณต | | โ‘ก | ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ ๋ฐ๋ชจ ๊ตฌํ˜„ โ€“ ์‹ค์ œ ์ง€๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฌดํ•œ ์•„ํ‹€๋ผ์Šค, ๊ฐ€์ƒ ์€ํ•˜, ๋ฐฑ๊ณผ์‚ฌ์ „ยท์„œ์‚ฌ ์„ธ๊ณ„, ์•Œ์ผ€๋ฏธยท์นด๋“œ ๋กœ๊ทธ๋ผ์ดํฌ ๋“ฑ 6๊ฐ€์ง€ ์‚ฌ๋ก€ | WWM์ด ํŠน์ • ๋ถ„์•ผ์— ๊ตญํ•œ๋˜์ง€ ์•Š์œผ๋ฉฐ, ์‹ค์„ธ๊ณ„ยท๊ฐ€์ƒ์„ธ๊ณ„ ๋ชจ๋‘์— ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ์ž…์ฆ

Computer Science Artificial Intelligence Model
Multi-Agent Coordinated Rename Refactoring

Multi-Agent Coordinated Rename Refactoring

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ˜‘์—…์‹ ์ด๋ฆ„ ๋ฐ”๊พธ๊ธฐ ๋Š” ํ•˜๋‚˜์˜ ๋ฆฌ๋„ค์ž„์ด ์—ฌ๋Ÿฌ ์—ฐ๊ด€ ์‹๋ณ„์ž์— ํŒŒ๊ธ‰ ํšจ๊ณผ๋ฅผ ๋ฏธ์น˜๋Š” ์ž‘์—…์œผ๋กœ, ํ‰๊ท  34๋ถ„ยท5๊ฐœ์˜ ๋ฆฌ๋„ค์ž„ยท4๊ฐœ์˜ ํŒŒ์ผ์— ๊ฑธ์ณ ์ˆ˜ํ–‰๋œ๋‹ค. ๊ธฐ์กด ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฐ˜ ๋„๊ตฌ(RENAS, Renameโ€‘Expander)๋Š” ๊ฑฐ์ง“ ์–‘์„ฑ ์ด ๊ณผ๋‹คํ•˜๊ณ , ์ˆœ์ˆ˜ LLM์€ ์ปจํ…์ŠคํŠธ ์ œํ•œยท์•ˆ์ „์„ฑ ๋ณด์žฅ ๋ถ€์กฑ ์œผ๋กœ ์‹ค๋ฌด ์ ์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๊ฐœ๋ฐœ์ž ์˜๋„ ์Šค์ฝ”ํ”„ ํžŒํŠธ : ์ตœ์ดˆ ๋ฆฌ๋„ค์ž„์„ โ€œ์Šค์ฝ”ํ”„ ์ถ”๋ก โ€์˜ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„, ์ธ๊ฐ„โ€‘์—์ด์ „ํŠธยทIDE ์‚ผ๊ฐ๊ด€๊ณ„์—์„œ ์˜๋„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค. ๋ฉ€ํ‹ฐโ€‘์—์ด์ „ํŠธ ํ˜‘์—… : 1.

Software Engineering Computer Science
Robust Uncertainty Quantification for Factual Generation of Large Language Models

Robust Uncertainty Quantification for Factual Generation of Large Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ™˜๊ฐ ๋ฌธ์ œ์˜ ์‹ฌ๊ฐ์„ฑ : LLM์ด ์‚ฌ์‹ค๊ณผ ๋‹ค๋ฅธ ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋ฉด ์‚ฌ์šฉ์ž ์‹ ๋ขฐ๊ฐ€ ๋ฌด๋„ˆ์ง€๊ณ , ํŠนํžˆ ์˜๋ฃŒยท๋ฒ•๋ฅ ยท๊ต์œก ๋“ฑ ๊ณ ์‹ ๋ขฐ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ๋ถ„์•ผ์—์„œ ์น˜๋ช…์  ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ๋ฐฉ๋ฒ•์ด ์ „์ฒด ํ…์ŠคํŠธ ์ˆ˜์ค€ ํ˜น์€ ๋‹จ์ผ ์‚ฌ์‹ค ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๋‹ค์ค‘ ์‚ฌ์‹ค์ด ์–ฝํžŒ ๋ณตํ•ฉ ๋ฌธ์žฅ์—์„œ๋Š” ๋ถˆํ™•์‹ค์„ฑ ์ ์ˆ˜๊ฐ€ ๋‚ฎ๊ฒŒ ๋‚˜์˜ค๋ฉด์„œ๋„ ์‹ค์ œ ์˜ค๋ฅ˜๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•จ. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | |โ‘ | ํ•จ์ • ์งˆ๋ฌธ ๊ธฐ๋ฐ˜ ์‹œ๋‚˜๋ฆฌ์˜ค ์„ค๊ณ„ ๋ฐ MulFactTrap ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• (7

Model Computer Science NLP
Statistically-Guided Dual-Domain Meta-Learning with Adaptive Multi-Prototype Aggregation for Distributed Fiber Optic Sensing

Statistically-Guided Dual-Domain Meta-Learning with Adaptive Multi-Prototype Aggregation for Distributed Fiber Optic Sensing

๋ณธ ๋…ผ๋ฌธ์€ ๋ถ„์‚ฐ ๊ด‘์„ฌ์œ  ์„ผ์‹ฑ(DFOS) ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•œ ์žฅ๊ฑฐ๋ฆฌ ์ฃผ๋ณ€ ๋ณด์•ˆ ์‹œ์Šคํ…œ์˜ ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด, ๋„๋ฉ”์ธ ๊ฐ„ ์ฐจ์ด์™€ ๋ผ๋ฒจ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฉ”ํƒ€๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ์ธ DUPLE์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ๋„๋ฉ”์ธ์—์„œ์˜ ํ•™์Šต์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ์ƒˆ๋กœ์šด ํ˜„์žฅ์— ์ ์šฉํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋„๋ฉ”์ธ ์ด๋™(domain shift) ๋ฌธ์ œ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์ง€ ๋ชปํ–ˆ๋‹ค. ํŠนํžˆ DFOS ์‹ ํ˜ธ๋Š” ์‹œ๊ฐ„ ์˜์—ญ๊ณผ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ํŠน์„ฑ์„ ๋ณด์ด๋ฉฐ, ๊ฐ๊ฐ์˜ ๋„๋ฉ”์ธ์ด ๊ฐ–๋Š” ์žก์Œ ํŠน์„ฑ์ด๋‚˜ ์‹ ํ˜ธ ์™œ๊ณก ์ •๋„๊ฐ€ ํ˜„์žฅ๋งˆ๋‹ค ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง„๋‹ค.

Learning
Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics

Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹จ์ผ์„ธํฌ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ ๊ฐ€ ๊ธ‰์ฆํ•˜๋ฉด์„œ, ์„œ๋กœ ๋‹ค๋ฅธ ์‹คํ—˜ยทํ”Œ๋žซํผ ๊ฐ„ ๋ฐฐ์น˜ ํšจ๊ณผ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ณ , ์ƒ๋ฌผํ•™์  ์‹ ํ˜ธ๋ฅผ ๋ณด์กดํ•˜๋Š” ํ†ตํ•ฉ ๋ฐฉ๋ฒ•์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํ†ตํ•ฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ž์ฒด์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„(์ •๊ทœํ™”ยท์ฐจ์› ์ถ•์†Œ) ๊ฐ€ ๊ฒฐ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•œ ์‚ฌ๋ก€๋Š” ๋ถ€์กฑํ–ˆ๋‹ค. 2. ์—ฐ๊ตฌ ์„ค๊ณ„ ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ํ›„๋ณด ๋ฐฉ๋ฒ• (์ˆ˜) | ์ฃผ์š” ํŠน์ง• | | | | | | ์ •๊ทœํ™” | Logโ€‘Norm, CPM, SCTransform, TFโ€‘IDF, Linnorm, Scran, TMM (7) | ์Šค์ผ€์ผ

Quantitative Biology
Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜„์‹ค์  ๋ฌธ์ œ : ์ž์œจ์ฃผํ–‰, ์Šค๋งˆํŠธ ์‹œํ‹ฐ ๋“ฑ ์•ˆ์ „โ€‘์ค‘์š” ๋ถ„์•ผ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์ž์—ฐ ํ˜„์ƒ(์•ˆ๊ฐœ, ๋ˆˆ, ๋จผ์ง€ ๋“ฑ)์œผ๋กœ ์ธํ•œ ์ด๋ฏธ์ง€ ์†์ƒ์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ๋ชจ๋ธ ์••์ถ•์˜ ๋”œ๋ ˆ๋งˆ : Edge AIยทTinyML ํ™˜๊ฒฝ์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌยท์—ฐ์‚ฐ๋Ÿ‰ ์ ˆ๊ฐ์ด ํ•„์ˆ˜์ง€๋งŒ, ์••์ถ•์ด ๊ฒฌ๊ณ ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ฌด์‹œํ•˜๋ฉด ์‹œ์Šคํ…œ ์‹ ๋ขฐ์„ฑ์ด ํฌ๊ฒŒ ์ €ํ•˜๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | | | | |โ‘ | ์–‘์žํ™”, ํ”„๋ฃจ๋‹, ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ๊ฐœ๋ณ„ยท์กฐํ•ฉ ์ ์šฉํ•œ 3๊ฐ€์ง€ CNN(ResNetโ€‘50, VGGโ€‘19, MobileNetV2) ์ „๋ฐ˜์—

Computer Science Computer Vision
Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ RLโ€‘LLM ์„ฑ๊ณต ์‚ฌ๋ก€ ๊ฐ€ ์ˆ˜ํ•™ยท์ฝ”๋“œ ์ƒ์„ฑ ๋“ฑ ๋ช…ํ™•ํ•œ ๋ณด์ƒ ์‹ ํ˜ธ๊ฐ€ ์žˆ๋Š” ๋ถ„์•ผ์—์„œ ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์ง€๋งŒ, ์˜๋ฃŒ ์˜์ƒ์ฒ˜๋Ÿผ ๋ผ๋ฒจ์ด ๋‹ค์ค‘์ด๊ณ  ๋ถˆํ™•์‹ค์„ฑ์ด ํฐ ์˜์—ญ์—์„œ๋Š” ๊ทธ ํšจ๊ณผ๊ฐ€ ์•„์ง ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ๊ธฐ์กด ๊ณ ์„ฑ๋Šฅ ๋ชจ๋ธ(NVโ€‘Reasonโ€‘CXRโ€‘3B)์€ ์ˆ˜์‹ญ์–ต ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ๋ฐฉ๋Œ€ํ•œ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐยทGPU ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํ™œ์šฉํ–ˆ์œผ๋ฉฐ, ์‹ค์ œ ์ž„์ƒ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์˜๋ฌธ์ด ๋‚จ๋Š”๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Lowโ€‘Resource R1โ€‘style ํ•™์Šต : 2k SFT + 1k RL, A1

Computer Science Learning Artificial Intelligence

< Category Statistics (Total: 5012) >

Electrical Engineering and Systems Science
102
General
4156
General Relativity
2
HEP-EX
3
HEP-PH
1
HEP-TH
3
MATH-PH
6
Nonlinear Sciences
1
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut