KOINEU Logo
Ponomarenko dynamo sustained by a free swirling jet

Ponomarenko dynamo sustained by a free swirling jet

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉํ‘œ ํฌ๋…ธ๋งˆ๋ Œ์ฝ” ๋‹ค์ด๋„ˆ๋ชจ ๋Š” ๋‚˜์„ ํ˜•(ํ—ฌ๋ฆฌ์ปฌ) ํ๋ฆ„์ด ๋น„๊ต์  ๋‚ฎ์€ ์œ ์†์—์„œ๋„ ์ž๊ธฐ์žฅ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์‹คํ—˜์‹ค ๊ตฌํ˜„์— ๋งค๋ ฅ์ ์ด๋‹ค. ๊ธฐ์กด ๋ ˆ์ด๊ฐ€(Riga)์™€ ์นด๋ฅผ์Šค๋ฃจ์—(Karlsruhe) ์‹คํ—˜์€ ๋‚ด๋ถ€ ๋ฒฝ์ด๋‚˜ ๊ณ ์ • ๊ตฌ์กฐ๋ฌผ์— ์˜ํ•ด ํ๋ฆ„์ด ๊ฐ•์ œ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์ž๊ธฐ์žฅ ์œ ๋™ ๋น„์„ ํ˜• ์ƒํ˜ธ์ž‘์šฉ์„ ์ œํ•œํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‚ด๋ถ€ ๊ตฌ์กฐ๋ฌผ์ด ์ „ํ˜€ ์—†๋Š” ์›ํ†ตํ˜• ์šฉ๊ธฐ ์—์„œ ์ž„ํŽ ๋Ÿฌ(๋˜๋Š” ํšŒ์ „ ์˜๊ตฌ์ž์„)๋งŒ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ์ž์œ ๋กœ์šด ์†Œ์šฉ๋Œ์ด ์ œํŠธ ํ๋ฆ„์ด ๋‹ค์ด๋„ˆ๋ชจ๋ฅผ ๊ตฌ๋™ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ฒ€์ฆํ•˜๊ณ , ๊ธฐ์กด ์„ค๊ณ„๋ณด๋‹ค ๋‚ฎ์€ ์ž„๊ณ„ ๋งˆ๊ทธ๋„คํ‹ฑ ๋ ˆ์ด๋†€์ฆˆ์ˆ˜(Rm)

Physics
No Image

PORTool: Tool-Use LLM Training with Rewarded Tree

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์  ์ •์  ๋ฐ์ดํ„ฐ์…‹ ๊ธฐ๋ฐ˜ ํˆด ์‚ฌ์šฉ LLM ์€ ํˆด ํ˜ธ์ถœ ์‹œํ€€์Šค๋ฅผ ํ•˜๋‚˜์˜ โ€œ์ •๋‹ตโ€ ํŒจํ„ด์œผ๋กœ ํ•™์Šตํ•œ๋‹ค. ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ํˆด ๊ฐ€์šฉ์„ฑ, ์‘๋‹ต ์ง€์—ฐ, ์ƒˆ๋กœ์šด ํˆด ์ถ”๊ฐ€ ๋“ฑ ๋™์ ์ธ ์š”์†Œ๊ฐ€ ์กด์žฌํ•ด, ๋ชจ๋ธ์ด ๋‹ค์–‘ํ•œ ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•˜๊ณ  ์ ์‘ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ํƒ์ƒ‰(exploration) ๋ถ€์กฑ ๊ณผ ๋‹ค์–‘ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์‹œ๋„ํ•˜์ง€ ๋ชปํ•จ ์ด ์ฃผ์š” ํ•œ๊ณ„์ ์ด๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ๋ณด์ƒ ํŠธ๋ฆฌ ๊ตฌ์กฐ | ์š”์†Œ | ์„ค๋ช… | ์žฅ์  | | | | | | ๋‹ค์ค‘ ๋กค์•„์›ƒ ์ƒ์„ฑ | ํ•˜๋‚˜์˜ ์งˆ์˜์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ ํ›„๋ณด ๊ฒฝ๋กœ๋ฅผ ๋™์‹œ์— ์ƒ์„ฑ | ๋‹ค์–‘ํ•œ ํ•ด

No Image

POSESTITCH-SLT: Linguistically Inspired Pose-Stitching for End-to-End Sign Language Translation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ : ์ˆ˜ํ™”๋Š” ์˜์ƒยทํฌ์ฆˆ ์‹œํ€€์Šค๋กœ ํ‘œํ˜„๋˜์ง€๋งŒ, ๋ฌธ์žฅ ์ˆ˜์ค€์œผ๋กœ ์ •๋ ฌ๋œ ๋Œ€๊ทœ๋ชจ ์ฝ”ํผ์Šค๊ฐ€ ๊ฑฐ์˜ ์—†์–ด ์ง€๋„ ํ•™์Šต์ด ์–ด๋ ค์›€. ๊ธฐ์กด ์ ‘๊ทผ : ๊ธ€๋กœ์Šค(์ˆ˜ํ™”์˜ ์ค‘๊ฐ„ ํ‘œ๊ธฐ) ์ถ”์ถœ ํ›„ ํ…์ŠคํŠธ ๋ฒˆ์—ญ, ํ˜น์€ ํฌ์ฆˆ ์ง์ ‘ ๋ฒˆ์—ญ ๋“ฑ ๋‹ค์–‘ํ•œ ํŒŒ์ดํ”„๋ผ์ธ์ด ์ œ์•ˆ๋์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„ ๋ณต์žกํ•œ ์ „์ฒ˜๋ฆฌ์™€ ๋†’์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ์š”๊ตฌํ•จ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ POSESTITCHโ€‘SLT ์–ธ์–ด ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ์‚ฌ์ „ํ•™์Šต : ์ž์—ฐ์–ด ๋ฌธ์žฅ์„ ๋ฏธ๋ฆฌ ์ •์˜๋œ โ€œํ…œํ”Œ๋ฆฟโ€(์˜ˆ: โ€œ์‚ฌ๋žŒ์ด X๋ฅผ ํ•˜๊ณ  ์žˆ๋‹คโ€)์— ๋งž์ถฐ ๋ณ€ํ˜•ํ•˜๊ณ , ํ•ด๋‹น ํ…œํ”Œ๋ฆฟ์— ๋Œ€์‘ํ•˜๋Š” ํฌ์ฆˆ ์‹œํ€€์Šค๋ฅผ

No Image

PRISM: Photonics-Informed Inverse Lithography for Manufacturable Inverse-Designed Photonic Integrated Circuits

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์—ญ์„ค๊ณ„์™€ ์ œ์กฐ ๊ฒฉ์ฐจ : ์—ญ์„ค๊ณ„๋Š” ์ „์ž๊ธฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง์ ‘ ๋ชฉํ‘œ ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉํ•ด ๋น„์ •ํ˜• ๊ตฌ์กฐ๋ฅผ ํƒ์ƒ‰ํ•˜์ง€๋งŒ, ์„œ๋ธŒ์›จ์ด๋ธŒ ์ˆ˜์ค€์˜ ๋ฏธ์„ธ ํŒจํ„ด์€ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ, ์‹๊ฐ, CMP ๋“ฑ ๋‹ค๋‹จ๊ณ„ ๊ณต์ •์—์„œ ๋น„์„ ํ˜• ์™œ๊ณก์„ ๊ฒช๋Š”๋‹ค. ํŠนํžˆ DUV(193 nm) ๊ณต์ •์—์„œ๋Š” ๋ผ์šด๋”ฉยท๋ธ”๋Ÿฌยท๋ธŒ๋ฆฌ์ง•์ด ์‹ฌํ•ด ์ˆ˜์œจ์ด ๊ฑฐ์˜ 0์— ์ˆ˜๋ ดํ•œ๋‹ค. ๊ธฐ์กด DFM(Designโ€‘forโ€‘Manufacturing) ์ ‘๊ทผ์˜ ํ•œ๊ณ„ : ์ „์ž ๋ถ„์•ผ์˜ OPC/ILT๋Š” โ€œ๊ธฐํ•˜ํ•™์  ์œ ์‚ฌ์„ฑโ€์„ ์ตœ์ ํ™” ๋ชฉํ‘œ๋กœ ์‚ผ์ง€๋งŒ, ํฌํ† ๋‹‰์—์„œ๋Š” ๊ด‘ํ•™ ์‘๋‹ต ์ด ๋น„๊ตญ์†Œ์ (์ „ํŒŒยท๊ฐ„์„ญยท๊ณต๋ช…)์ด๋ฉฐ, ์ž‘์€

Physics
Quantum Cellular Automata: The Group, the Space, and the Spectrum

Quantum Cellular Automata: The Group, the Space, and the Spectrum

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์–‘์ž ์…€๋ฃฐ๋Ÿฌ ์ž๋™ํ™”(QCA)๋Š” ์–‘์ž ๋‹ค์ฒด ๋ฌผ๋ฆฌ์™€ ์–‘์ž ์ •๋ณด ์ด๋ก ์—์„œ โ€œ๊ตญ์†Œ์„ฑ์„ ๋ณด์กดํ•˜๋Š” ์ž๋™๋™ํ˜•โ€์ด๋ผ๋Š” ํ˜•ํƒœ๋กœ ๋“ฑ์žฅํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๋ณต์†Œ์ˆ˜ ์ฒด (mathbb{C})์™€ (C^{ }) ๋Œ€์ˆ˜ ๊ตฌ์กฐ์— ๊ตญํ•œ๋˜์—ˆ์œผ๋ฉฐ, 1์ฐจ์›์—์„œ์˜ ์™„์ „ ๋ถ„๋ฅ˜๊ฐ€ ์•Œ๋ ค์ ธ ์žˆ๋Š” ์ •๋„์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ๋ฌผ๋ฆฌํ•™ยท์ˆ˜ํ•™ ๊ต๋ฅ˜์—์„œ QCA์™€ ๋™ํ˜•๋ก (ํ˜ธ๋ชจํ† ํ”ผ ์ด๋ก ) , ๊ณ ์ฐจ ์นดํ…Œ๊ณ ๋ฆฌ , ์œ„์ƒ์žฅ ์ด๋ก  ์‚ฌ์ด์˜ ๊นŠ์€ ์—ฐ๊ด€์„ฑ์ด ์ œ์‹œ๋˜๋ฉด์„œ, ๋ณด๋‹ค ์ผ๋ฐ˜์ ์ธ ๊ธฐ๋ฐ˜(๊ฐ€ํ™˜ํ™˜) ์œ„์—์„œ์˜ ์ด๋ก  ๊ตฌ์ถ•์ด ์š”๊ตฌ๋˜์—ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด์™€ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋‚ด

Mathematics
Randomized Zero Forcing

Randomized Zero Forcing

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์ฐจ๋ณ„์„ฑ ์ œ๋กœ ํฌ์‹ฑ ์€ ์›๋ž˜ ํ–‰๋ ฌ ์ตœ์†Œ๊ณ„์ˆ˜ ์™€ ์–‘์ž ์ œ์–ด ๋ฌธ์ œ์—์„œ ๋“ฑ์žฅํ–ˆ์œผ๋ฉฐ, ๊ฒฐ์ •๋ก ์  ๊ทœ์น™์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ํ™•๋ฅ ์  ์ œ๋กœ ํฌ์‹ฑ(PZF) ๋Š” ๋ฌด๋ฐฉํ–ฅ ๊ทธ๋ž˜ํ”„์— ์ ์šฉ๋ผ ์ „ํŒŒ๊ฐ€ ํ™•๋ฅ  1๋กœ ๋ณด์žฅ๋˜์ง€๋งŒ, ์ „ํŒŒ ์‹œ๊ฐ„๋งŒ์ด ์˜๋ฏธ ์žˆ๋‹ค. RZF ๋Š” ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ํ™•์žฅ์„ ๋„์ž…ํ•œ๋‹ค. 1. ์œ ํ–ฅ์„ฑ : ์ •์ ์ด ํŒŒ๋ž€์ƒ‰์ด ๋˜๋ ค๋ฉด ์ž…๋ ฅ(์ธ ์ด์›ƒ) ์ด ํŒŒ๋ž€์ƒ‰์ด์–ด์•ผ ํ•˜๋ฏ€๋กœ, ์ „ํŒŒ๋Š” ์ „๋‹ฌ ๊ฒฝ๋กœ ์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค. 2. ๊ฐ€์ค‘์น˜ : ๊ฐ ์ž…๊ตฌ ์—ฃ์ง€์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์ด์šฉํ•ด โ€œ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์ž…๋ ฅ์„ ์ด๋ฏธ ํŒŒ๋ž€ ์ •์ ์ด ์ œ๊ณตํ•˜๋Š”๊ฐ€โ€๋ฅผ ํ™•๋ฅ ์— ๋ฐ˜์˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ๋ณ„์ ์€ ์‹ค

Mathematics
No Image

Rate-Distortion Optimization for Ensembles of Non-Reference Metrics

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ UGC ํŠน์„ฑ : ํ”ํžˆ ์žก์Œยท๋ธ”๋Ÿฌยท์••์ถ• ์ž”์—ฌ๋ฌผ ๋“ฑ์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด ์ „์ฐธ์กฐ ๋ฉ”ํŠธ๋ฆญ์ด โ€œ์™„๋ฒฝํ•œโ€ ํ’ˆ์งˆ์„ ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ์ด ์˜คํžˆ๋ ค ๋น„ํšจ์œจ์ . NRM ํ™œ์šฉ์˜ ์–ด๋ ค์›€ : NRM์€ ์Šค์นผ๋ผ ๊ฐ’์„ ์ถœ๋ ฅํ•˜๋ฏ€๋กœ ๋ธ”๋กโ€‘๋‹จ์œ„ ๋น„ํŠธ ํ• ๋‹น์— ๋ฐ”๋กœ ํ™œ์šฉํ•˜๊ธฐ ์–ด๋ ค์šฐ๋ฉฐ, ํŠนํžˆ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ NRM์€ ํ‰๊ฐ€ยท์—ญ์ „ํŒŒ ๋น„์šฉ์ด ๋†’๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์•™์ƒ๋ธ” LNRM : ์—ฌ๋Ÿฌ NRM์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๊ฐ€์ค‘ ํ‰๊ท ํ•˜์—ฌ ํ•˜๋‚˜์˜ ์„ ํ˜•ํ™” ์†์‹ค๋กœ ๊ฒฐํ•ฉ | ํŠน์ • NRM์— ํŽธํ–ฅ๋˜์ง€ ์•Š์€, ๋ณด๋‹ค ์ผ๋ฐ˜์ ์ธ ํ’ˆ์งˆ ํ–ฅ์ƒ ์œ ๋„

Image Processing Electrical Engineering and Systems Science
Real-time Range-Angle Estimation and Tag Localization for Multi-static Backscatter Systems

Real-time Range-Angle Estimation and Tag Localization for Multi-static Backscatter Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Ambient IoT์™€ ๋ฐฑ์Šค์บํ„ฐ๋ง : ์ดˆ์ €์ „๋ ฅ ๋””๋ฐ”์ด์Šค๊ฐ€ ๋Œ€๊ทœ๋ชจ๋กœ ๋ฐฐ์น˜๋˜๋Š” 6G ํ™˜๊ฒฝ์—์„œ ์ „๋ ฅ ๊ณต๊ธ‰์ด ์–ด๋ ค์šด ์„ผ์„œยทํƒœ๊ทธ์— ๋ฐฑ์Šค์บํ„ฐ๋ง์€ ํ•„์ˆ˜ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ๋‹จ์ผ์ •์ (monostatic) ์‹œ์Šคํ…œ์€ ๊ฑฐ๋ฆฌยท๋ฒ”์œ„๊ฐ€ ์ œํ•œ์ ์ด๋ฉฐ ํ™•์žฅ์„ฑ์ด ๋‚ฎ๋‹ค. ๋‹ค์ค‘์ •์ (Multiโ€‘static) ๊ตฌ์กฐ์˜ ์žฅ์  : ์—ฌ๋Ÿฌ ์†ก์‹ ๊ธฐ(TX)์™€ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ์ˆ˜์‹ ๊ธฐ(RX)๋ฅผ ํ™œ์šฉํ•ด ์ง์ ‘ ๊ฒฝ๋กœ์™€ ๋ฐ˜์‚ฌ ๊ฒฝ๋กœ๋ฅผ ๋™์‹œ์— ๊ด€์ธกํ•จ์œผ๋กœ์จ, ์™ธ๋ถ€ ๋™๊ธฐํ™” ์—†์ด TDoA ๊ธฐ๋ฐ˜ ๊ฑฐ๋ฆฌ ์ธก์ •๊ณผ AoA ์ถ”์ •์ด ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ๊ธฐ์กด ์—ฐ๊ตฌ์™€

System Electrical Engineering and Systems Science
No Image

Reevaluating Self-Consistency Scaling in Multi-Agent Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ์ž๊ธฐโ€‘์ผ๊ด€์„ฑ ์€ ๋‹ค์ˆ˜์˜ CoT ์ถ”๋ก  ๊ฒฐ๊ณผ๋ฅผ ํˆฌํ‘œ(voting)ํ•˜๊ฑฐ๋‚˜ ํ‰๊ท ํ™”ํ•ด ์ตœ์ข… ๋‹ต์„ ๋„์ถœํ•จ์œผ๋กœ์จ LLM์˜ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ(2022โ€‘2023)์—์„œ๋Š” GPTโ€‘3 ยท PaLM ๋“ฑ ๊ตฌํ˜• ๋ชจ๋ธ์—์„œ โ€œ์ƒ˜ํ”Œ๋ง ์ˆ˜ โ†‘ โ†’ ์„ฑ๋Šฅ โ†‘โ€๋ผ๋Š” ๋‹จ์ˆœํ•œ ๊ด€๊ณ„๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ์ง€๋งŒ, ์ˆ˜ํ™• ์ฒด๊ฐ(diminishing returns) ํ˜„์ƒ์ด ์กด์žฌํ•จ์„ ๋ณด๊ณ ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ Gemini 2.5 (2024๋…„ ์ตœ์‹  ๋ชจ๋ธ)์™€ HotpotQA , Mathโ€‘500 ์ด๋ผ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ๋ณตํ•ฉ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ด์šฉํ•ด, ํ˜„๋Œ€ ๋ชจ๋ธ์—์„œ๋„ ๋™

System
Regularity and Pathwise bounds for probabilistic solutions of PDEs

Regularity and Pathwise bounds for probabilistic solutions of PDEs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ™•๋ฅ ์  PDE ํ•ด์„์—์„œ๋Š” ์•™์ƒ๋ธ” ํ‰๊ท  ํ˜น์€ ํ™•๋ฅ ์  ๊ธฐ๋Œ€๊ฐ’ ํ˜•ํƒœ์˜ ์ถ”์ •์ด ์ฃผ๋ฅผ ์ด๋ฃฌ๋‹ค. ์ด๋Š” ์ „์—ญ ์กด์žฌ์™€ ์œ ์ผ์„ฑ์„ ๋ณด์ด๋Š” ๋ฐ๋Š” ์ถฉ๋ถ„ํ•˜์ง€๋งŒ, ์‹ค์ œ ํ•˜๋‚˜์˜ ์‹คํ˜„(realization) ๊ถค์ ์ด ์–ด๋–ป๊ฒŒ ์„ฑ์žฅยท์ง„ํ™”ํ•˜๋Š”์ง€๋Š” ์•Œ ์ˆ˜ ์—†๋‹ค. ๊ฒฝ๋กœ๋ณ„ ์ƒํ•œ์€ ๊ธ€๋กœ๋ฒŒํ™”(globalization) ์ „๋žต , ์žฅ๊ธฐ ๋™์—ญํ•™ (์˜ˆ: ์•ฝํ•œ ๋‚œ๋ฅ˜ ๊ฐ€์„ค, Sobolev ๋…ธ๋ฆ„์˜ ๋กœ๊ทธยท๋‹คํ•ญ ์„ฑ์žฅ) ๋“ฑ์— ํ•„์ˆ˜์ ์ด๋‹ค. Bourgain(1996)์˜ ๋ฐฉ๋ฒ•์€ ์ง€์—ญ์  wellโ€‘posedness ๊ณผ ์‹œ๊ฐ„โ€‘ํฌ๊ธฐ ๋‘ ๋ฐฐํ™” ๋ฅผ ์ด์šฉํ•ด Gaussian ์•™์ƒ๋ธ”์„ ๋กœ๊ทธ

Mathematics
Rethinking Diffusion Models with Symmetries through Canonicalization with Applications to Molecular Graph Generation

Rethinking Diffusion Models with Symmetries through Canonicalization with Applications to Molecular Graph Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋Œ€์นญ์ด ์ค‘์š”ํ•œ ๋„๋ฉ”์ธ : ๋ถ„์ž ๊ตฌ์กฐ๋Š” ์ˆœ์—ด($S n$)๊ณผ ์œ ํด๋ฆฌ๋“œ ๋ณ€ํ™˜($SE(3)$)์— ์™„์ „ ๋ถˆ๋ณ€์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋Œ€์นญ์„ ์กด์ค‘ํ•ด์•ผ ํ•œ๋‹ค. ์ „ํ†ต์  ์ ‘๊ทผ : equivariant denoiserยท์ธvariant prior ๋ฅผ ์„ค๊ณ„ํ•ด ๋ชจ๋ธ ์ž์ฒด๊ฐ€ ๋Œ€์นญ์„ ๋งŒ์กฑํ•˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Š” ๋ณต์žกํ•œ ํ…์„œ ์—ฐ์‚ฐยท๊ณ ๋น„์šฉ ๋ ˆ์ด์–ด ๋ฅผ ์š”๊ตฌํ•˜๊ณ , ๋…ธ์ด์ฆˆ ๋‹จ๊ณ„์—์„œ ๋‹ค์ค‘ ๊ถค๋„(orbit) ํ˜ผํ•ฉ ์œผ๋กœ ์ธํ•ด ํ•™์Šต์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๋Š” ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ์ •๊ทœํ™”(Canonicalization) ์ •๊ทœํ™” ์ •

Machine Learning Computer Science Model
Riemannian foliations on CROSSes

Riemannian foliations on CROSSes

| ๊ตฌ๋ถ„ | ํ•ต์‹ฌ ๋‚ด์šฉ | ๋ฐฉ๋ฒ•๋ก ยท์ฆ๋ช… ์•„์ด๋””์–ด | ์˜์˜ยท๋น„๊ต | | | | | | | 1. ๋ฐฐ๊ฒฝ | ๋ฆฌ๋งŒ ํฌ์—ฝ์€ ๋ฆฌ๋งŒ ๋‹ค์–‘์ฒด ์œ„์—์„œ ๊ฐ ์ ๋งˆ๋‹ค ๋“ฑ๊ฑฐ๋ฆฌ(geodesic) ์žŽ์„ ๊ฐ–๋Š” ๋ถ„ํฌ์ด๋ฉฐ, ๊ตฌํ˜• (S^{n}) ์— ๋Œ€ํ•œ ์™„์ „ ๋ถ„๋ฅ˜๋Š” 2016๋…„

Mathematics
ROSA: Roundabout Optimized Speed Advisory with Multi-Agent Trajectory Prediction in Multimodal Traffic

ROSA: Roundabout Optimized Speed Advisory with Multi-Agent Trajectory Prediction in Multimodal Traffic

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ผ์šด๋“œ์–ด๋ฐ”์›ƒ ์€ ๊ต์ฐจ๋กœ๋ณด๋‹ค ๋ณต์žกํ•œ ํ๋ฆ„๊ณผ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐ€์ง€๋ฉฐ, ํŠนํžˆ ๋‹ค์ค‘๋ชจ๋“œ ๊ตํ†ต(์ฐจ๋Ÿ‰ + ๋ณดํ–‰์žยท์ž์ „๊ฑฐ) ์ƒํ™ฉ์—์„œ ์ž๋™์šด์ „ ์‹œ์Šคํ…œ(AD)์˜ ๋ถˆํ™•์‹ค์„ฑ์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์™„์ „ ์ž๋™ํ™”๋œ ์ฐจ๋Ÿ‰๊ตฐ ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด VRU๋ฅผ ์ „ํ˜€ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ์ •์  ์‹ ํ˜ธยท์šฐ์„ ์ˆœ์œ„ ํšก๋‹จ๋ณด๋„์™€ ๊ฐ™์€ ์ธํ”„๋ผ ๊ธฐ๋ฐ˜ ํ•ด๊ฒฐ์ฑ…์— ์˜์กดํ•œ๋‹ค. ์ด๋Š” ๊ตํ†ต ํ๋ฆ„ ์ €ํ•˜ยท๋ฐฐ์ถœ๊ฐ€์Šค ์ฆ๊ฐ€ ๋ผ๋Š” ๋ถ€์ž‘์šฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‹ค์‹œ๊ฐ„, ์˜ˆ์ธก ๊ธฐ๋ฐ˜ ์†๋„ ์กฐ์ • ์ด ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋‹ค์ค‘โ€‘์—์ด์ „ํŠธ ์ƒํ˜ธ์ž‘์šฉ์„ ์ •ํ™•ํžˆ ์˜ˆ์ธก ํ•  ์ˆ˜ ์žˆ๋Š”

Multiagent Systems Computer Science
No Image

Sample size and power determination for assessing overall SNP effects in joint modeling of longitudinal and time-to-event data

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ข…๋‹จ ๋ฐ”์ด์˜ค๋งˆ์ปค์™€ ์ƒ์กด ๋ฐ์ดํ„ฐ์˜ ๊ฒฐํ•ฉ : ๋‹น๋‡จ๋ณ‘๊ณผ ๊ฐ™์€ ๋งŒ์„ฑ์งˆํ™˜์—์„œ๋Š” HbA1c์™€ ๊ฐ™์€ ์žฅ๊ธฐ ๋ฐ”์ด์˜ค๋งˆ์ปค๊ฐ€ ํ•ฉ๋ณ‘์ฆ ๋ฐœ์ƒ ์œ„ํ—˜์„ ์˜ˆ์ธกํ•˜๋Š” ํ•ต์‹ฌ ๋ณ€์ˆ˜์ด๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์†์  ์ธก์ •๊ฐ’์„ ์‹œ๊ฐ„โ€‘๋Œ€ ์‚ฌ๊ฑด ๋ฐ์ดํ„ฐ์™€ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋ฉด, ์ง์ ‘ยท๊ฐ„์ ‘ ๊ฒฝ๋กœ๋ฅผ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ํšจ๊ณผ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ์œ ์ „ํ•™์  ์—ฐ๊ตฌ์—์„œ ์„ค๊ณ„ ๋‹จ๊ณ„์˜ ๊ณต๋ฐฑ : GWAS ๋“ฑ ๋Œ€๊ทœ๋ชจ ์œ ์ „ํ•™ ์—ฐ๊ตฌ์—์„œ๋Š” ํ‘œ๋ณธ ํฌ๊ธฐยท๊ฒ€์ •๋ ฅ ๊ณ„์‚ฐ์ด ํ•„์ˆ˜์ ์ด์ง€๋งŒ, ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ๋‹จ์ผ ์‚ฌ๊ฑด(์˜ˆ: Cox ๋น„๋ก€์œ„ํ—˜ ๋ชจ๋ธ)์ด๋‚˜ ์น˜๋ฃŒ ํšจ๊ณผ์— ๊ตญํ•œ๋ผ ์žˆ๋‹ค. SNP๋Š” 0โ€‘2์˜ ์„ธ ์ˆ˜์ค€์„ ๊ฐ–๊ณ ,

Statistics Model Data
Scaling Laws for Masked-Reconstruction Transformers on Single-Cell Transcriptomics

Scaling Laws for Masked-Reconstruction Transformers on Single-Cell Transcriptomics

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์Šค์ผ€์ผ๋ง ๋ฒ•์น™์˜ ์ผ๋ฐ˜์„ฑ : Kaplan et al. (2020)ยทHestness et al. (2017) ๋“ฑ์€ ๋ชจ๋ธยท๋ฐ์ดํ„ฐยท์ปดํ“จํŒ… ๊ทœ๋ชจ๊ฐ€ ์ฆ๊ฐ€ํ•  ๋•Œ ์†์‹ค์ด ํŒŒ์›Œโ€‘๋Ÿฌํ”„ ํ˜•ํƒœ๋กœ ๊ฐ์†Œํ•œ๋‹ค๋Š” ํ˜„์ƒ์„ ๋‹ค์–‘ํ•œ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์—์„œ ๋ณด๊ณ ํ–ˆ๋‹ค. ์ด๋Š” ๋ชจ๋ธ ์„ค๊ณ„ยท์ž์› ๋ฐฐ๋ถ„์— ์‹ค์šฉ์ ์ธ ๊ฐ€์ด๋“œ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๋‹จ์ผ์„ธํฌ ์ „์‚ฌ์ฒด์˜ ํ˜„ํ™ฉ : scVI, scGPT, Geneformer ๋“ฑ ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ํ•™์Šต ๋ชจ๋ธ์ด ๋“ฑ์žฅํ–ˆ์ง€๋งŒ, ์‚ฌ์ „ํ•™์Šต ์†์‹ค์ด ๋ชจ๋ธ ํฌ๊ธฐยท๋ฐ์ดํ„ฐ ์–‘์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€๋Š” ์•„์ง ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…๋˜์ง€ ์•Š์•˜๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ | Regi

Machine Learning Computer Science
scPilot: Large Language Model Reasoning Toward Automated Single-Cell Analysis and Discovery

scPilot: Large Language Model Reasoning Toward Automated Single-Cell Analysis and Discovery

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹จ์ผ์„ธํฌ ์˜ค๋ฏน์Šค ๊ฐ€ ๊ธ‰์ฆํ•˜๋ฉด์„œ ๊ธฐ์กด ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์€ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ์•”๋ฌต์  ์ถ”๋ก  ์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ณ  ์žˆ๋‹ค(๊ทธ๋ฆผ 1). ํ˜„์žฌ LLM ํ™œ์šฉ ์‚ฌ๋ก€๋Š” ์ฃผ๋กœ ํˆด ์—์ด์ „ํŠธ ํ˜•ํƒœ๋กœ, LLM์ด ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑยท์‹คํ–‰ํ•˜์ง€๋งŒ ์ƒ๋ฌผํ•™์  ๊ฐ€์„คยท์ •๋‹นํ™” ๊ณผ์ •์ด ๊ฒฐ์—ฌ๋ผ ์žˆ๋‹ค. ๋˜ํ•œ, Foundation Model ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ์€ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ์ด ๋‚ฎ์•„ ์‹ค์ œ ์ƒ๋ฌผํ•™์  ๋ฐœ๊ฒฌ์— ์ œํ•œ์ ์ด๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Omicsโ€‘Native Reasoning (ONR) ONR์€ LLM์ด (i) ๋ฐ์ดํ„ฐ ์š”์•ฝ โ†’ (ii) ๊ฐ€์„ค ์ œ์‹œ

Computer Science Analysis Model Artificial Intelligence
No Image

Spanning the Visual Analogy Space with a Weight Basis of LoRAs

| ํ•ญ๋ชฉ | ๋‚ด์šฉ ๋ฐ ํ‰๊ฐ€ | | | | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | LoRA๋ฅผ ํ•˜๋‚˜๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๋Œ€์‹ , ๋‹ค์ˆ˜(N 32)์˜ ์ €โ€‘๋žญํฌ ์–ด๋Œ‘ํ„ฐ ๋ฅผ ๋ฏธ๋ฆฌ ํ•™์Šตํ•˜๊ณ , ์ž…๋ ฅ ์ด๋ฏธ์ง€ ์‚ผ์ค‘ํ•ญ์„ CLIPโ€‘ViT ์ธ์ฝ”๋”๋กœ ์ž„๋ฒ ๋”ฉํ•œ ๋’ค ํ‚คโ€‘๊ฐ’ ๋งค์นญ์„ ํ†ตํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ๋™์ ์œผ๋กœ ์กฐํ•ฉํ•œ๋‹ค. ์ด๋Š” โ€œLoRA ๊ณต๊ฐ„โ€ ์œ„์—์„œ ์›ํ•˜๋Š” ๋ณ€ํ™˜์„ ์ง์ ‘ ์„ ํƒํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ๊ธฐ์กด โ€œํ•˜๋‚˜์˜ ์–ด๋Œ‘ํ„ฐ์— ๋ชจ๋“  ๋ณ€ํ™˜์„ ์••์ถ•โ€ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•๋ณด๋‹ค ํ›จ์”ฌ ์œ ์—ฐํ•˜๋‹ค. | | ๊ตฌ์กฐ์  ์žฅ์  | 1๏ธโƒฃ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ โ€“ ๊ฐ LoRA๋Š” rank 4 ๋กœ ๋งค์šฐ ๊ฐ€๋ฒผ์šฐ๋ฉฐ, ์ „์ฒด ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ๊ธฐ์กด ๋‹จ์ผโ€‘LoRA์™€

Computer Science Computer Vision
No Image

Stochastic Lorenz dynamics and wind reversals in Rayleigh-Bรฉnard Convection

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ๋ ˆ์ผ๋ฆฌโ€‘๋ฐด๋“œ ๋Œ€๋ฅ˜(RBC) ๋Š” ์ฒœ๋ฌธยท์ง€๊ตฌ๊ณผํ•™ ๋ฐ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์—ด์ „๋‹ฌยท๋Œ€๋ฅ˜ ํ˜„์ƒ์˜ ๊ธฐ๋ณธ ๋ชจ๋ธ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ ‘๊ทผ์€ Nusselt ์ˆ˜(Nu) ์™€ Rayleigh ์ˆ˜(Ra) , Prandtl ์ˆ˜(Pr) ์‚ฌ์ด์˜ ์Šค์ผ€์ผ๋ง ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด์—ˆ์ง€๋งŒ, ๊ฒฝ๊ณ„์ธตโ€“์ฝ”์–ด ์ƒํ˜ธ์ž‘์šฉ ๊ณผ ๋Œ€๊ทœ๋ชจ ์ˆœํ™˜(meanโ€‘wind) ์˜ ์ „ํ™˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์•„์ง ์ถฉ๋ถ„ํžˆ ์ดํ•ด๋˜์ง€ ์•Š์•˜๋‹ค. Sreenivasan ๋“ฑ(2002)์˜ ์žฅ์‹œ๊ฐ„ ์‹คํ—˜์—์„œ๋Š” ํ‰๊ท  ํ’ํ–ฅ์ด ๊ธ‰๊ฒฉํžˆ ์ „ํ™˜๋˜๋Š” โ€˜reversalโ€™ ํ˜„์ƒ์ด ๊ด€์ธก๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ณ ์ฐจ์› OB ๋ฐฉ์ •์‹์˜ ์ง์ ‘ ์‹œ๋ฎฌ๋ ˆ์ด

Physics
No Image

Structural grouping of extreme value models via graph fused lasso

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ทน๊ฐ’ ๋ถ„์„์˜ ๋‚œ์  : ๊ทน๋‹จ ์˜์—ญ ๋ฐ์ดํ„ฐ๋Š” ํฌ์†Œํ•˜๊ณ  ๋ถˆ์•ˆ์ •ํ•ด ์ „ํ†ต์ ์ธ ํ‰๊ท โ€‘์ค‘์‹ฌ ๋ถ„์„๋ณด๋‹ค ๊ผฌ๋ฆฌ ํŠน์„ฑ ์ถ”์ •์ด ์–ด๋ ค์›€. ๊ตฐ์ง‘ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ : ๊ธฐํ›„ยท์ˆ˜๋ฌธยท์žฌ๋‚œ ๋“ฑ์—์„œ ๋™์ผ ์ง€์—ญยท์‹œ๊ฐ„๋Œ€์— ๋‹ค์ˆ˜ ๊ด€์ธก์†Œ๊ฐ€ ์กด์žฌ, ์ธ์ ‘ ๊ตฐ์ง‘์€ ์œ ์‚ฌํ•œ ๊ผฌ๋ฆฌ ํŠน์„ฑ์„ ๊ฐ€์งˆ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Œ. ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ ์ง€์—ญ ๋นˆ๋„ ๋ถ„์„ ยท Pooling ์€ ์‚ฌ์ „ ์ •์˜๋œ ๊ตฐ์ง‘๋งŒ์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋ฉฐ, ๊ตฐ์ง‘ ์ˆ˜๊ฐ€ ๋งŽ์•„์ง€๋ฉด ๋ชจ๋ธ ์„ ํƒ ๋น„์šฉ ์ด ๊ธ‰์ฆ. ๋ฒ ์ด์ง€์•ˆ ๊ตฐ์ง‘ํ™” (Rohrbeck & Tawn, 2023)๋Š” ๊ณ„์‚ฐ๋Ÿ‰์ด ํฌ๊ณ  ์‚ฌ์ „ ๋ถ„ํฌ ์„ค์ •์— ๋ฏผ๊ฐ. Heuristi

Statistics Model
No Image

Systems of Graph Formulas and their Equivalence to Alternating Graph Automata

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ทธ๋ž˜ํ”„ ์–ธ์–ด์™€ ์ž๋™์ž : ๊ทธ๋ž˜ํ”„๋Š” ๋„คํŠธ์›Œํฌ, ์†Œ์…œ ๋ฏธ๋””์–ด, ํ”„๋กœ๊ทธ๋žจ ํ๋ฆ„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ธ๋งํ•œ๋‹ค. ๊ทธ๋ž˜ํ”„ ์–ธ์–ด๋ฅผ ํ˜•์‹์ ์œผ๋กœ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž๋™์ž ์ด๋ก (ํŠนํžˆ ํŠธ๋ฆฌยท๊ทธ๋ž˜ํ”„ ์ž๋™์ž)๊ณผ ๋…ผ๋ฆฌ(๋ชจ๋…ธ์ด๋“œ ๋…ผ๋ฆฌ, MSO ๋“ฑ)๊ฐ€ ๊ฐ๊ฐ ํ™œ์šฉ๋ผ ์™”๋‹ค. ๋…ผ๋ฆฌ์™€ ์ž๋™์ž์˜ ํ†ตํ•ฉ ํ•„์š”์„ฑ : ์ž๋™์ž๋Š” ๊ตฌํ˜„ ์นœํ™”์ ์ด์ง€๋งŒ ์ง๊ด€์ ์ธ ์‚ฌ์–‘์ด ๋ถ€์กฑํ•˜๊ณ , ๋…ผ๋ฆฌ๋Š” ๋ช…์„ธ์— ๊ฐ•ํ•˜์ง€๋งŒ ์‹คํ–‰ ๋ชจ๋ธ์ด ๋ช…ํ™•ํ•˜์ง€ ์•Š๋‹ค. ๋‘ ์ ‘๊ทผ๋ฒ•์„ ์—ฐ๊ฒฐํ•˜๋ฉด ํ˜•์‹ ์‚ฌ์–‘ โ†” ์‹คํ–‰ ๋ชจ๋ธ ๊ฐ„์˜ ์–‘๋ฐฉํ–ฅ ๋ณ€ํ™˜์ด ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ |

System
No Image

The Complexity Landscape of Two-Stage Robust Selection Problems with Budgeted Uncertainty

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ฐ•๊ฑด ์กฐํ•ฉ ์ตœ์ ํ™” ์—์„œ๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ์ตœ์•…โ€‘case ๋ชจ๋ธ(MinMax)์ด ์ผ๋ฐ˜์ ์œผ๋กœ ๋ช…๋ชฉ ๋ฌธ์ œ๋ณด๋‹ค ๋” ์–ด๋ ค์›Œ์ง„๋‹ค. ํŠนํžˆ, ๋‘ ๋‹จ๊ณ„ ๋ชจ๋ธ์—์„œ๋Š” ์ฒซ ๋‹จ๊ณ„ ๊ฒฐ์ • ํ›„ ๋ถˆํ™•์‹ค์„ฑ์ด ๋“œ๋Ÿฌ๋‚ฌ์„ ๋•Œ ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ๋ณด์™„ ๊ฒฐ์ •์„ ํ•  ์ˆ˜ ์žˆ์–ด, ๋ณต์žก๋„ ๋ถ„์„์ด ๋”์šฑ ๋ฏธ๋ฌ˜ํ•ด์ง„๋‹ค. ์˜ˆ์‚ฐ ์ œํ•œ ๋ถˆํ™•์‹ค์„ฑ ์€ Bertsimas & Sim(2003, 2004) ์ดํ›„, โ€œ๋ณต์žก๋„ ๋ณด์กดโ€์ด๋ผ๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ๋„๋ฆฌ ์‚ฌ์šฉ๋ผ ์™”๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๋‹จ์ผโ€‘stage ํ˜น์€ ํŠน์ • ๊ตฌ์กฐ(์˜ˆ: knapsack, spanning tree) ์—

Mathematics
No Image

The Implicit Bias of Adam and Muon on Smooth Homogeneous Neural Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์•”๋ฌต์  ํŽธํ–ฅ ์€ ๊ณผ๋Œ€ ํŒŒ๋ผ๋ฏธํ„ฐํ™”๋œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๋ช…์‹œ์  ์ •๊ทœํ™” ์—†์ด๋„ ์ข‹์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ, ๊ธฐ์กด์—๋Š” ์ฃผ๋กœ GD ํ˜น์€ SGD ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ํ˜„์žฌ LLMยทViT ๋“ฑ์—์„œ AdamยทMuon ๋“ฑ ๋ชจ๋ฉ˜ํ…€ ๊ธฐ๋ฐ˜ ์˜ตํ‹ฐ๋งˆ์ด์ €๊ฐ€ ์‚ฌ์‹ค์ƒ ํ‘œ์ค€์ด ๋˜๋ฉด์„œ, ์ด๋“ค์˜ ์ˆ˜ํ•™์  ํŠน์„ฑ ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์‹ค๋ฌด์™€ ์ด๋ก  ๋ชจ๋‘์— ํ•„์ˆ˜์ ์ด๋‹ค. ๋…ผ๋ฌธ์€ โ€œ๋™์งˆ ๋ชจ๋ธโ€ (Lโ€‘homogeneous)์ด๋ผ๋Š” ์ผ๋ฐ˜์ ์ธ ํด๋ž˜์Šค(์„ ํ˜•ยท๋‹ค์ธตยทReLUโ€‘qยท๋‹คํ•ญ ํ™œ์„ฑํ™” ๋“ฑ)๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜์—ฌ, ๊ธฐ์กด ์„ ํ˜•ยท2โ€‘๊ณ„์ธต ๊ฒฐ๊ณผ๋ฅผ ์ „๋ฉด ํ™•์žฅ ํ•œ๋‹ค๋Š”

Machine Learning Computer Science Network
The invariance of the Auslander-Reiten Formula for hereditary algebras

The invariance of the Auslander-Reiten Formula for hereditary algebras

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Auslanderโ€‘Reiten ์ด๋ก  ์€ ๋ชจ๋“ˆ ๋ฒ”์ฃผ์—์„œ ์‚ฌ์ƒ๋“ค์˜ ์‚ฌํ›„(translation) ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ํ•ต์‹ฌ ๋„๊ตฌ์ด๋ฉฐ, ํŠนํžˆ AR ๊ณต์‹ ์€ Ext์™€ Hom ์‚ฌ์ด์˜ ์ด์ค‘์„ฑ(duality)์„ ๋ช…์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ์—์„œ๋Š” AR ๊ณต์‹์ด ฯ„ ์— ๋Œ€ํ•ด โ€œ์ž์—ฐ์Šค๋Ÿฌ์šดโ€ ํ˜•ํƒœ๋กœ ์ฃผ์–ด์ง€์ง€๋งŒ, ฯ„โ€‘๋ถˆ๋ณ€์„ฑ (์ฆ‰, ๊ณต์‹์ด ฯ„์™€ ฯ„โปยน์— ๋™์‹œ์— ์ ์šฉ๋  ๋•Œ ๋™์ผํ•œ ๊ฐ’์„ ๊ฐ–๋Š”๊ฐ€?)์— ๋Œ€ํ•œ ๋ช…์‹œ์  ๊ฒ€์ฆ์€ ๋ถ€์กฑํ–ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ทธ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๋ฉฐ, ํŠนํžˆ ์œ ์ „ ๋Œ€์ˆ˜ (hereditary algebra)๋ผ๋Š” ์ œํ•œ๋œ ํ™˜๊ฒฝ์—์„œ๋„ ์ผ๋ฐ˜์ ์ธ ํ…์„œ ๋Œ€

Mathematics
The Role of Common Randomness Replication in Symmetric PIR on Graph-Based Replicated Systems

The Role of Common Randomness Replication in Symmetric PIR on Graph-Based Replicated Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ „ํ†ต์ ์ธ PIR์€ ์‚ฌ์šฉ์ž ํ”„๋ผ์ด๋ฒ„์‹œ ๋งŒ์„ ๋ณด์žฅํ•˜๊ณ , ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์˜ ๋‹ค๋ฅธ ๋ฉ”์‹œ์ง€์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋…ธ์ถœํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋Œ€์นญ PIR(SPIR)์€ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ํ”„๋ผ์ด๋ฒ„์‹œ ๊นŒ์ง€ ์š”๊ตฌํ•˜์ง€๋งŒ, ์ด๋ฅผ ์‹คํ˜„ํ•˜๋ ค๋ฉด ์„œ๋ฒ„ ๊ฐ„์— ๊ณตํ†ต ๋žœ๋ค์„ฑ ์ด ๋ฐ˜๋“œ์‹œ ์กด์žฌํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ธฐ์กด ๊ฒฐ๊ณผ๊ฐ€ ์žˆ๋‹ค(

Computer Science System Information Theory
No Image

Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ธฐ์กด CoT์˜ ํ•œ๊ณ„ : ํ† ํฐโ€‘๋ ˆ๋ฒจ์˜ ๋ช…์‹œ์  ์‚ฌ๊ณ ๋Š” โ€œ์˜ค๋ฅ˜ ์ „ํŒŒ(error propagation)โ€์™€ โ€œ์–ดํœ˜ ํ‘œํ˜„ ์ œํ•œ(vocabulary bottleneck)โ€์ด๋ผ๋Š” ๋‘ ์ถ•์—์„œ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚จ๋‹ค. ํ•œ ๋‹จ๊ณ„์—์„œ ์ž‘์€ ์˜ค๋ฅ˜๊ฐ€ ๋’ค ๋‹จ๊ณ„์— ๋ˆ„์ ๋ผ ์ตœ์ข… ๋‹ต๋ณ€์„ ํฌ๊ฒŒ ์™œ๊ณกํ•œ๋‹ค. ์•”๋ฌต์ (์—ฐ์†) CoT์˜ ๋“ฑ์žฅ : ์ž ์žฌ ๊ณต๊ฐ„์—์„œ ์—ฐ์†์ ์ธ ๋ฒกํ„ฐ ํ˜•ํƒœ๋กœ ์‚ฌ๊ณ ๋ฅผ ์ง„ํ–‰ํ•˜๋ฉด ํ† ํฐํ™” ๊ณผ์ •์ด ์‚ฌ๋ผ์ ธ ํ‘œํ˜„๋ ฅ์ด ํ™•๋Œ€๋˜๊ณ , ๋ชจ๋ธ์ด ๋‚ด๋ถ€์ ์œผ๋กœ โ€œ์ƒ๊ฐโ€์„ ์ •์ œํ•  ์—ฌ์ง€๊ฐ€ ์ƒ๊ธด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๊ด€์„ฑ(consistency) ์ œ์–ด ๊ฐ€ ๋ถ€์žฌํ•ด, ๋™์ผํ•œ

No Image

Three dimensional contractile droplet under confinement

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉํ‘œ ์•กํ‹ฐ๋ธŒ ๋“œ๋กญ๋ฆฟ ์€ ๋‚ด๋ถ€ ํ˜น์€ ์ฃผ๋ณ€์—์„œ ์—๋„ˆ์ง€๋ฅผ ๊ณต๊ธ‰๋ฐ›์•„ ์ž๊ฐ€๊ตฌ๋™ํ•˜๋Š” ์—ฐ์„ฑ ๋ฌผ์งˆ๋กœ, ์„ธํฌ ์ด๋™ยท๋ถ„์—ดยทํ˜•ํƒœ๋ณ€ํ˜• ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ชจ์‚ฌํ•˜๋Š” ๋ชจ๋ธ ์‹œ์Šคํ…œ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ 2์ฐจ์› ๋˜๋Š” ๋ฌด์ œํ•œ 3์ฐจ์› ํ™˜๊ฒฝ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, 3์ฐจ์› ์ œํ•œ(์ฑ„๋„) ๋‚ด์—์„œ์˜ ๊ฑฐ๋™ ์€ ๊ฑฐ์˜ ํƒ๊ตฌ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ˆ˜์ถ•์„ฑ(contractile) ์•กํ‹ฐ๋ธŒ ์ ค ์„ ํฌํ•จํ•œ 3D ๋ฐฉ์šธ์„ ๋งˆ์ดํฌ๋กœ์ฑ„๋„์— ๊ฐ€๋‘์–ด, ํ˜•ํƒœยท์šด๋™ยท๋‚ด๋ถ€ ํ๋ฆ„์„ ์ „์‚ฐ์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. 2. ๋ชจ๋ธ ๋ฐ ์ˆ˜์น˜ ๋ฐฉ๋ฒ• | ์š”์†Œ | ์„ค๋ช… | ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ |

Condensed Matter
No Image

Tracking Time-Varying Multipath Channels forActive Sonar Applications

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค์ค‘๊ฒฝ๋กœ์™€ ๋น„์ •์ƒ์„ฑ : ์–•์€ ํ•ด์—ญ์—์„œ๋Š” ํ‘œ๋ฉดยท๋ฐ”๋‹ฅ ๋ฐ˜์‚ฌ์— ์˜ํ•ด ๊ฐ•ํ•œ ์ž”ํ–ฅ์ด ๋ฐœ์ƒํ•˜๊ณ , ํ•ด์ˆ˜๋ฉด ํŒŒ๋™ยทํ”Œ๋žซํผ ๋“œ๋ฆฌํ”„ํŠธ๋กœ ์ธํ•ด ํ†ต๊ณ„์  ๋น„์ •์ƒ์„ฑ์ด ์‹ฌํ•ด์ง„๋‹ค. ์ด๋Š” ๊ธฐ์กด CFAR ๊ธฐ๋ฐ˜ ๋ ˆ์ธ์ง€โ€‘๋„ํ”Œ๋Ÿฌ ์ฒ˜๋ฆฌ์—์„œ ํ†ต๊ณ„์  ์ •ํ•ฉ์„ฑ ๊ฐ€์ • ์ด ๊นจ์ ธ ๊ฑฐ์ง“ ๊ฒฝ๋ณด์™€ ๋ฏธํƒ์ง€ ์œ„ํ—˜์„ ๋†’์ธ๋‹ค. ๋ ˆ์ธ์ง€โ€‘๋„ํ”Œ๋Ÿฌ ๋ณ€ํ™˜์˜ ํ•œ๊ณ„ : ๋ณ€ํ™˜ ๊ณผ์ •์—์„œ ์œ„์ƒ ์ผ๊ด€์„ฑ์ด ์†์‹ค๋˜๊ณ , ๋„ํ”Œ๋Ÿฌ ๋ถˆ์ผ์น˜์™€ ์œˆ๋„์ž‰ ํšจ๊ณผ๊ฐ€ ์—๋„ˆ์ง€๋ฅผ ์—ฌ๋Ÿฌ ์…€์— ํผ๋œจ๋ ค ๋ฐฐ๊ฒฝ ๋ชจ๋ธ๋ง์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ธฐ์กด ์ ‘๊ทผ | ๋ณธ ๋…ผ๋ฌธ์˜ ์ ‘๊ทผ | | | | | ๋ ˆ์ธ์ง€โ€‘๋„ํ”Œ๋Ÿฌ ๋ณ€ํ™˜

Electrical Engineering and Systems Science
Training-Free Zero-Shot Anomaly Detection in 3D Brain MRI with 2D Foundation Models

Training-Free Zero-Shot Anomaly Detection in 3D Brain MRI with 2D Foundation Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ œ๋กœ์ƒท ์ด์ƒ ํƒ์ง€ ๋Š” ๋ผ๋ฒจ์ด ์ „ํ˜€ ์—†๋Š” ์˜๋ฃŒ ์˜์ƒ์—์„œ ๋ณ‘๋ณ€์„ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋งค๋ ฅ์ ์ด์ง€๋งŒ, ํ˜„์žฌ๊นŒ์ง€๋Š” 2D ์ด๋ฏธ์ง€ ์— ๊ตญํ•œ๋œ ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋‹ค. 3D MRI๋Š” ๋ณผ๋ฅจ ๊ตฌ์กฐ ์™€ ์ˆ˜์‹ญ๋งŒ ๊ฐœ ํ† ํฐ ์ด๋ผ๋Š” ๋ฐ์ดํ„ฐ ๊ทœ๋ชจ ๋•Œ๋ฌธ์— ๊ธฐ์กด 2D ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ธฐ์กด 3D ZSAD ์‹œ๋„(์˜ˆ: CLIP ๊ธฐ๋ฐ˜)๋“ค์€ ์Šฌ๋ผ์ด์Šคโ€‘๋ณ„ ํŠน์ง• ๋งŒ ์‚ฌ์šฉํ•ด ๋ณผ๋ฅจ ์ „์ฒด์˜ ์—ฐ์†์„ฑ์„ ๋†“์น˜๊ณ , ๋ฉ”๋ชจ๋ฆฌยท์—ฐ์‚ฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์„ค๋ช… | ์žฅ์  | | | | | | ๋‹ค์ถ• ๋ณผ๋ฅจ ํ† ํฐํ™” | Axi

Detection Computer Science Model Computer Vision
No Image

Transitive RL: Value Learning via Divide and Conquer

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์˜คํ”„๋ผ์ธ ๋ชฉํ‘œโ€‘์กฐ๊ฑด ๊ฐ•ํ™”ํ•™์Šต(GCRL) : ์‚ฌ์ „ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋งŒ์„ ์‚ฌ์šฉํ•ด, ์ž„์˜์˜ ์‹œ์ž‘โ€‘๋ชฉํ‘œ ์Œ์— ๋Œ€ํ•ด ์ตœ์  ์ •์ฑ…์„ ํ•™์Šตํ•ด์•ผ ํ•จ. ๊ธฐ์กด TD ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ๊ธด ํŠธ๋ž˜์ ํ„ฐ๋ฆฌ์—์„œ ํŽธํ–ฅ ๋ˆ„์ (bias accumulation) ๋ฌธ์ œ๊ฐ€ ์‹ฌ๊ฐํ•˜๊ณ , Monteโ€‘Carlo๋Š” ๊ณ ๋ถ„์‚ฐ(high variance) ๋ฌธ์ œ์— ์ทจ์•ฝํ•จ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด: ์‚ผ๊ฐ ๋ถ€๋“ฑ์‹๊ณผ ๋‚˜๋ˆ ์„œ ์ •๋ณต GCRL์—์„œ๋Š” ์ƒํƒœ $s i rightarrow s j$ ๋กœ ๊ฐ€๋Š” ์ตœ์†Œ ๋‹จ๊ณ„ ์ˆ˜ $d(s i,s j)$ ๊ฐ€ ์‚ผ๊ฐ ๋ถ€๋“ฑ์‹ $d(s i,s k) le

Learning
No Image

Tunable microwave frequency synthesis with optically-derived spectral purity

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ฃผํŒŒ์ˆ˜ ์กฐ์ • vs ์ŠคํŽ™ํŠธ๋Ÿผ ์ˆœ๋„ ํŠธ๋ ˆ์ด๋“œโ€‘์˜คํ”„ : ์ „ํ†ต์ ์ธ ์ „์ž์‹ VCOยทYIGยทDRO ๋“ฑ์€ ๋„“์€ ์กฐ์ • ๋ฒ”์œ„๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ๊ณ ํ’ˆ์งˆ Qโ€‘๊ณต์ง„๊ธฐ(์‚ฌํŒŒ์ด์–ด, ์‚ฌํŒŒ์ด์–ด ๋งˆ์ดํฌ๋กœํŒŒ ์บ๋น„ํ‹ฐ) ๊ธฐ๋ฐ˜ ๊ณ ์ • ์ฃผํŒŒ์ˆ˜ ๋ฐœ์ง„๊ธฐ์— ๋น„ํ•ด ์œ„์ƒ ๋…ธ์ด์ฆˆ๊ฐ€ ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ๊ด‘ํ•™ ์ฃผํŒŒ์ˆ˜ ๋ถ„ํ• (OFD)์˜ ์žฅ์  : ๊ด‘ํ•™ ๋ ˆ์ด์ €๋Š” Q โ‰ˆ 10ยนโฐ ์ด์ƒ์˜ ํ’ˆ์งˆ์„ ๊ฐ€์ง€๋ฏ€๋กœ, ์ด๋ฅผ ๋งˆ์ดํฌ๋กœํŒŒ๋กœ ๋‚˜๋ˆ„๋ฉด ์ด๋ก ์ ์œผ๋กœ ์ œ๋กœโ€‘๋…ธ์ด์ฆˆ์— ๊ฐ€๊นŒ์šด ์œ„์ƒ ์•ˆ์ •์„ฑ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด OFD๋Š” Fullโ€‘OFD , Twoโ€‘point OFD , Electroโ€‘optic

Physics
Uni-Flow: a unified autoregressive-diffusion model for complex multiscale flows

Uni-Flow: a unified autoregressive-diffusion model for complex multiscale flows

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค์ค‘์Šค์ผ€์ผ ํ๋ฆ„ ์€ ํฐ ์Šค์ผ€์ผ์˜ ์žฅ๊ธฐ ์ง„ํ™”์™€ ์ž‘์€ ์Šค์ผ€์ผ์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ๊ฐ€ ๋™์‹œ์— ์กด์žฌํ•ด ์ „ํ†ต์ ์ธ CFD(์œ ํ•œ ์ฐจ๋ถ„ยท๋ณผ๋ฅจยท์š”์†Œ) ๋ฐฉ์‹์œผ๋กœ๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์ด ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ณผํ•™โ€‘๋จธ์‹ ๋Ÿฌ๋‹(SciML) ์€ ๋ฌผ๋ฆฌ ๋ฒ•์น™์„ ๋ณด์กดํ•˜๋ฉด์„œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง์„ ์‹œ๋„ํ–ˆ์ง€๋งŒ, ์˜คํ† ๋ฆฌ๊ทธ๋ ˆ์‹œ๋ธŒ(AR) ๋ชจ๋ธ์€ ์žฅ๊ธฐ ์•ˆ์ •์„ฑ์—, ๋””ํ“จ์ „ ๋ชจ๋ธ ์€ ์‹œ๊ฐ„ ์ผ๊ด€์„ฑ์— ๊ฐ๊ฐ ํ•œ๊ณ„๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์‹œ๊ฐ„โ€‘ํ•ด์ƒ๋„ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€™ ๋ฅผ ํ•ด์†Œํ•˜๋Š” ๊ฒƒ์ด ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋™๊ธฐ์ด๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ชจ๋ธ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ํŠน์ง• |

Model Physics
Validating Interpretability in siRNA Efficacy Prediction: A Perturbation-Based, Dataset-Aware Protocol

Validating Interpretability in siRNA Efficacy Prediction: A Perturbation-Based, Dataset-Aware Protocol

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํ‰๊ฐ€ยท์‹œ์‚ฌ์  | | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ | siRNA๋Š” ํ˜„์žฌ FDAโ€‘์Šน์ธ ์น˜๋ฃŒ์ œ์— ์‚ฌ์šฉ๋  ์ •๋„๋กœ ์ž„์ƒ์  ๊ฐ€์น˜๋ฅผ ์ง€๋‹ˆ๋ฉฐ, ํšจ๋Šฅ ์˜ˆ์ธก ๋ชจ๋ธ์€ ํ›„๋ณด ๋ฌผ์งˆ ์„ ๋ณ„ยท์ˆ˜์ •์— ํ•ต์‹ฌ ์—ญํ• ์„ ํ•จ. ํ•˜์ง€๋งŒ ๋ชจ๋ธ์ด ์ œ๊ณตํ•˜๋Š” ์„ค๋ช…์ด ์‹ค์ œ ์‹คํ—˜์— ๋ฐ˜์˜๋  ๋•Œ ๋น„์šฉยท์‹œ๊ฐ„์ด ํฌ๊ฒŒ ์ขŒ์šฐ๋œ๋‹ค. | ์‹คํ—˜โ€‘์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์„ค๋ช… ๊ฒ€์ฆ์„ ๋†“์น˜๋Š” ์œ„ํ—˜์„ฑ์„ ์ •ํ™•ํžˆ ์งš์–ด๋ƒ„. | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | Preโ€‘synthesis gate โ†’ ๊ณ โ€‘saliency ์œ„์น˜์™€ ๋™์ผ ์—ผ๊ธฐ ๊ตฌ์„ฑ์„ ๊ฐ€์ง„ ๋ฌด์ž‘์œ„ ์œ„์น˜๋ฅผ ๋น„๊ตํ•˜๋Š” counterfactual sensitivit

Data Quantitative Biology
No Image

What are the odds? Risk and uncertainty about AI existential risk

1. ๋ชจ๋ธ ๋น„๊ต: ํ‘œ์ค€ ์Šค์œ„์Šค ์น˜์ฆˆ vs. ์ €์ž ๋ชจ๋ธ ํ‘œ์ค€ ์Šค์œ„์Šค ์น˜์ฆˆ ๋ชจ๋ธ ์€ ๊ฐ ๋ฐฉ์–ด์ธต์ด ๋…๋ฆฝ์ ์œผ๋กœ ๊ฒฐํ•จ์„ ๊ฐ€์งˆ ํ™•๋ฅ ์„ ๊ฐ€์ •ํ•˜๊ณ , ์ „์ฒด ์‹œ์Šคํ…œ ์‹คํŒจ๋Š” ๋ชจ๋“  ์ธต์ด ๋™์‹œ์— ๊ฒฐํ•จ์„ ๊ฐ€์งˆ ๋•Œ๋งŒ ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ๋ณธ๋‹ค. ์ด๋Š” โ€œ๊ณฑ์…ˆ๋ฒ•์น™โ€์— ๊ธฐ๋ฐ˜ํ•ด ์œ„ํ—˜์„ ๋‚ฎ๊ฒŒ ์ถ”์ •ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. CappelenยทGoldsteinยทHawthorne ๋ชจ๋ธ ์€ ์ธต ๊ฐ„์˜ ๊ตฌ์กฐ์  ์ƒ๊ด€๊ด€๊ณ„ ์™€ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„ ๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ดˆ๊ธฐ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ์˜ ์˜ค๋ฅ˜๊ฐ€ ์ •์ฑ…ยท๊ทœ์ œยท์šด์˜ ๋‹จ๊ณ„์— ์—ฐ์‡„์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์ณ, ๊ฒฐํ•จ์ด ๋…๋ฆฝ์ ์ด์ง€ ์•Š๊ฒŒ ๋œ๋‹ค. ์ด๋Š” โ€œ์—ฐ์‡„ ์‹คํŒจ(chain f

When to repeat a biomarker test? Decomposing sources of variation from conditionally repeated measurements

When to repeat a biomarker test? Decomposing sources of variation from conditionally repeated measurements

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜ˆ์••, ํ˜ˆ๋‹น, ์ฝœ๋ ˆ์Šคํ…Œ๋กค ๋“ฑ ์—ฐ์†ํ˜• ๋ฐ”์ด์˜ค๋งˆ์ปค๋Š” ์ž„๊ณ„๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์–‘์„ฑ/์Œ์„ฑ์„ ํŒ์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ์ธก์ • ์˜ค์ฐจ๊ฐ€ ํด ๊ฒฝ์šฐ, ์ž„๊ณ„๊ฐ’ ๊ทผ์ฒ˜์—์„œ ์˜ค๋ถ„๋ฅ˜(๊ฑฐ์ง“ ์–‘์„ฑยท๊ฑฐ์ง“ ์Œ์„ฑ) ์œ„ํ—˜์ด ๊ธ‰์ฆํ•œ๋‹ค. ์‹ค์ œ ์ž„์ƒ ํ˜„์žฅ์—์„œ๋Š” ์ดˆ๊ธฐ ๊ฒฐ๊ณผ๊ฐ€ ์ž„๊ณ„๊ฐ’ ์ดํ•˜์ผ ๋•Œ๋งŒ ์žฌ์ธก์ •์„ ์‹œํ–‰ํ•˜๋Š” โ€œ์กฐ๊ฑด๋ถ€ ์žฌ๊ฒ€์‚ฌโ€๊ฐ€ ํ”ํžˆ ์ด๋ฃจ์–ด์ง€์ง€๋งŒ, ์ด ๊ณผ์ •์ด ํ†ต๊ณ„์  ํŽธํ–ฅ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ํ˜ˆ์•ก ๊ธฐ์ฆ ์ „ ํ—ค๋ชจ๊ธ€๋กœ๋นˆ(Hb) ๊ฒ€์‚ฌ๋Š” ๊ธฐ์ฆ์ž ๊ฑด๊ฐ• ๋ณดํ˜ธ์™€ ํ˜ˆ์•ก ๊ณต๊ธ‰ ํšจ์œจ์„ฑ ์ธก๋ฉด์—์„œ ์ค‘์š”ํ•œ๋ฐ, ์†๊ฐ€๋ฝ ๋ ์ฑ„์ทจ ๋ฐฉ์‹์€ ๋ณ€๋™์„ฑ์ด ํฌ๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  ๊ฐœ์š” 2.1

Statistics Applications
Beyond Code Pairs: Dialogue-Based Data Generation for LLM Code Translation

Beyond Code Pairs: Dialogue-Based Data Generation for LLM Code Translation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ €์ž์› ์–ธ์–ดยทํ”„๋ ˆ์ž„์›Œํฌ ๋ฌธ์ œ : Fortran, CUDA ๋“ฑ์€ ํ•™๊ณ„ยท์‚ฐ์—…์—์„œ ์—ฌ์ „ํžˆ ํ•ต์‹ฌ์ด์ง€๋งŒ, ๊ณต๊ฐœ๋œ ๋ณ‘๋ ฌ ์ฝ”๋“œ ์ฝ”ํผ์Šค๊ฐ€ ๊ทนํžˆ ์ œํ•œ์ ์ด๋‹ค. ๊ธฐ์กด LLM์€ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๊ตฌ์กฐ์  ๋ณต์žก์„ฑ ๋•Œ๋ฌธ์— ๋ฒˆ์—ญ ์ •ํ™•๋„๊ฐ€ ๊ธ‰๊ฐํ•œ๋‹ค. ๊ธฐ์กด ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์€ โ€œ์†Œ์Šค โ†’ ํƒ€๊นƒโ€ ๋‹จ์ผ ํ๋ฆ„์— ๋จธ๋ฌผ๋ฉฐ, ์ปดํŒŒ์ผ ์˜ค๋ฅ˜ยท๋Ÿฐํƒ€์ž„ ๊ฒฐ๊ณผ์™€ ๊ฐ™์€ ์ค‘๊ฐ„ ํ”ผ๋“œ๋ฐฑ์„ ํ•™์Šต์— ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์˜ค๋ฅ˜ ๋ณต๊ตฌ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ์งˆ๋ฌธ์žโ€‘์†”๋ฒ„ ๋ชจ๋“ˆ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ๋Šฅ | | | | | Q

Data
FAST: Topology-Aware Frequency-Domain Distribution Matching for Coreset Selection

FAST: Topology-Aware Frequency-Domain Distribution Matching for Coreset Selection

1. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | | | | | โ‘  | DNNโ€‘free ์ด๋ฉด์„œ๋„ ๋ถ„ํฌ ๋งค์นญ ์„ ์ด์‚ฐ ์ฝ”์–ด์…‹ ์„ ํƒ์— ์ ์šฉํ•œ ์ตœ์ดˆ์˜ ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์‹œ. ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ํ† ํด๋กœ์ง€ ์ œ์•ฝ์„ ํ†ตํ•ด ์—ฐ์† ์ตœ์ ํ™”์™€ ์ด์‚ฐ ์ƒ˜ํ”Œ๋ง ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์›€. | | โ‘ก | CFD ๋ฅผ ์ฝ”์–ด์…‹ ์„ ํƒ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ๋„์ž…, ์ „์ฒด ํ™•๋ฅ ๋ถ„ํฌ(๋ชจ๋“  ๊ณ ์ฐจ ๋ชจ๋ฉ˜ํŠธยท์ƒ๊ด€) ์ •๋ณด๋ฅผ ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์—์„œ ์ •ํ™•ํžˆ ์ธก์ •. | | โ‘ข | Attenuated Phaseโ€‘Decoupled CFD ์„ค๊ณ„๋กœ ์ค‘ยท๊ณ ์ฃผํŒŒ ์˜์—ญ์˜ ์œ„์ƒ ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค ๋ฌธ์ œ ํ•ด๊ฒฐ, ๊ณ ์ฃผํŒŒ ๋””ํ…Œ์ผ(์—ฃ์ง€ยทํ…์Šค์ฒ˜) ๋ณด์กด. | |

No Image

Simulated Reasoning is Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋Œ€๊ทœ๋ชจ ๊ธฐ์ดˆ ๋ชจ๋ธ(FM)์ด ์ „ํ†ต์ ์ธ โ€œ์ƒ์ง•์  ์ถ”๋ก โ€๊ณผ๋Š” ๋‹ค๋ฅธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค๋Š” ์ ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์ธ๊ณต์ง€๋Šฅ ์—ฐ๊ตฌ์—์„œ๋Š” ๋…ผ๋ฆฌ ๊ทœ์น™, ํ˜•์‹ ์–ธ์–ด, ๊ทธ๋ฆฌ๊ณ  ๋ช…์‹œ์  ์ง€์‹ ๊ทธ๋ž˜ํ”„์™€ ๊ฐ™์€ ๊ตฌ์กฐํ™”๋œ ํ‘œํ˜„์„ ํ†ตํ•ด ์ธ๊ฐ„๊ณผ ์œ ์‚ฌํ•œ ์ถ”๋ก  ๊ณผ์ •์„ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ฃจ์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๋ช…ํ™•ํ•œ ์ฆ๋ช… ๊ณผ์ •์„ ์ œ๊ณตํ•˜๊ณ , ์ธ๊ฐ„์ด ์ดํ•ด ๊ฐ€๋Šฅํ•œ ์„ค๋ช…์„ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์—ˆ์ง€๋งŒ, ๋ณต์žกํ•˜๊ณ  ๊ฐœ๋ฐฉ์ ์ธ ํ˜„์‹ค ์„ธ๊ณ„ ๋ฌธ์ œ์— ์ ์šฉํ•˜๊ธฐ์—” ์ง€์‹ ๋ฒ ์ด์Šค์˜ ๊ตฌ์ถ• ๋น„์šฉ๊ณผ ํ™•์žฅ์„ฑ ํ•œ๊ณ„๊ฐ€ ํฌ๊ฒŒ ์ž‘์šฉํ–ˆ๋‹ค. ๊ธฐ์ดˆ ๋ชจ

Computer Science Artificial Intelligence
Spatio-Temporal Graphs Beyond Grids: Benchmark for Maritime Anomaly Detection

Spatio-Temporal Graphs Beyond Grids: Benchmark for Maritime Anomaly Detection

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ STโ€‘GNN์˜ ๊ธฐ์กด ์„ฑ๊ณต : ๋„๋กœยท๋Œ€์ค‘๊ตํ†ต ๋“ฑ ๊ณ ์ •๋œ ๋…ธ๋“œ(๊ต์ฐจ์ , ์ •๋ฅ˜์žฅ ๋“ฑ)๊ฐ€ ์กด์žฌํ•˜๋Š” ๋„๋ฉ”์ธ์—์„œ๋Š” ์‹œ๊ณต๊ฐ„ ๊ทธ๋ž˜ํ”„ ๊ตฌ์ถ•์ด ์ž์—ฐ์Šค๋Ÿฝ๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์˜ˆ์ธกยท์ด์ƒ ํƒ์ง€ ๋ชจ๋ธ์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋ผ ์™”๋‹ค. ๋น„๊ทธ๋ฆฌ๋“œ ๋„๋ฉ”์ธ์˜ ํ•œ๊ณ„ : ํ•ด์–‘ ๊ตํ†ต์€ ๊ณ ์ •๋œ ๊ณต๊ฐ„ ์•ต์ปค๊ฐ€ ์—†์œผ๋ฉฐ, ๊ธฐ์กด์˜ โ€œ๊ทธ๋ฆฌ๋“œํ™”โ€ ํ˜น์€ โ€œ์›จ์ดํฌ์ธํŠธโ€ ๋ฐฉ์‹์€ ์‹ค์ œ ์„ ๋ฐ•์˜ ์—ฐ์†์ ยท๋™์ ์ธ ์›€์ง์ž„์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ ์ž์ฒด๋ฅผ ์ •์˜ํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋‹ค์ค‘ ์ˆ˜์ค€ ์ด์ƒ : ์„ ๋ฐ• ํ•˜๋‚˜์˜ ๋น„์ •์ƒ์ ์ธ ํ–‰๋™(๋…ธ๋“œโ€‘๋ ˆ๋ฒจ), ๋‘ ์„ ๋ฐ• ๊ฐ„ ๋น„์ •์ƒ์ ์ธ

Detection
Prompt Repetition Improves Non-Reasoning LLMs

Prompt Repetition Improves Non-Reasoning LLMs

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋Œ€๋ถ€๋ถ„ ์ธ๊ณผ์ (causal) ์–ธ์–ด ๋ชจ๋ธ๋กœ ๊ตฌํ˜„๋œ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ์ธ๊ณผ์  ๋ชจ๋ธ์€ ํ† ํฐ์ด ์ˆœ์ฐจ์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋ฉฐ, ํ˜„์žฌ ํ† ํฐ์€ ์ด์ „ ํ† ํฐ๋งŒ์„ ์ฐธ์กฐํ•˜๊ณ  ๋ฏธ๋ž˜ ํ† ํฐ์€ ๋ณผ ์ˆ˜ ์—†๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ์ œ์•ฝ์€ ์ž…๋ ฅ ํ”„๋กฌํ”„ํŠธ ๋‚ด ํ† ํฐ๋“ค์˜ ์ƒ๋Œ€์  ์ˆœ์„œ๊ฐ€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์‹ค์ œ๋กœ โ€œ์ปจํ…์ŠคํŠธโ€‘์งˆ๋ฌธโ€ ์ˆœ์„œ์™€ โ€œ์งˆ๋ฌธโ€‘์ปจํ…์ŠคํŠธโ€ ์ˆœ์„œ๋Š” ๋™์ผํ•œ ๋‚ด์šฉ์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋ชจ๋ธ์ด ๋‚ด๋†“๋Š” ๋‹ต๋ณ€ ์ •ํ™•๋„์— ์ฐจ์ด๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” ํŠนํžˆ ์ถ”๋ก (Chainโ€‘ofโ€‘Thought) ์—†์ด ๋‹จ์ˆœํžˆ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ์ง

Computer Science Machine Learning
Enhancing Automatic Speech Recognition Through Integrated Noise Detection Architecture

Enhancing Automatic Speech Recognition Through Integrated Noise Detection Architecture

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์Œ์„ฑ ์ธ์‹ ๋ถ„์•ผ์—์„œ ํฐ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋Š” selfโ€‘supervised ํ•™์Šต ๋ชจ๋ธ์ธ wav2vec2๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, ์†Œ์Œ ๊ฐ์ง€ ๊ธฐ๋Šฅ์„ ๋™์ผ ๋„คํŠธ์›Œํฌ ์•ˆ์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์‹œ์Šคํ…œ์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. wav2vec2๋Š” ๋Œ€๊ทœ๋ชจ ๋น„์ง€๋„ ์Œ์„ฑ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ•๋ ฅํ•œ ์Œํ–ฅ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๋Š”๋ฐ, ์ด ํ‘œํ˜„์„ ๊ทธ๋Œ€๋กœ ์ „์‚ฌ(head)์™€ ์†Œ์Œ ๋ถ„๋ฅ˜(head) ๋‘ ๊ฐœ์˜ ๋ณ‘๋ ฌ ๋””์ฝ”๋”์— ์ „๋‹ฌํ•œ๋‹ค๋Š” ์ ์ด ํ•ต์‹ฌ ์„ค๊ณ„์ด๋‹ค. ์ „์‚ฌ ๋””์ฝ”๋”๋Š” ์ „ํ†ต์ ์ธ CTC ํ˜น์€ seq2seq ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•™์Šต๋˜๋Š” ๋ฐ˜๋ฉด, ์†Œ์Œ ๋””์ฝ”๋”๋Š” ํ™˜๊ฒฝ ์†Œ๋ฆฌ์™€ ๋ฌด์Œ ๊ตฌ

Detection Sound Computer Science
ID-PaS : Identity-Aware Predict-and-Search for General Mixed-Integer Linear Programs

ID-PaS : Identity-Aware Predict-and-Search for General Mixed-Integer Linear Programs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ MIP : ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ์—์„œ๋Š” ๋™์ผํ•œ ๊ตฌ์กฐ์˜ MIP๊ฐ€ ์ˆ˜์š”, ๋น„์šฉ, ์šฉ๋Ÿ‰ ๋“ฑ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ๋‹ฌ๋ผ์ ธ ๋ฐ˜๋ณต์ ์œผ๋กœ ํ•ด๊ฒฐ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ๋Š” ๊ณผ๊ฑฐ ์ตœ์ ยท์ค€์ตœ์  ํ•ด๋กœ๋ถ€ํ„ฐ ํŒจํ„ด์„ ํ•™์Šตํ•ด ์ƒˆ๋กœ์šด ์ธ์Šคํ„ด์Šค์˜ ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ์ถ•์†Œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด Predictโ€‘andโ€‘Search : ์ด์ง„ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ํ™•๋ฅ  ์˜ˆ์ธก์„ ๋ฐ”ํƒ•์œผ๋กœ โ€œ๊ณ ์ •โ€‘ํ”Œ๋ฆฝโ€ ์ด์›ƒ์„ ์ •์˜ํ•˜๊ณ , ์ œํ•œ๋œ ์„œ๋ธŒโ€‘MIP๋ฅผ ํ’€์–ด ๊ณ ํ’ˆ์งˆ ํ•ด๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฐพ๋Š”๋‹ค. ํ•˜์ง€๋งŒ (1) ์ผ๋ฐ˜ ์ •์ˆ˜ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ง์ ‘ ์˜ˆ์ธก์ด ์–ด๋ ค์›Œ ์ ์šฉ ๋ฒ”์œ„๊ฐ€ ์ œํ•œ๋˜๊ณ , (2) ๋ณ€์ˆ˜ ์ •์ฒด์„ฑ์„ ๋ฌด์‹œ

Small Language Models Can Use Nuanced Reasoning For Health Science Research Classification: A Microbial-Oncogenesis Case Study

Small Language Models Can Use Nuanced Reasoning For Health Science Research Classification: A Microbial-Oncogenesis Case Study

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  AI ๊ณต๋™์—ฐ๊ตฌ์ž ๋Š” (1) ๋ฌธํ—Œ ํƒ์ƒ‰, (2) ํ•„ํ„ฐ๋ง, (3) ์‹ฌ์ธต ์ดํ•ด์˜ 3๋‹จ๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค. ํ˜„์žฌ ์ƒ์šฉ LLM์€ ๋น„์šฉยทํˆฌ๋ช…์„ฑยท์žฌํ˜„์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM, โ‰ค8B ํŒŒ๋ผ๋ฏธํ„ฐ) ์€ ๋น„์šฉยท๋ฐฐํฌ ์šฉ์ด์„ฑ์—์„œ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋ณต์žกํ•œ ๊ณผํ•™์  ๊ธฐ์ค€์„ ์ ์šฉํ•œ ๋ถ„๋ฅ˜ ๋Šฅ๋ ฅ์€ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฏธ์ƒ๋ฌผโ€‘์•” ์—ฐ๊ด€์„ฑ ์ด๋ผ๋Š” ๊ณ ๋‚œ์ด๋„ ๋ถ„์•ผ(ํŠนํžˆ HMTV/MMTVโ€‘์œ ์‚ฌ ๋ฐ”์ด๋Ÿฌ์Šค์™€ ์œ ๋ฐฉ์•”)์—์„œ SLM์˜ ์ •๋ฐ€ ๋ถ„๋ฅ˜ ๊ฐ€๋Šฅ์„ฑ์„ ์‹คํ—˜ํ•œ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• 100ํŽธ ์˜ ๋…ผ๋ฌธ(์ œ๋ชฉโ€‘์ดˆ๋ก)๊ณผ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋ถ€์—ฌ

Model
Gendered Pathways in AI Companionship: Cross-Community Behavior and Toxicity Patterns on Reddit

Gendered Pathways in AI Companionship: Cross-Community Behavior and Toxicity Patterns on Reddit

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ AIโ€‘๋™๋ฐ˜์ž์™€ ์ธ๊ฐ„ ๊ด€๊ณ„ : ReplikaยทCharacter.ai ๋“ฑ AI ์ฑ—๋ด‡์ด ๊ฐ์ •ยท์—ฐ์• ยท์„ฑ์  ๊ต๋ฅ˜๊นŒ์ง€ ํ™•์žฅ๋˜๋ฉด์„œ, ๊ธฐ์กด์˜ โ€˜๋„๊ตฌ์  ์‚ฌ์šฉโ€™์„ ๋„˜์–ด ์ •์„œ์ ยท์‚ฌํšŒ์  ์˜์กด ์ด ํ˜•์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ์„ฑ๋ณ„ยท๋…์„ฑ ๋ฌธ์ œ : ๊ธฐ์กด ๋ฌธํ—Œ์€ ์ฃผ๋กœ ๋‚จ์„ฑโ€‘์ฃผ๋„ยท์ธ์…€ ์„œ๋ธŒ๋ฌธํ™”์™€ ์—ฐ๊ณ„๋œ ๋ถ€์ •์  ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ฌ์„ฑ ์‚ฌ์šฉ์ž์˜ ๋†’์€ ์ฐธ์—ฌ ๋ฅผ ๋ฐœ๊ฒฌํ•จ์œผ๋กœ์จ ๊ธฐ์กด ํŽธ๊ฒฌ์„ ์žฌ๊ฒ€์ฆํ•œ๋‹ค. ์ƒํƒœ๊ณ„โ€‘์ˆ˜์ค€ ์ ‘๊ทผ : ๋‹จ์ผ ํ”Œ๋žซํผยท์„ค๋ฌธ์— ๋จธ๋ฌด๋ฅด๋˜ ์—ฐ๊ตฌ๋ฅผ ๋„˜์–ด, ๋ ˆ๋”ง ์ „์ฒด 2 000๊ฐœ ์„œ๋ธŒ๋ ˆ๋”ง ์„ ํฌ๊ด„ํ•˜๋Š” ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•ด ๊ต์ฐจโ€‘์ปค๋ฎค๋‹ˆํ‹ฐ

Computer Science Social Networks
Reading Between the Lines: Deconfounding Causal Estimates using Text Embeddings and Deep Learning

Reading Between the Lines: Deconfounding Causal Estimates using Text Embeddings and Deep Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ต๋ž€๋ณ€์ˆ˜์™€ ํ…์ŠคํŠธ : ๋…ธ๋™์‹œ์žฅ, ์˜๋ฃŒ ๊ธฐ๋ก, ๊ธˆ์œต ๋‰ด์Šค ๋“ฑ์—์„œ ๊ฐœ์ธยท๊ธฐ์—…์˜ ์ž ์žฌ ํŠน์„ฑ(๋Šฅ๋ ฅ, ๋™๊ธฐ ๋“ฑ)์€ ํ…์ŠคํŠธ์— ๋‚ด์žฌ๋œ ์„œ์ˆ  ํ˜•ํƒœ๋กœ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๊ธฐ์กด ๊ตฌ์กฐํ™” ๋ณ€์ˆ˜๋งŒ์œผ๋กœ๋Š” ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ค์›Œ ์ธ๊ณผ ์ถ”์ •์— ํŽธํ–ฅ์ด ๋ฐœ์ƒํ•œ๋‹ค. DML์˜ ํ•„์š”์„ฑ : Double Machine Learning์€ ๊ณ ์ฐจ์› ํ†ต์ œ๋ณ€์ˆ˜๋ฅผ ๋‹ค๋ฃฐ ๋•Œ Neyman orthogonality๋ฅผ ์ด์šฉํ•ด ํŽธํ–ฅ์„ ์–ต์ œํ•œ๋‹ค. ํ•˜์ง€๋งŒ DML ์ž์ฒด๋Š” โ€œ์–ด๋–ค ํ•™์Šต๊ธฐ๋ฅผ ์“ฐ๋А๋ƒโ€์— ๋Œ€ํ•ด ์ค‘๋ฆฝ์ ์ด๋ฉฐ, ์‹ค์ œ ๊ตฌํ˜„์—์„œ๋Š” ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ๊ธฐ๋ณธ ์„ ํƒ์ด ๋œ๋‹ค.

Computer Science Learning Artificial Intelligence
Adapting Feature Attenuation to NLP

Adapting Feature Attenuation to NLP

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ์‡„ํ˜• ๊ฐ€์ •์˜ ํ•œ๊ณ„ : BERTยทGPTโ€‘2์™€ ๊ฐ™์€ ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ํ›ˆ๋ จ ์‹œ ๋ณธ ์  ์—†๋Š” ๋ผ๋ฒจ์„ ๋งŒ๋‚˜๋ฉด ๋†’์€ ํ™•์‹ ์„ ๋ณด์ด๋ฉฐ ์ž˜๋ชป๋œ ์˜ˆ์ธก์„ ํ•œ๋‹ค. ์ด๋Š” ์˜๋ฃŒยท๋ฒ•๋ฅ  ๋“ฑ ์œ„ํ—˜๋„๊ฐ€ ๋†’์€ ๋ถ„์•ผ์—์„œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋‹ค. Openโ€‘Set Recognition (OSR) : ์ž…๋ ฅ์ด ์•Œ๋ ค์ง„ ํด๋ž˜์Šค์ธ์ง€ ๋ฏธ์ง€์˜ ํด๋ž˜์Šค์ธ์ง€๋ฅผ ๋™์‹œ์— ํŒ๋‹จํ•˜๋„๋ก ์š”๊ตฌํ•œ๋‹ค. ๋น„์ „ ๋ถ„์•ผ์—์„œ๋Š” Feature Attenuation (๋ถ„๋ฅ˜ ๋ ˆ์ด์–ด ์ „ยทํ›„ ํŠน์ง•์„ ๋ชจ๋‘ ํ™œ์šฉ) ๊ฐ€์„ค์ด ์ข‹์€ ์„ฑ๊ณผ๋ฅผ ๋ณด์˜€์œผ๋‚˜, ํ…์ŠคํŠธ์—์„œ๋Š” ์•„์ง ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• โ€“ COSTA

Machine Learning Computer Science
MIDG: Mixture of Invariant Experts with knowledge injection for Domain Generalization in Multimodal Sentiment Analysis

MIDG: Mixture of Invariant Experts with knowledge injection for Domain Generalization in Multimodal Sentiment Analysis

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ฐ์„ฑ ๋ถ„์„(MSA) ์€ ํ…์ŠคํŠธ, ์Œ์„ฑ, ์˜์ƒ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹ ํ˜ธ๋ฅผ ๊ฒฐํ•ฉํ•ด ์ธ๊ฐ„ ๊ฐ์ •์„ ํŒŒ์•…ํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด MSA ๋ชจ๋ธ์€ IID(๋™์ผยท๋…๋ฆฝ ๋ถ„ํฌ) ๊ฐ€์ •ํ•˜์— ํ•™์Šต๋˜๋ฉฐ, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋„๋ฉ”์ธ ๊ฐ„ ๋ถ„ํฌ ์ฐจ์ด ๋กœ ์ธํ•ด ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™” ๊ธฐ๋ฒ•์€ (i) ๋ชจ๋‹ฌ ์ˆœ์ฐจ ์ฒ˜๋ฆฌ ๋กœ ์ธํ•ด ๋ชจ๋‹ฌ ๊ฐ„ ๋™์  ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•˜๊ณ , (ii) ์ง€์‹ ์ฃผ์ž…์ด ๋‹จ์ผ ๋ชจ๋‹ฌ์— ๊ตญํ•œ ๋˜์–ด ๊ต์ฐจโ€‘๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ ๊ตฌ์กฐ 2.1.

Analysis
MM-CoT:A Benchmark for Probing Visual Chain-of-Thought Reasoning in Multimodal Models

MM-CoT:A Benchmark for Probing Visual Chain-of-Thought Reasoning in Multimodal Models

1. ์—ฐ๊ตฌ ๋™๊ธฐ์˜ ์˜์˜ ์ƒ์„ฑโ€‘์ค‘์‹ฌ ํ‰๊ฐ€์˜ ํ•œ๊ณ„ : ๊ธฐ์กด VQAยทGQAยทVCR ๋“ฑ์€ ์ •๋‹ต ํ˜น์€ ์ž์œ ํ˜• ์„ค๋ช…์„ ์š”๊ตฌํ•˜์ง€๋งŒ, ๋ชจ๋ธ์ด ์‹ค์ œ๋กœ ์‹œ๊ฐ ์ •๋ณด๋ฅผ ํ™œ์šฉ ํ–ˆ๋Š”์ง€, ํ˜น์€ ์‚ฌ์ „ ํ•™์Šต๋œ ํ…œํ”Œ๋ฆฟ ์„ ๊ทธ๋Œ€๋กœ ์žฌ์ƒ์‚ฐํ–ˆ๋Š”์ง€ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ฒ€์ฆโ€‘์ค‘์‹ฌ ์ ‘๊ทผ : MMโ€‘CoT๋Š” โ€œ ์„ ํƒ โ€ ํ˜•ํƒœ๋กœ ๋ฌธ์ œ๋ฅผ ์ „ํ™˜ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์ด ๊ฐ ๋‹จ๊ณ„๋ณ„ ๊ทผ๊ฑฐ ๋ฅผ ๊ฒ€์ฆํ•˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ์ด๋Š” ์ธ๊ฐ„์ด ๋…ผ์ฆ์„ ํ‰๊ฐ€ํ•  ๋•Œ ์‚ฌ์šฉํ•˜๋Š” โ€œ์ฆ๊ฑฐ ๊ฒ€์ฆโ€ ์ ˆ์ฐจ์™€ ์œ ์‚ฌํ•ด, ์‹ค์ œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๋” ์ •ํ™•ํžˆ ์ธก์ •ํ•œ๋‹ค. 2. ๋ฒค์น˜๋งˆํฌ ์„ค๊ณ„ ๋ถ„์„ | ์š”์†Œ | ์„ค๊ณ„ ํŠน์ง• | ํ‰๊ฐ€ ํšจ๊ณผ | | | |

Model
Fast-weight Product Key Memory

Fast-weight Product Key Memory

1๏ธโƒฃ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์—ฐ๊ด€ ๊ธฐ์–ต(Associative Memory) ๊ด€์ ์—์„œ ์ตœ์‹  ํŠธ๋žœ์Šคํฌ๋จธยท๋ฆฌ๋‹ˆ์–ด ์–ดํ…์…˜์„ ์žฌํ•ด์„ํ•œ๋‹ค(DAO & GU 2024, PENG et al. 2025 ๋“ฑ). ์ €์ž๋“ค์€ 4๊ฐ€์ง€ ํ•ต์‹ฌ ์†์„ฑ ์„ ์ œ์‹œํ•œ๋‹ค: (1) ํ‚คโ€‘๊ฐ’ ์—ฐ๊ด€, (2) ๋Œ€๊ทœ๋ชจ ์ €์žฅ, (3) ์ €๋น„์šฉ, (4) ์‹ค์‹œ๊ฐ„ ๊ธฐ์–ตยท๊ฒ€์ƒ‰ . ๊ธฐ์กด ๋ชจ๋ธ์€ 1โ€‘3์€ ๋งŒ์กฑํ•˜์ง€๋งŒ 4๋ฅผ ๋†“์นœ๋‹ค. 2๏ธโƒฃ ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ PKM โ†’ FwPKM | ์š”์†Œ | PKM (๊ธฐ์กด) | FwPKM (์ œ์•ˆ) | | | | | | ๊ฐ€์ค‘์น˜ ์ข…๋ฅ˜ | Slowโ€‘weight (ํ•™์Šต ํ›„ ๊ณ ์ •

Computer Science NLP
First On-Orbit Demonstration of a Geospatial Foundation Model

First On-Orbit Demonstration of a Geospatial Foundation Model

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ EO ๋ฐ์ดํ„ฐ ํญ์ฆ : ์œ„์„ฑ ์ˆ˜๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ  ๊ณ ํ•ด์ƒ๋„ยท๋‹ค์ค‘ยทํ•˜์ดํผ์ŠคํŽ™ํŠธ๋Ÿผ ์ด๋ฏธ์ง€๊ฐ€ ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ๋จ. ์˜จ๋ณด๋“œ AI ์š”๊ตฌ : ์ „์†ก ๋Œ€์—ญํญยท์‹ค์‹œ๊ฐ„ ์˜์‚ฌ๊ฒฐ์ • ์ œํ•œ์œผ๋กœ, ํ˜„์žฅ(์œ„์„ฑ)์—์„œ ๋ฐ”๋กœ ๋ถ„์„ยทํŒ๋‹จํ•ด์•ผ ํ•จ. ๊ธฐ์กด ์ ‘๊ทผ ํ•œ๊ณ„ : ๊ฒฝ๋Ÿ‰ CNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ๊ณผ์ œโ€‘ํŠนํ™”์ด๋ฉฐ, ์ƒˆ๋กœ์šด ๊ณผ์ œ๋งˆ๋‹ค ์žฌํ•™์Šตยท์žฌ๋ฐฐํฌ๊ฐ€ ํ•„์š”. GeoFM์˜ ์ž ์žฌ๋ ฅ : ํ•˜๋‚˜์˜ ์‚ฌ์ „ํ•™์Šต๋œ ๋ฐฑ๋ณธ์œผ๋กœ ๋‹ค์ˆ˜ ๊ณผ์ œ ์ˆ˜ํ–‰, ๋ผ๋ฒจ๋ง ๋น„์šฉ ์ ˆ๊ฐ, ์ž‘์€ ํ—ค๋“œ๋งŒ ์ „์†ก ๊ฐ€๋Šฅ. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | |โ‘ | ์ฒซ ๋ฒˆ์งธ GeoFM ์˜จ๋ณด๋“œ ๋ฐฐ์น˜ ๋ฐ

Model
Theoretical analysis of beaconless geocast protocols in 1D

Theoretical analysis of beaconless geocast protocols in 1D

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋น„์ฝ˜โ€‘๋ฆฌ์Šค ์ ‘๊ทผ์˜ ํ•„์š”์„ฑ : ์ด์›ƒ ๋…ธ๋“œ์˜ ์œ„์น˜๋ฅผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๊ตํ™˜ํ•˜๋Š” ๋น„์ฝ˜์€ ๋ฉ”์‹œ์ง€ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ๊ธ‰์ฆ์‹œ์ผœ ์ค‘ยท๋Œ€๊ทœ๋ชจ ๋„คํŠธ์›Œํฌ์— ๋น„ํšจ์œจ์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋น„์ฝ˜ ์—†์ด๋„ ๋ผ์šฐํŒ…์ด ๊ฐ€๋Šฅํ•œ ํ”„๋กœํ† ์ฝœ์˜ ์„ฑ๋Šฅ์„ ์ •ํ™•ํžˆ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์‹ค์šฉ์ ์ด๋‹ค. 1์ฐจ์› ๋ชจ๋ธ์˜ ์˜์˜ : 2์ฐจ์› ์ „์ฒด ๋ณต์žก์„ฑ์„ ์™„์ „ํžˆ ํฌ์ฐฉํ•˜๊ธฐ๋Š” ์–ด๋ ต์ง€๋งŒ, 1D ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” โ€œ์ข์€ ํ†ต๋กœโ€ยทโ€œ์„ ํ˜• ๋ฐฐ์น˜โ€ ๋“ฑ ์‹ค์ œ ๋„คํŠธ์›Œํฌ์—์„œ ์ž์ฃผ ๋‚˜ํƒ€๋‚˜๋Š” ์ƒํ™ฉ์„ ๋Œ€๋ณ€ํ•œ๋‹ค. ๋˜ํ•œ 1D์—์„œ ๋“œ๋Ÿฌ๋‚˜๋Š” ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํŒŒ์•…ํ•˜๋ฉด 2D ํ™•์žฅ ์‹œ ์ค‘์š”ํ•œ ์„ค๊ณ„ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. 2. ๋ถ„์„ ๋Œ€

Analysis

< Category Statistics (Total: 5054) >

Electrical Engineering and Systems Science
103
General
4150
General Relativity
3
HEP-EX
3
HEP-LAT
1
HEP-PH
2
HEP-TH
4
MATH-PH
6
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut