KOINEU Logo
No Image

PerfDojo: Automated ML Library Generation for Heterogeneous Architectures

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ด๊ธฐ์ข… ํ™˜๊ฒฝ์˜ ๋‚œ์ œ : ํ˜„์žฌ ML ์›Œํฌ๋กœ๋“œ๋Š” CPUยทGPUยทTPUยทFPGA ๋“ฑ ๋‹ค์–‘ํ•œ ๊ฐ€์†๊ธฐ์— ๋ฐฐํฌ๋œ๋‹ค. ๊ฐ ์•„ํ‚คํ…์ฒ˜๋งˆ๋‹ค ๋ช…๋ น์–ด ์ง‘ํ•ฉ, ๋ฉ”๋ชจ๋ฆฌ ๊ณ„์ธต, ์—ฐ์‚ฐ ํŠน์„ฑ์ด ๋‹ฌ๋ผ ๋™์ผํ•œ ์ปค๋„์„ ์ตœ์ ํ™”ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๊ธฐ์กด ์ž๋™ํ™” ํ•œ๊ณ„ : ๊ธฐ์กด AutoML/AutoTVM ๋“ฑ์€ ํ•˜๋“œ์›จ์–ดโ€‘ํŠนํ™” ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ํƒ์ƒ‰ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ๊ทœ์น™์ด ๋ณต์žกํ•˜๊ณ , ์ค‘๊ฐ„ ํ‘œํ˜„์ด ๋น„๊ฐ€์‹œ์ ์ด๋ผ ์ธ๊ฐ„์ด ์ดํ•ดยท์ˆ˜์ •ํ•˜๊ธฐ ํž˜๋“ค๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด LLM ๊ธฐ๋ฐ˜ ์ฝ”๋“œ ์ƒ์„ฑ : ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ๊ณ ์ˆ˜์ค€ ์—ฐ์‚ฐ์„ ์ธ๊ฐ„์ด ์ดํ•ด ๊ฐ€๋Šฅํ•œ ์ˆ˜ํ•™์  DS

POrTAL: Plan-Orchestrated Tree Assembly for Lookahead

POrTAL: Plan-Orchestrated Tree Assembly for Lookahead

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„โ€‘๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ(HRI) ์ƒํ™ฉ์—์„œ ๋กœ๋ด‡์ด ๋ถ€๋ถ„์ ์œผ๋กœ๋งŒ ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ํ™˜๊ฒฝ์„ ๋‹ค๋ฃจ์–ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ํ™•๋ฅ ์  ๊ณ„ํš ๊ธฐ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ์งธ, FFโ€‘Replan์€ ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฐ˜์˜ ๋น ๋ฅธ ์žฌ๊ณ„ํš์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋ถˆํ™•์‹ค์„ฑ์„ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋‘˜์งธ, POMCP๋Š” ํŒŒํ‹ฐํด ๊ธฐ๋ฐ˜ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ํŠธ๋ฆฌ ํƒ์ƒ‰์„ ํ†ตํ•ด ๋ถ€๋ถ„ ๊ด€์ธก ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •(POMDP)์„ ํ•ด๊ฒฐํ•˜์ง€๋งŒ, ์ƒ˜ํ”Œ๋ง ๋น„์šฉ์ด ๋†’์•„ ์‹ค์‹œ๊ฐ„ ๋กœ๋ด‡์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ƒ์ถฉ ๊ด€๊ณ„๋ฅผ ํ•ด์†Œํ•˜๊ณ ์ž ๋‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ต์‹ฌ

No Image

Reinforcement Learning for Pollution Detection in a Randomized, Sparse and Nonstationary Environment with an Autonomous Underwater Vehicle

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํฌ์†Œ ๋ณด์ƒ ๋ฌธ์ œ : ์ˆ˜์ค‘ ์˜ค์—ผ ํƒ์ง€๋Š” ๋ชฉํ‘œ ์˜์—ญ์ด ๋„“๊ณ  ์˜ค์—ผ ๋ฌผ์งˆ์ด ๋“œ๋ฌผ๊ฒŒ ๋‚˜ํƒ€๋‚˜๊ธฐ ๋•Œ๋ฌธ์—, ์ „ํ†ต์ ์ธ RL์ด โ€œ๋ณด์ƒ ์‹ ํ˜ธ๊ฐ€ ๊ฑฐ์˜ ์—†์Œโ€ ์ƒํ™ฉ์—์„œ ํ•™์Šต์ด ์ •์ฒด๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋น„์ •์ƒยท๋ฌด์ž‘์œ„์„ฑ : ํ•ด๋ฅ˜, ์กฐ๋ฅ˜, ๋ฌผ ์˜จ๋„ ๋“ฑ ํ™˜๊ฒฝ ์š”์ธ์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๊ธ‰๋ณ€ํ•˜๋ฉฐ, ์ด๋Š” ์ƒํƒœ ์ „์ด ํ™•๋ฅ ์ด ๊ณ ์ •๋˜์ง€ ์•Š๋Š” ๋น„์ •์ƒ ๋งˆ์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •(MDP)์„ ๋งŒ๋“ ๋‹ค. AUV ์ œ์•ฝ : ๋ฐฐํ„ฐ๋ฆฌ ์ˆ˜๋ช…, ์ด๋™ ์†๋„, ์„ผ์„œ ๋ฒ”์œ„ ๋“ฑ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์ด ์กด์žฌํ•ด ํƒ์ƒ‰ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•ด์•ผ ํ•œ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | |

Learning Detection
Remarks on the inverse Littlewood conjecture

Remarks on the inverse Littlewood conjecture

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฆฌํ‹€์šฐ๋“œ ์ถ”์ธก์€ 1980๋…„๋Œ€ ์ดˆ Konyagin๊ณผ McGeheeโ€‘Pignoโ€‘Smith์— ์˜ํ•ด ์ฆ๋ช…๋œ ๊ณ ์ „์ ์ธ ๊ฒฐ๊ณผ์ด๋ฉฐ, (|widehat{mathbf 1 A}| {1})๊ฐ€ (log N)๋ณด๋‹ค ํฌ๊ฒŒ ํ•˜ํ•œ์„ ๊ฐ–๋Š”๋‹ค๋Š” ๋ณดํŽธ์ ์ธ ์‚ฌ์‹ค์„ ์ œ๊ณตํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ (|widehat{mathbf 1 A}| {1})๊ฐ€ ์ด ํ•˜ํ•œ์— ๊ฐ€๊น๊ฒŒ ์ž‘์•„์ง€๋Š” ๊ฒฝ์šฐ๋Š” ๊ทนํžˆ ๋“œ๋ฌผ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๋ฌด์ž‘์œ„ ํ˜น์€ โ€˜ํฌ์†Œ(lacunary)โ€™ ์ง‘ํ•ฉ์€ (|widehat{mathbf 1 A}| {1}approx N^{1

Mathematics
No Image

Retrieval Augmented Generation (RAG) for Fintech: Agentic Design and Evaluation

1. ๋ฌธ์ œ ์ •์˜์™€ ํ•„์š”์„ฑ FinTech ๋ถ„์•ผ๋Š” ๊ธˆ์œตยท๊ธฐ์ˆ  ์šฉ์–ด๊ฐ€ ๊ฒน์ณ ๋ณตํ•ฉ์ ์ธ ์˜จํ†จ๋กœ์ง€๋ฅผ ํ˜•์„ฑํ•˜๊ณ , ์•ฝ์–ด์™€ ์ „๋ฌธ ์šฉ์–ด๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋“ฑ์žฅํ•œ๋‹ค. ์ผ๋ฐ˜ RAG๋Š” ์ด๋Ÿฌํ•œ ๋„๋ฉ”์ธ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•ด ๊ฒ€์ƒ‰ ์ •ํ™•๋„ ์™€ ์ƒ์„ฑ ํ’ˆ์งˆ ์ด ์ €ํ•˜๋œ๋‹ค. ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜โ€์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋„์ž…ํ•ด ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ์ „์ฒ˜๋ฆฌยทํ›„์ฒ˜๋ฆฌ ๋ฅผ ์ž๋™ํ™”ํ•จ์œผ๋กœ์จ ๋„๋ฉ”์ธ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๋ ค ํ•œ๋‹ค. 2. ์ œ์•ˆ๋œ ์•„ํ‚คํ…์ฒ˜์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ ์š”์†Œ Query Reformulation Agent : ์‚ฌ์šฉ์ž์˜ ์›์‹œ ์งˆ์˜๋ฅผ ๋„๋ฉ”์ธ ์–ดํœ˜์™€ ์—ฐ๊ด€๋œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์˜ˆ) โ€œAPRโ€ โ†’ โ€œAnn

No Image

Reward-Guided Discrete Diffusion via Clean-Sample Markov Chain for Molecule and Biological Sequence Design

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ด์‚ฐ ๋””ํ“จ์ „ ๋ชจ๋ธ์˜ ํ•„์š”์„ฑ : SMILES, DNA ์„œ์—ด ๋“ฑ์€ ๊ณ ์ •๋œ ์ˆœ์„œ๊ฐ€ ์—†๊ฑฐ๋‚˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ์  ์ œ์•ฝ์„ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด์˜ ์ž๋™ํšŒ๊ท€ ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๊ธฐ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ณด์ƒโ€‘๊ฐ€์ด๋“œ ์ƒ์„ฑ์˜ ์–ด๋ ค์›€ : ๊ณผํ•™์  ๋ณด์ƒ(Drugโ€‘likeness, QED, ํ•ฉ์„ฑ ๊ฐ€๋Šฅ์„ฑ ๋“ฑ)์€ ํ† ํฐ ํ•˜๋‚˜์˜ ์ž‘์€ ๋ณ€ํ˜•์—๋„ ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ค‘๊ฐ„ ๋‹จ๊ณ„์—์„œ ๊ณ„์‚ฐ๋˜๋Š” ๋ณด์ƒ์€ โ€œ๋…ธ์ด์ฆˆโ€๊ฐ€ ์‹ฌํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ž…์ž ๊ธฐ๋ฐ˜(SMC, SVDD) ํ˜น์€ ๋ฒ ์ŠคํŠธโ€‘์˜ค๋ธŒโ€‘N(BoN) ๋ฐฉ์‹์€ ํšจ์œจ์ด ๋–จ์–ด์ง„๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“

Machine Learning Computer Science
SA-SSL-MOS: Self-supervised Learning MOS Prediction with Spectral Augmentation for Generalized Multi-Rate Speech Assessment

SA-SSL-MOS: Self-supervised Learning MOS Prediction with Spectral Augmentation for Generalized Multi-Rate Speech Assessment

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹ค์ค‘ ๋ ˆ์ดํŠธ SQA์˜ ํ•„์š”์„ฑ : ์‹ค์ œ ์„œ๋น„์Šค(VoIP, ์ŠคํŠธ๋ฆฌ๋ฐ ๋“ฑ)์—์„œ๋Š” 16 kHz๋ถ€ํ„ฐ 48 kHz๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ƒ˜ํ”Œ๋ง ๋ ˆ์ดํŠธ๊ฐ€ ํ˜ผ์žฌํ•œ๋‹ค. ๊ธฐ์กด ๋น„์นจ์ž…ํ˜• SQA ๋ชจ๋ธ์€ 16 kHz ์ „์ฒ˜๋ฆฌ ํ›„ SSL ํŠน์ง•์„ ์‚ฌ์šฉํ•ด ๊ณ ์ฃผํŒŒ ์†์‹ค ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ : MOS ๋ผ๋ฒจ์ด ์žˆ๋Š” ๋‹ค์ค‘ ๋ ˆ์ดํŠธ ๋ฐ์ดํ„ฐ์…‹์€ AudioMOS 2025 ์ฑŒ๋ฆฐ์ง€ ์ •๋„๋กœ ๊ทนํžˆ ์ œํ•œ์ ์ด๋ฉฐ, ๋ ˆ์ดํŠธ๋ณ„ MOS ์Šค์ผ€์ผ ์ฐจ์ด(๋ฒ”์œ„โ€‘ํ‰๋“ฑ ํŽธํ–ฅ)๋„ ์กด์žฌํ•œ๋‹ค. 2. ์ œ์•ˆ ๋ฐฉ๋ฒ• (SAโ€‘SSLโ€‘MOS) | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ๊ตฌํ˜„ ์„ธ๋ถ€ | |

Audio Processing Electrical Engineering and Systems Science Learning
Scaling Laws for Economic Productivity: Experimental Evidence in LLM-Assisted Consulting, Data Analyst, and Management Tasks

Scaling Laws for Economic Productivity: Experimental Evidence in LLM-Assisted Consulting, Data Analyst, and Management Tasks

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๊ฒฉํžˆ ์„ฑ์žฅํ•˜๊ณ  ์žˆ๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๊ฒฝ์ œ์  ํŒŒ๊ธ‰ ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ํŠนํžˆ ๋ชจ๋ธ์˜ ํ•™์Šต ์—ฐ์‚ฐ๋Ÿ‰(์ปดํ“จํŠธ)๊ณผ ์‹ค์ œ ์—…๋ฌด ํ˜„์žฅ์—์„œ์˜ ์ƒ์‚ฐ์„ฑ ๊ฐ„์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ ์„ค๊ณ„๋Š” ์‚ฌ์ „ ๋“ฑ๋ก(preregistration) ๋ฐฉ์‹์„ ์ฑ„ํƒํ•ด ๊ฐ€์„ค ์„ค์ •๊ณผ ๋ถ„์„ ์ ˆ์ฐจ๋ฅผ ์‚ฌ์ „์— ๊ณต๊ฐœํ•จ์œผ๋กœ์จ ๊ฒฐ๊ณผ์˜ ์‹ ๋ขฐ์„ฑ์„ ๋†’์˜€๋‹ค. ์‹คํ—˜ ์ฐธ์—ฌ์ž๋Š” 500๋ช… ์ด์ƒ์œผ๋กœ, ์ปจ์„คํŒ…, ๋ฐ์ดํ„ฐ ๋ถ„์„, ๊ด€๋ฆฌ ๋“ฑ ๊ณ ๋ถ€๊ฐ€๊ฐ€์น˜ ์ง๊ตฐ์„ ๋Œ€ํ‘œํ•œ๋‹ค. ์ด๋“ค์€ 13๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ LLM(๊ทœ๋ชจยท์•„ํ‚คํ…์ฒ˜ยทํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ๋‹ค์–‘ํ•จ) ์ค‘ ํ•˜๋‚˜๋ฅผ ๋ฌด์ž‘์œ„๋กœ ํ• ๋‹น๋ฐ›

Data
Scenario Approach with Post-Design Certification of User-Specified Properties

Scenario Approach with Post-Design Certification of User-Specified Properties

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์‹œ๋‚˜๋ฆฌ์˜ค ์ ‘๊ทผ๋ฒ• ์€ ์„ค๊ณ„์™€ ๊ฒ€์ฆ์„ ๋™์ผํ•œ ์ƒ˜ํ”Œ ์ง‘ํ•ฉ์œผ๋กœ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๋ณ„๋„์˜ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š” ์—†๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค

Statistics
No Image

ScRPO: From Errors to Insights

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ LLM์˜ ์ˆ˜ํ•™์  ์ถ”๋ก  ํ•œ๊ณ„ : ๊ธฐ์กด LLM์€ ๋ณต์žกํ•œ ์ˆ˜ํ•™ ๋ฌธ์ œ ํ•ด๊ฒฐ ์‹œ โ€œํ‘œ๋ฉด์ ์ธ ํŒจํ„ด ๋งค์นญโ€์— ๋จธ๋ฌด๋ฅด๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ๋…ผ๋ฆฌ์  ์˜ค๋ฅ˜์™€ ๊ณ„์‚ฐ ์‹ค์ˆ˜๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ž๊ธฐ ๊ต์ • ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ํ•„์š”์„ฑ : ์ธ๊ฐ„์ด ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ์˜ค๋ฅ˜๋ฅผ ์ธ์‹ํ•˜๊ณ  ๊ต์ •ํ•˜๋Š” ๊ณผ์ •์ด ํ•™์Šต ํšจ์œจ์„ ํฌ๊ฒŒ ๋†’์ด๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, AI๋„ ์˜ค๋ฅ˜๋ฅผ โ€œํ•™์Šต ์ž์›โ€์œผ๋กœ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ScRPO๋Š” ์ด๋Ÿฌํ•œ ์ธ๊ฐ„โ€‘์œ ์‚ฌ ๋ฉ”ํƒ€โ€‘ํ•™์Šต์„ ๊ฐ•ํ™”ํ•™์Šต์— ๋„์ž…ํ•œ ์ตœ์ดˆ ์‚ฌ๋ก€ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜ | ์ฃผ์š” ๊ตฌํ˜„ | | | | | | ์‹œ๋„โ€‘์‹คํŒจ

No Image

Solution Space Topology Guides CMTS Search

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ MCTS์™€ ์œ„์ƒ์˜ ๊ฒฐํ•ฉ ์€ ์ตœ๊ทผ ๊ฐ•ํ™”ํ•™์Šตยท๊ฒŒ์ž„ AI ๋ถ„์•ผ์—์„œ ํ™œ๋ฐœํžˆ ํƒ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„ ์ •์ ์ธ ๋ฌธ์ œ ๊ณต๊ฐ„ ์œ„์ƒ (์˜ˆ: ์ฒด์Šค ๋ณด๋“œ, Go ๊ฒฉ์ž)์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ํผ์ฆ์ฒ˜๋Ÿผ ํ•ด๋‹ต์ด ๋‹ค์ค‘ ์ œ์•ฝ์— ์˜ํ•ด ์ •์˜๋˜๋Š” ๊ฒฝ์šฐ ์—๋Š” ์ ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ โ€œํ•ด๋‹ต ๊ณต๊ฐ„โ€ ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํƒ์ƒ‰ ํšจ์œจ์„ ๋†’์ด๋Š” ์œ„์ƒ ์ •๋ณด ๋ฅผ ๋™์ ์œผ๋กœ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ํ˜์‹ ์„ฑ์„ ๊ฐ€์ง„๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ํ‰๊ฐ€ | | | | | | 1 | ํŒจํ„ด ๊ทœ์น™ ์ž๋™ ํƒ์ง€ (5๊ฐ€์ง€ ์œ ํ˜•, 100 %

No Image

Sparse Additive Model Pruning for Order-Based Causal Structure Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ˆœ์„œ ๊ธฐ๋ฐ˜ ์ธ๊ณผ ํ•™์Šต ์€ ์œ„์ƒ ์ˆœ์„œ๋ฅผ ๋ฏธ๋ฆฌ ์ถ”์ •ํ•จ์œผ๋กœ์จ DAG ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ์ง€์ˆ˜์ ์œผ๋กœ ์ถ•์†Œํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์™„์ „ ์—ฐ๊ฒฐ๋œ DAG์—์„œ ๋ถˆํ•„์š”ํ•œ ์—ฃ์ง€๋ฅผ ์ œ๊ฑฐํ•˜๋Š” pruning ๋‹จ๊ณ„ ๊ฐ€ ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์˜ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•œ๋‹ค. ๊ธฐ์กด CAMโ€‘pruning ์€ GAM์„ ์ด์šฉํ•ด ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ฐ ๋ถ€๋ชจโ€‘์ž์‹ ์Œ์— ๋Œ€ํ•ด ๊ฐ€์„ค ๊ฒ€์ •์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๊ณผ์ •์€ (i) ๊ณ ๋น„์šฉ ๋ชจ๋ธ ํ”ผํŒ… ๊ณผ (ii) ๋‹ค์ค‘ ๊ฒ€์ • ์— ๋”ฐ๋ฅธ ํ†ต๊ณ„์  ํŒŒ์›Œ ๊ฐ์†Œ ๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ์ ์„ ๊ฐ€์ง„๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด Sparse Addit

Machine Learning Statistics Model Learning
No Image

Structured Uncertainty guided Clarification for LLM Agents

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ LLM ์—์ด์ „ํŠธ์™€ ๋„๊ตฌ ํ˜ธ์ถœ : ์ตœ๊ทผ LLM์— ์™ธ๋ถ€ ๋„๊ตฌ(๊ฒ€์ƒ‰, ๊ณ„์‚ฐ, API ํ˜ธ์ถœ ๋“ฑ)๋ฅผ ์—ฐ๊ฒฐํ•ด ๋ณตํ•ฉ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ์šฉ์ž์˜ ์ง€์‹œ๊ฐ€ ๋ชจํ˜ธํ•˜๊ฑฐ๋‚˜ ๋ถˆ์™„์ „ํ•  ๊ฒฝ์šฐ, ์—์ด์ „ํŠธ๋Š” ์ž˜๋ชป๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์— ์‹คํŒจํ•œ๋‹ค. ๊ธฐ์กด ํ•ด๊ฒฐ์ฑ…์˜ ํ•œ๊ณ„ : ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฐ˜ ๋ช…ํ™•ํ™” : โ€œ๋‹ค์‹œ ๋ฌผ์–ด๋ณด๋ผโ€๋Š” ์ผ๋ฐ˜์ ์ธ ์ „๋žต์€ ์งˆ๋ฌธ ์ˆ˜๊ฐ€ ๊ณผ๋‹คํ•ด ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋ถˆํ™•์‹ค์„ฑ ๊ธฐ๋ฐ˜ ์งˆ๋ฌธ : ๋‹จ์ผ ์Šค์นผ๋ผ ๋ถˆํ™•์‹ค์„ฑ(์˜ˆ: ์—”ํŠธ๋กœํ”ผ)๋งŒ์„ ํ™œ์šฉํ•˜๋ฉด ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2.

Surrogate-Based Prevalence Measurement for Large-Scale A/B Testing

Surrogate-Based Prevalence Measurement for Large-Scale A/B Testing

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋…ธ์ถœ ๋น„์œจ(prevalence) ์€ ์ฝ˜ํ…์ธ  ์†์„ฑ(์˜ˆ: ์Œ์‹ ๋ ˆ์‹œํ”ผ, AI ์ƒ์„ฑ ๋“ฑ)์˜ ์ „์ฒด ์ธ์ƒ ์ค‘ ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ๋กœ, ์ •์ฑ…ยท์ถ”์ฒœ ์‹œ์Šคํ…œ์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๋Š” ํ•ต์‹ฌ ์ง€ํ‘œ๋‹ค. ๊ธฐ์กด ๋ฐฉ์‹์€ PPSWOR(ํฌ๊ธฐ ๋น„๋ก€ ๋ฌด์ž‘์œ„ ์ถ”์ถœ) + LLM ๋ผ๋ฒจ๋ง ์œผ๋กœ ๊ณ ์ •๋ฐ€ ์ถ”์ •ํ•˜์ง€๋งŒ, ์‹คํ—˜ ์ˆ˜๊ฐ€ ์ˆ˜๋ฐฑ ๊ฐœ์— ๋‹ฌํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ํ”Œ๋žซํผ์—์„œ๋Š” ๋น„์šฉยท์‹œ๊ฐ„ ์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. 2. ์ œ์•ˆ ๋ฐฉ๋ฒ• โ€“ ๋Œ€์ฒด ์ง€ํ‘œ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ | ๋‹จ๊ณ„ | ์„ค๋ช… | | | | | ์˜คํ”„๋ผ์ธ ๋ผ๋ฒจ๋ง | ์ƒ˜ํ”Œ์„ LLM(์ „๋ฌธ๊ฐ€ ๊ฒ€์ฆ ํ”„๋กฌํ”„ํŠธ)์œผ๋กœ ๋ผ๋ฒจ๋งํ•˜๊ณ , ๋ฒ„ํ‚ท(buck

Statistics Applications
No Image

Temporal Latent Variable Structural Causal Model for Causal Discovery under External Interferences

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์™ธ๋ถ€ ๊ฐ„์„ญ(External Interferences) : ๊ด€์ธก ๋ณ€์ˆ˜์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋งŒ ์ง์ ‘ ์ธก์ •๋˜์ง€ ์•Š๋Š” ์š”์ธ๋“ค. ๊ธฐ์กด ์ธ๊ณผ ํƒ์ƒ‰ ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์š”์ธ์„ ๋ฌด์‹œํ•˜๊ฑฐ๋‚˜ ๋…ธ์ด์ฆˆ๋กœ ์ฒ˜๋ฆฌํ•ด ํŽธํ–ฅ๋œ ์ธ๊ณผ ๊ทธ๋ž˜ํ”„๋ฅผ ํ•™์Šตํ•œ๋‹ค. ์ž ์žฌ ๋ณ€์ˆ˜ ๋„์ž… ํ•„์š”์„ฑ : ์™ธ๋ถ€ ์š”์ธ์„ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ ๊ด€์ธก ๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐ์  ์™œ๊ณก์„ ๋ณด์ •ํ•˜๊ณ , ์ง„์ •ํ•œ ์ธ๊ณผ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ณต์›ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์‹œ๊ฐ„โ€‘์ž ์žฌ๋ณ€์ˆ˜ ๊ตฌ์กฐ ์ธ๊ณผ ๋ชจ๋ธ(TLVโ€‘SCM) ์„ค๊ณ„ | ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ๊ณ 

Model
No Image

Test-Time Tuned Language Models Enable End-to-end De Novo Molecular Structure Generation from MS/MS Spectra

1. ๋ฌธ์ œ ์ •์˜์™€ ๊ธฐ์กด ํ•œ๊ณ„ ํ™•๋ฅ ์  ํŒŒํŽธํ™” ์™€ ํ™”ํ•™ ๊ณต๊ฐ„์˜ ๊ทœ๋ชจ ๋Š” ์ „ํ†ต์ ์ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋งค์นญ ๋ฐฉ์‹์ด ์ƒˆ๋กœ์šด ํ™”ํ•ฉ๋ฌผ์„ ๋‹ค๋ฃจ๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ธฐ์กด ํŒŒ์ดํ”„๋ผ์ธ์€ (a) ์ŠคํŽ™ํŠธ๋Ÿผ โ†’ (b) ์ง€๋ฌธ ์˜ˆ์ธก โ†’ (c) ํ›„๋ณด ๊ตฌ์กฐ ๊ฒ€์ƒ‰ โ†’ (d) ์žฌ์ ์ˆ˜ํ™” ๋“ฑ ๋‹ค๋‹จ๊ณ„ ๊ณผ์ •์„ ๊ฑฐ์น˜๋ฉฐ, ๊ฐ ๋‹จ๊ณ„๋งˆ๋‹ค ์˜ค๋ฅ˜๊ฐ€ ๋ˆ„์ ๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ํŠนํžˆ ๋„๋ฉ”์ธ ์ด๋™(domain shift) โ€”ํ›ˆ๋ จ ์‹œ ์‚ฌ์šฉ๋œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ŠคํŽ™ํŠธ๋Ÿผ๊ณผ ์‹ค์ œ ์‹คํ—˜ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ„ ์ฐจ์ดโ€”๊ฐ€ ๋ชจ๋ธ ์ผ๋ฐ˜ํ™”์— ํฐ ์žฅ์• ๋ฌผ๋กœ ์ž‘์šฉํ•œ๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด Transformer ๊ธฐ๋ฐ˜ ์‹œํ€€์Šคโ€‘ํˆฌโ€‘์‹œํ€€

Model
No Image

Time-to-Move: Training-Free Motion Controlled Video Generation via Dual-Clock Denoising

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Diffusion ๋น„๋””์˜ค ์ƒ์„ฑ ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ์ƒ์„ฑ ๋ชจ๋ธ ์ค‘ ํ•˜๋‚˜์ง€๋งŒ, ํ…์ŠคํŠธยท์ด๋ฏธ์ง€ ์กฐ๊ฑด๋งŒ์œผ๋กœ๋Š” ์‹œ๊ฐ„์ถ•(๋™์ž‘) ์ œ์–ด ๊ฐ€ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด์˜ motionโ€‘conditioned ๋ฐฉ๋ฒ•๋“ค์€ ํŠน์ • ๋ชจ๋ธ์— ๋งž์ถ˜ ํŒŒ์ธโ€‘ํŠœ๋‹ ์„ ํ•„์š”๋กœ ํ•˜์—ฌ, ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹ยท๋ฐฑ๋ณธ์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๊ณ , GPUยท์‹œ๊ฐ„ ๋น„์šฉ์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. ์‚ฌ์šฉ์ž ์นœํ™”์ ์ธ ๊ฑฐ์นœ ์• ๋‹ˆ๋ฉ”์ด์…˜ ์ž…๋ ฅ (์˜ˆ: ๊ฐ„๋‹จํ•œ ๋“œ๋ž˜๊ทธ, ๊นŠ์ด ๋งต ์žฌํˆฌ์˜)์„ ํ™œ์šฉํ•˜๋ฉด, ๋น„์ „๋ฌธ๊ฐ€๋„ ์ง๊ด€์ ์œผ๋กœ ์›€์ง์ž„์„ ์ง€์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | |

No Image

TiS-TSL: Image-Label Supervised Surgical Video Stereo Matching via Time-Switchable Teacher-Student Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์™ธ๊ณผ ์˜์ƒ์˜ ํŠน์ˆ˜์„ฑ : ์ˆ˜์ˆ  ํ˜„์žฅ์€ ์กฐ๋ช… ๋ณ€ํ™”, ์กฐ์ง ๋ณ€ํ˜•, ์นด๋ฉ”๋ผ ์›€์ง์ž„ ๋“ฑ์œผ๋กœ ์ธํ•ด ์ „ํ†ต์ ์ธ ์Šคํ…Œ๋ ˆ์˜ค ๋งค์นญ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‰ฝ๊ฒŒ ์‹คํŒจํ•œ๋‹ค. ๋ผ๋ฒจ๋ง ๋น„์šฉ : ์ •ํ™•ํ•œ ๊นŠ์ด ๋ผ๋ฒจ์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „๋ฌธ ์˜๋ฃŒ์ง„์˜ ์ˆ˜์ž‘์—… ํ˜น์€ ๊ณ ๊ฐ€์˜ ์žฅ๋น„๊ฐ€ ํ•„์š”ํ•ด ๋ฐ์ดํ„ฐ ํ™•๋ณด๊ฐ€ ์–ด๋ ค์šด ์‹ค์ •์ด๋‹ค. ๊ต์‚ฌโ€‘ํ•™์ƒ ํ•™์Šต์˜ ์žฅ์  : ๋ผ๋ฒจ์ด ํ’๋ถ€ํ•œ ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ๊ฐ•๋ ฅํ•œ ๊ต์‚ฌ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ณ , ์ดํ›„ ๋ผ๋ฒจ์ด ์ ์€ ์ƒํ™ฉ์—์„œ๋„ ํ•™์ƒ ๋ชจ๋ธ์ด ์ผ๋ฐ˜ํ™”ํ•˜๋„๋ก ์œ ๋„ํ•จ์œผ๋กœ์จ ๋ผ๋ฒจ ์˜์กด๋„๋ฅผ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Timeโ€‘Switchable Tea

Learning
No Image

Towards a Standard, Enterprise-Relevant Agentic AI Benchmark: Lessons from 5.5 billion tokens' worth of agentic AI evaluations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์—์ด์ „ํŠธํ˜• AI : ๋‹จ์ˆœ ํ…์ŠคํŠธ ์ƒ์„ฑ์ด ์•„๋‹ˆ๋ผ ์™ธ๋ถ€ ๋„๊ตฌ ํ˜ธ์ถœ, ์—ฐ์†์ ์ธ ์˜์‚ฌ๊ฒฐ์ •, ๋ชฉํ‘œ ์ง€ํ–ฅ์  ํ–‰๋™์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ๋ธ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์—… ํ˜„์žฅ์˜ ์š”๊ตฌ : ๋น„์šฉ ํšจ์œจ์„ฑ, ๋ณด์•ˆยทํ”„๋ผ์ด๋ฒ„์‹œ, ์‹ค์‹œ๊ฐ„ ์˜์‚ฌ๊ฒฐ์ • ๋Šฅ๋ ฅ ๋“ฑ ์ „ํ†ต์ ์ธ โ€œ์ •๋‹ต ๋งž์ถ”๊ธฐโ€ ์œ„์ฃผ์˜ ๋ฒค์น˜๋งˆํฌ๊ฐ€ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•˜๋Š” ์š”์†Œ๊ฐ€ ๋‹ค์ˆ˜ ์กด์žฌํ•œ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ์˜ ํ•œ๊ณ„ : ๋ฐ์ดํ„ฐ ์˜ค์—ผ (contamination) โ†’ ๋ชจ๋ธ์ด ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์ „์— ํ•™์Šตํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ. ์—์ด์ „์‹œ(agency) ๋ฏธ์ธก์ • โ†’ ๋„๊ตฌ ์‚ฌ์šฉ, ํ”Œ๋ž˜๋‹, ๋ถˆํ™•์‹ค์„ฑ ํ•˜ ์˜์‚ฌ๊ฒฐ์ • ๋“ฑ. 2. KAMI v0

Towards a topological view of blood pressure regulation

Towards a topological view of blood pressure regulation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์งˆ๋ฌธ ๊ธฐ์กด ํ˜ˆ์•• ์กฐ์ ˆ ๋ชจ๋ธ์€ ๋‚˜๋ฌดํ˜•(Branching) ๊ตฌ์กฐ ๋ฅผ ์ „์ œ๋กœ ํ•˜๋ฉฐ, ์••๋ ฅ ๊ตฌ๋ฐฐ๊ฐ€ ๊ตญ์†Œ์ ์œผ๋กœ ์†Œ๋ฉธํ•œ๋‹ค๋Š” ๊ฐ€์ •์„ ๋‘”๋‹ค. ์‹ค์ œ ์ธ๊ฐ„ ์ˆœํ™˜๊ณ„๋Š” Circle of Willis, ์ฝœ๋ž˜ํ„ฐ๋Ÿด ๋ฃจํ”„, ๋™์ •๋งฅ๋ฃจ(AVF) ๋“ฑ ์—ฌ๋Ÿฌ ํ์‡„ ๋ฃจํ”„๋ฅผ ํฌํ•จํ•œ๋‹ค. ์ €์ž๋Š” โ€œ ํ† ํด๋กœ์ง€ ์ž์ฒด๊ฐ€ ์••๋ ฅ ๋™์—ญํ•™์„ ์ œํ•œํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€? โ€๋ผ๋Š” ํ•ต์‹ฌ ์งˆ๋ฌธ์„ ์ œ์‹œํ•œ๋‹ค. 2. ๋ชจ๋ธ๋ง ์ ‘๊ทผ๋ฒ• | ์š”์†Œ | ์„ค๋ช… | ์˜์˜ | | | | | | 1์ฐจ์› ์—ฐ์† ๋„๋ฉ”์ธ | ํ˜ˆ๊ด€์„ ๊ธธ์ด L(20 cm)๋งŒํผ์˜ 1D ์„ ์œผ๋กœ ๋‹จ์ˆœํ™” | ํ† ํด๋กœ์ง€(์—ด๋ฆผ vs ํ์‡„)๋งŒ์„ ๋ถ„

Physics
No Image

Towards Reliable Human Evaluations in Gesture Generation: Insights from a Community-Driven State-of-the-Art Benchmark

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ‰๊ฐ€ ํ‘œ์ค€ ๋ถ€์žฌ : ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ข…์ข… โ€œ์ฃผ๊ด€์  ์„ค๋ฌธโ€, โ€œ์†Œ๊ทœ๋ชจ ์‚ฌ์šฉ์ž ์Šคํ„ฐ๋””โ€, ํ˜น์€ โ€œ๋‹จ์ผ ์ง€ํ‘œ(์˜ˆ: FID)โ€์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์‹คํ—˜ ์„ค๊ณ„๊ฐ€ ์ผ๊ด€๋˜์ง€ ์•Š์•„ ๊ฒฐ๊ณผ ์žฌํ˜„์ด ์–ด๋ ค์›€. ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹์˜ ์„ ํƒ : BEAT2๋Š” ๊ณ ํ’ˆ์งˆ ๋ชจ์…˜โ€‘์บก์ฒ˜์™€ ํ’๋ถ€ํ•œ ์Œ์„ฑ ๋ฐ์ดํ„ฐ๊ฐ€ ํฌํ•จ๋œ ํ‘œ์ค€ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ, ์ปค๋ฎค๋‹ˆํ‹ฐ ๋‚ด์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋จ. ๋”ฐ๋ผ์„œ ์ด ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ํ‰๊ฐ€ ํ”„๋กœํ† ์ฝœ์„ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์€ ์ „์ฒด ๋ถ„์•ผ์— ํŒŒ๊ธ‰ ํšจ๊ณผ๊ฐ€ ํด ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋จ. 2. ์ œ์•ˆ๋œ ์ธ๊ฐ„ ํ‰๊ฐ€ ํ”„๋กœํ† ์ฝœ | ์š”์†Œ | ๊ตฌ์ฒด์  ์„ค๊ณ„ | ์ด์œ  | | | | |

No Image

Trajectory Design for UAV-Based Low-Altitude Wireless Networks in Unknown Environments: A Digital Twin-Assisted TD3 Approach

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LAWN์˜ ์‹ค์šฉ์„ฑ : ์žฌ๋‚œ ๋ณต๊ตฌ, ๊ตฐ์‚ฌ ์ž‘์ „, ๋†์—… ๋“ฑ ์ง€์ƒ ์ธํ”„๋ผ๊ฐ€ ์ œํ•œ๋œ ์ƒํ™ฉ์—์„œ ์ €๊ณ ๋„ ๋ฌด์„ ๋ง์€ ๋น ๋ฅธ ํ†ต์‹  ๋ณต๊ตฌ์™€ ์ปค๋ฒ„๋ฆฌ์ง€๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๋ฏธ์ง€ ํ™˜๊ฒฝ์˜ ๋‚œ์ œ : ๊ธฐ์กด UAV ๊ถค์  ์„ค๊ณ„๋Š” ์‚ฌ์ „ ์ง€๋„๋‚˜ GIS ๋ฐ์ดํ„ฐ๋ฅผ ์ „์ œ๋กœ ํ•˜์ง€๋งŒ, ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ๊ฑด๋ฌผ, ๋‚˜๋ฌด, ์ „์„  ๋“ฑ ๋™์ ์ธ ์žฅ์• ๋ฌผ์ด ์กด์žฌํ•œ๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ(DT)์˜ ๋“ฑ์žฅ : ๋ฌผ๋ฆฌ ์‹œ์Šคํ…œ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ณต์ œยท์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” DT๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •๊ณผ ๊ฐ€์ƒโ€‘์‹ค์ œ ์—ฐ๋™์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์—ฌ, ๋ฏธ์ง€ ํ™˜๊ฒฝ์—์„œ์˜ ํ•™์Šต ๋น„์šฉ์„ ํฌ๊ฒŒ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆ

Network
Tunable Ferroelectric Acoustic Resonators in Monolithic Thin-Film Barium Titanate

Tunable Ferroelectric Acoustic Resonators in Monolithic Thin-Film Barium Titanate

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฌด์„  ํ†ต์‹ ์˜ ๊ณ ๋Œ€์—ญยท๊ณ ๋ฐ€๋„ํ™” ์— ๋”ฐ๋ผ ๋‹ค์ค‘ ๋Œ€์—ญ์„ ํ•˜๋‚˜์˜ ํ•„ํ„ฐ๋กœ ์ปค๋ฒ„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋ณ€ํ˜• ์ดˆ์ŒํŒŒ ํ•„ํ„ฐ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ๊ธฐ์กด ํ”ผ์—์กฐ ์ „๊ทน(AlN, ScAlN, LN, LT ๋“ฑ)์€ ๊ณ ์ • ์ฃผํŒŒ์ˆ˜ ์ด๋ฉฐ, ๋‹ค์ค‘ ๋Œ€์—ญ์„ ์œ„ํ•ด์„œ๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•„ํ„ฐ๊ฐ€ ํ•„์š”ํ•ด ๋ฉด์ ยท๋น„์šฉ์ด ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ฐ•์œ ์ „์ฒด(Ferroelectric) ๋Š” DC ๋ฐ”์ด์–ด์Šค๋งŒ์œผ๋กœ ์ „๊ธฐโ€‘๊ธฐ๊ณ„ ๊ฒฐํ•ฉ(kยฒ)๊ณผ ์œ ํšจ ๊ฐ•์„ฑ์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์–ด, ์ „์••์— ์˜ํ•œ ์ฃผํŒŒ์ˆ˜ ํŠœ๋‹ ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. 2. ์ฃผ์š” ๊ณตํ—Œ | ๊ตฌ๋ถ„ | ๊ธฐ์กด ์—ฐ๊ตฌ | ๋ณธ ์—ฐ๊ตฌ | | | | | | ๊ตฌ์กฐ | ๋‘๊ป˜ ์ •์˜ F

Electrical Engineering and Systems Science
No Image

Two Heads are Better than One: Distilling Large Language Model Features Into Small Models with Feature Decomposition and Mixture

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ RL ๊ธฐ๋ฐ˜ ์‹œ์žฅ ๋ฉ”์ดํ‚น ์€ ๋ณต์žกํ•œ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ๊ฐ•์ ์ด ์žˆ์ง€๋งŒ, ๊ณ ์„ฑ๋Šฅ ์ •์ฑ…์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐฉ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค. LLM ์€ ํ’๋ถ€ํ•œ ์–ธ์–ด ์ดํ•ด์™€ ์ถ”๋ก  ๋Šฅ๋ ฅ์œผ๋กœ ๋ณตํ•ฉ์ ์ธ ๊ธˆ์œต ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์œ ๋ฆฌํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋งŽ์•„ ์‹ค์‹œ๊ฐ„ ํŠธ๋ ˆ์ด๋”ฉ์— ๋ถ€์ ํ•ฉํ•˜๋‹ค. ๋”ฐ๋ผ์„œ LLM์˜ ์ง€์‹์„ ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ์— ์••์ถ• ํ•˜๋Š” ๋””์Šคํ‹ธ๋ ˆ์ด์…˜์ด ์‹ค์‹œ๊ฐ„ ์‹œ์žฅ ๋ฉ”์ดํ‚น์— ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด ๋””์Šคํ‹ธ๋ ˆ์ด์…˜ ์—ฐ๊ตฌ๋Š” ์ผ๋ฐ˜ NLP ํƒœ์Šคํฌ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๊ธˆ์œต RL ํ™˜๊ฒฝ์— ํŠนํ™”๋œ ์ ‘๊ทผ์€ ๋ถ€์กฑํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ

Model
No Image

URDF-Anything: Constructing Articulated Objects with 3D Multimodal Language Model

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋””์ง€ํ„ธ ํŠธ์œˆ ์€ ๋กœ๋ด‡ ํ•™์Šตยท์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ํ˜„์‹ค ์„ธ๊ณ„์™€์˜ ๊ฒฉ์ฐจ๋ฅผ ์ค„์ด๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋ฉฐ, ํŠนํžˆ ๊ด€์ ˆํ˜•(articulated) ๊ฐ์ฒด๋Š” ๋ณต์žกํ•œ ์šด๋™ํ•™ ๋ชจ๋ธ๋ง์ด ์š”๊ตฌ๋ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ํŒŒ์ดํ”„๋ผ์ธ์€ ์ˆ˜๋™ ๋ชจ๋ธ๋ง (CAD ์„ค๊ณ„) ํ˜น์€ ๋‹ค๋‹จ๊ณ„ ์ž๋™ํ™” (์  ํด๋ผ์šฐ๋“œ โ†’ ํŒŒํŠธ ๋ถ„ํ•  โ†’ URDF ์ƒ์„ฑ)๋กœ ๊ตฌ์„ฑ๋ผ ์‹œ๊ฐ„ยท๋…ธ๋ ฅ์ด ๋งŽ์ด ์†Œ์š”๋ฉ๋‹ˆ๋‹ค. ์ตœ๊ทผ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM) ์ด ํ…์ŠคํŠธ์™€ 3D ๋ฐ์ดํ„ฐ๋ฅผ ๋™์‹œ์— ์ดํ•ดยท์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ํ™œ์šฉํ•˜๋ฉด, ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ ๋ชจ๋ธ๋กœ ์••์ถ•ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์ œ๊ธฐ๋ฉ๋‹ˆ๋‹ค. 2

Model
No Image

Variational Polya Tree

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฐ€๋„ ์ถ”์ •๊ณผ ์ƒ์„ฑ ๋ชจ๋ธ : ํ˜„๋Œ€ ์ƒ์„ฑ ๋ชจ๋ธ(GAN, VAE, ํ๋ฆ„ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๋“ฑ)์€ ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์˜ ํ™•๋ฅ  ๋ฐ€๋„ ํ•จ์ˆ˜๋ฅผ ํ•™์Šตํ•ด์•ผ ํ•œ๋‹ค. ์ •ํ™•ํ•œ ๋ฐ€๋„ ์ถ”์ •์€ ์ƒ˜ํ”Œ ํ’ˆ์งˆ, ์ด์ƒ ํƒ์ง€, ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ • ๋“ฑ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ฒ ์ด์ง€์•ˆ ๋น„๋ชจ์ˆ˜ ๋ฐฉ๋ฒ•์˜ ์žฅ์  : Polya Tree๋Š” ๋ถ„ํ•  ์ •๋ณต ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๊ตฌ๊ฐ„๋ณ„ ํ™•๋ฅ  ์งˆ๋Ÿ‰์„ ์ง์ ‘ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด๋Š” ์ž‘์€ ๊ตฌ๊ฐ„์—์„œ๋„ ์ •ํ™•ํ•œ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์‚ฌํ›„ ๋ถ„ํฌ๊ฐ€ ๋ช…์‹œ์ ์œผ๋กœ ์ œ๊ณต๋ผ ๋ถˆํ™•์‹ค์„ฑ ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. MCMC์˜ ํ•œ๊ณ„ : ๊ธฐ์กด Polya Tree ์ถ”๋ก ์€ Gibbs

No Image

Vector Symbolic Algebras for the Abstraction and Reasoning Corpus

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ARCโ€‘AGI ๋Š” ์ธ๊ฐ„์˜ ์œ ๋™ ์ง€๋Šฅ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋œ ๋ณตํ•ฉ์ ์ธ ์‹œ๊ฐยท๋…ผ๋ฆฌ ํผ์ฆ ์ง‘ํ•ฉ์œผ๋กœ, ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ 1 % ์ดํ•˜์˜ ์„ฑ๊ณต๋ฅ ์„ ๋ณด์ธ๋‹ค. ์ธ๊ฐ„์€ System 1 (๋น ๋ฅด๊ณ  ์ง๊ด€์ ์ธ)๊ณผ System 2 (๋А๋ฆฌ๊ณ  ๋…ผ๋ฆฌ์ ์ธ) ๋‘ ๊ฐ€์ง€ ์ธ์ง€ ์‹œ์Šคํ…œ์„ ๊ต์ฐจ ํ™œ์šฉํ•ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ด๋ก ์„ ์ฐจ์šฉํ•˜๋ฉด, ์ธ๊ณต์ง€๋Šฅ๋„ ์œ ์‚ฌํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ–์ถ”๋ฉด ํšจ์œจ์„ฑ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ์„ค๋ช… | VSA์™€์˜ ์—ฐ๊ณ„ | | | | | | ๊ฐ์ฒด ์ถ”์ถœ | ์ž…๋ ฅ ๊ทธ๋ฆฌ๋“œ์—์„œ ์ƒ‰ยทํ˜•ํƒœยท์œ„์น˜ ๊ธฐ๋ฐ˜์œผ๋กœ ์ถ”์ƒ

No Image

Vibe Learning: Education in the age of AI

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ œ๊ธฐ ์—ญ์‚ฌ์  ๋งฅ๋ฝ : AI์— ๋Œ€ํ•œ ์ธ๊ฐ„โ€‘๊ธฐ๊ณ„ ๋Œ€์ฒด ๋…ผ์Ÿ์€ 1950โ€‘60๋…„๋Œ€ ํŠœ๋ง ํ…Œ์ŠคํŠธ์™€ ์ดˆ๊ธฐ AI ์—ฐ๊ตฌ์—์„œ ์‹œ์ž‘๋ผ ์™”์œผ๋ฉฐ, ์ตœ๊ทผ LLM์˜ ํญ๋ฐœ์  ์„ฑ์žฅ์œผ๋กœ ์‹ค์งˆ์  ์œ„๊ธฐ๊ฐ€ ๋„๋ž˜ํ–ˆ๋‹ค. ๊ต์œก์˜ ์œ„์น˜ : ๊ธฐ์กด ๊ต์œก ์‹œ์Šคํ…œ์€ โ€˜์ง€์‹ ์ „๋‹ฌโ€™์— ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, AI๊ฐ€ ์ •๋ณด ๊ฒ€์ƒ‰ยท์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ์ดˆ์›”ํ•˜๋ฉด์„œ โ€˜์ง€์‹ ์ž์ฒดโ€™๊ฐ€ ๊ฐ€์น˜๊ฐ€ ๊ฐ์†Œํ•˜๊ณ  โ€˜ํ•™์Šต ๋Šฅ๋ ฅยท๋น„ํŒ์  ์‚ฌ๊ณ ยท์ฐฝ์˜์„ฑโ€™์ด ํ•ต์‹ฌ ์—ญ๋Ÿ‰์œผ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. 2. ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ AI์˜ ํ•œ๊ณ„ | ๊ตฌ๋ถ„ | ๊ตฌ์ฒด์  ํ•œ๊ณ„ | ๊ต์œก์  ํ•จ์˜ | | | | | | ๋งฅ๋ฝ ์ดํ•ด | ์žฅ๊ธฐ์  ๋…ผ

Learning
No Image

ViPRA: Video Prediction for Robot Actions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์•ก์…˜ ๋ผ๋ฒจ ๋ถ€์žฌ : ๋Œ€๊ทœ๋ชจ ๋น„๋””์˜ค ๋ฐ์ดํ„ฐ๋Š” ํ’๋ถ€ํ•˜์ง€๋งŒ, ๋กœ๋ด‡ ์ œ์–ด์— ํ•„์š”ํ•œ ํ–‰๋™ ๋ผ๋ฒจ์ด ๊ฑฐ์˜ ์—†๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์ด ๋†’์•„ ํ™•์žฅ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. ์ž ์žฌ ํ–‰๋™(latent action) ์ ‘๊ทผ : ์ตœ๊ทผ ์—ฐ๊ตฌ๋Š” ๋น„๋””์˜ค ์˜ˆ์ธก ๊ณผ์ •์—์„œ ์ถ”์ถœ๋œ ๋‚ด๋ถ€ ํ‘œํ˜„์„ ํ–‰๋™์œผ๋กœ ํ™œ์šฉํ•˜๋ ค ํ•˜์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€ autoregressive ๋ฐฉ์‹์œผ๋กœ ์ •์ฑ…์„ ์ง์ ‘ ํ•™์Šตํ•œ๋‹ค. ์ด๋Š” โ€œ์–ด๋–ค ํ–‰๋™์„ ํ•ด์•ผ ํ•˜๋Š”๊ฐ€โ€๋งŒ์„ ํ•™์Šตํ•˜๊ณ , โ€œ์™œ ๊ทธ๋Ÿฐ ๋ณ€ํ™”๊ฐ€ ์ผ์–ด๋‚˜๋Š”๊ฐ€โ€์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ์  ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค. 2. ViPRA์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์„ค๋ช…

Weighted Contrastive Learning for Anomaly-Aware Time-Series Forecasting

Weighted Contrastive Learning for Anomaly-Aware Time-Series Forecasting

๋ณธ ๋…ผ๋ฌธ์€ ์‹ค์‹œ๊ฐ„ ํ˜„๊ธˆ ๊ด€๋ฆฌ์™€ ๊ฐ™์ด ๊ธ‰๊ฒฉํ•œ ์ˆ˜์š” ๋ณ€๋™์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ, ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์‹œ๊ณ„์—ด ์˜ˆ์ธก๊ธฐ๊ฐ€ ๊ฒช๋Š” โ€œ๋ถ„ํฌ ์ด๋™(Distribution Shift)โ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์ธ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ๋ชจ๋ธ์€ ํ›ˆ๋ จ ์‹œ ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์™€ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ์ตœ์ ํ™”๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์ด์ƒ(์˜ˆ: ๋Œ€๊ทœ๋ชจ ํ˜„๊ธˆ ์ธ์ถœ, ์‹œ์Šคํ…œ ์žฅ์• , ์ž์—ฐ์žฌํ•ด ๋“ฑ)์ด ๋ฐœ์ƒํ•˜๋ฉด ๋‚ด๋ถ€ ํ‘œํ˜„(feature)์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ˜•๋˜์–ด ์˜ˆ์ธก ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ง„์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. ์ฒซ์งธ,

Machine Learning Computer Science Learning
No Image

What Are the Facts? Automated Extraction of Court-Established Facts from Criminal-Court Opinions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๋ฐ์ดํ„ฐ ๊ฒฉ์ฐจ : ํ˜•์‚ฌ ์‚ฌ๋ฒ• ํ–‰์ • ๋ฐ์ดํ„ฐ๋Š” ์‚ฌ๊ฑด ๋ฒˆํ˜ธ, ํ”ผ๊ณ ์ธ, ํ˜•๋Ÿ‰ ๋“ฑ ๋ฉ”ํƒ€์ •๋ณด๋Š” ์ œ๊ณตํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฒ”์ฃ„ ํ–‰์œ„์˜ ๊ตฌ์ฒด์  ์„œ์ˆ ์€ ๊ฑฐ์˜ ํฌํ•จํ•˜์ง€ ์•Š๋Š”๋‹ค. ํŒ๊ฒฐ๋ฌธ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ : ๋Œ€๋ฅ™๋ฒ• ๊ตญ๊ฐ€(ํŠนํžˆ ์Šฌ๋กœ๋ฐ”ํ‚ค์•„)์˜ ํŒ๊ฒฐ๋ฌธ์€ โ€œ์‚ฌ์‹ค๊ด€๊ณ„โ€ ์„น์…˜์— ์ƒ์„ธํ•œ ํ–‰์œ„ ๊ธฐ์ˆ ์„ ๋‹ด๊ณ  ์žˆ์–ด, ์ด๋ฅผ ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋กœ ์ „ํ™˜ํ•˜๋ฉด ๋ฒ”์ฃ„ ์œ ํ˜• ๋ถ„์„, ์ •์ฑ… ํ‰๊ฐ€, ์žฌ๋ฒ” ์œ„ํ—˜ ์˜ˆ์ธก ๋“ฑ์— ํ™œ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  | ์ ‘๊ทผ๋ฒ• | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌํ˜„ ์„ธ๋ถ€ | ํ‰๊ฐ€ ์ง€ํ‘œ | | | | | | | ๊ธฐ๋ณธ ์ •๊ทœํ‘œํ˜„์‹ | โ€œ์‚ฌ์‹คโ€ ์•ž๋’ค์— ์ž์ฃผ ๋“ฑ์žฅํ•˜๋Š”

No Image

Zero Reinforcement Learning Towards General Domains

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Zeroโ€‘RL ์€ LLM์— ์ง์ ‘ ๊ฐ•ํ™”ํ•™์Šต์„ ์ ์šฉํ•ด โ€œ๋ณด์ƒ ๊ธฐ๋ฐ˜โ€ ์ถ”๋ก  ๋Šฅ๋ ฅ ํ–ฅ์ƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด์˜ ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹๊ณผ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ํ˜„์žฌ๊นŒ์ง€๋Š” ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๋ณด์ƒ (์˜ˆ: ์ •๋‹ต ์—ฌ๋ถ€, ์ฝ”๋“œ ์‹คํ–‰ ๊ฒฐ๊ณผ)๋งŒ์„ ์ด์šฉํ•œ ์‹คํ—˜์ด ์ฃผ๋ฅผ ์ด๋ฃจ์–ด, ๋น„๊ฒ€์ฆ ๋„๋ฉ”์ธ (์˜ˆ: ์ผ๋ฐ˜ ์ƒ์‹, ์ฐฝ์˜์  ๊ธ€์“ฐ๊ธฐ)์—์„œ๋Š” ์ ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๊ณ ์ž ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๋ณด์ƒ + ์ƒ์„ฑํ˜• ๋ณด์ƒ ๋ชจ๋ธ ์„ ๊ฒฐํ•ฉํ•ด ๋‘ ๋„๋ฉ”์ธ ๊ฐ„ ์ง€์‹ยท์ถ”๋ก  ์ „์ด ๋ฅผ ์‹œ๋„ํ•œ ๊ฒƒ์ด ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ์ด๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ |

Learning
No Image

ZeroSyl: Simple Zero-Resource Syllable Tokenization for Spoken Language Modeling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ˆœ์ˆ˜ ์Œ์„ฑ ์–ธ์–ด ๋ชจ๋ธ ์€ ํ…์ŠคํŠธ ์ž์›์ด ์ „ํ˜€ ์—†๋Š” ์ €์ž์› ์–ธ์–ด์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์—์„œ ํฐ ๊ธฐ๋Œ€๋ฅผ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ SSL ๊ธฐ๋ฐ˜ ํ† ํฐํ™” (์˜ˆ: w2vโ€‘BERT, HuBERT)์—์„œ๋Š” ํ”„๋ ˆ์ž„โ€‘๋ ˆ๋ฒจ ํ† ํฐ์ด ํ…์ŠคํŠธ ํ† ํฐ๋ณด๋‹ค 10~20๋ฐฐ ์ด์ƒ ๊ธธ์–ด์ ธ, ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์›Œ์ง€๋Š” ์‹œํ€€์Šค ๊ธธ์ด ๋ณ‘๋ชฉ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์Œ์ ˆยท๋‹จ์–ดยท๋‹จ์–ดโ€‘๋ ˆ๋ฒจ ๋‹จ์œ„๋กœ ํ† ํฐ์„ ์žฌ๊ตฌ์„ฑํ–ˆ์ง€๋งŒ, Sylber์™€ SyllableLM์€ ๋‹ค๋‹จ๊ณ„ ํŒŒ์ธํŠœ๋‹ยทํŠน์ˆ˜ ๋ชฉ์  ํ•จ์ˆ˜ยท์ถ”๊ฐ€ ์ธ์ฝ”๋” ๋“ฑ ๋ณต์žกํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ํ•„์š”๋กœ ํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””

NLP Computer Science Model
A golden-ratio partition of information and the balance between prediction and surprise: a neuro-cognitive route to antifragility

A golden-ratio partition of information and the balance between prediction and surprise: a neuro-cognitive route to antifragility

1. ์ด๋ก ์  ๊ธฐ์—ฌ์™€ ์ˆ˜ํ•™์  ์—„๋ฐ€์„ฑ ํ•จ์ˆ˜ (f(p))์˜ ์ •์˜์™€ ํ•ด์„ (f(p) (1 p)ln(1 p)+ln p) ์€ โ€œ์•Œ๋ ค์ง„(ํ™•๋ฅ  (p))โ€๊ณผ โ€œ์•Œ๋ ค์ง€์ง€ ์•Š์€(ํ™•๋ฅ  (1 p))โ€์˜ ์ž๊ธฐโ€‘์ •๋ณด๋Ÿ‰์„ ์ฐจ๊ฐํ•œ ํ˜•ํƒœ๋กœ, ์ •๋ณด์ด๋ก ์  ๊ด€์ ์—์„œ ์ˆœ์ˆ˜ํ•œ ๊ธฐ๋Œ€ ๋†€๋ผ์›€ ์„ ์ธก์ •ํ•œ๋‹ค. ์ €์ž๋Š” ์ด๋ฅผ โ€œ์˜ˆ์ธกโ€‘๋†€๋ผ์›€ ๊ท ํ˜•โ€์ด๋ผ๋Š” ์ธ์ง€โ€‘๋ฉ”ํƒ€ํฌ๋กœ ์—ฐ๊ฒฐ์‹œ์ผœ, (f(p)>0)์ด๋ฉด ๋ฏธ์ง€์˜ ์ž ์žฌ์  ์ถฉ๊ฒฉ ์ด ๊ธฐ๋Œ€๊ฐ’์„ ์ดˆ๊ณผํ•œ๋‹ค๋Š” ์ง๊ด€์„ ์ œ๊ณตํ•œ๋‹ค. ๋ณผ๋ก์„ฑ(Concavity) ์ฆ๋ช… 2์ฐจ ๋ฏธ๋ถ„ (f''(p) frac{1}{p(1 p)} < 0) ๋กœ (0

Mathematics
A Lorentzian Equivariant Index Theorem

A Lorentzian Equivariant Index Theorem

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํ‰๊ฐ€ยท์˜์˜ | | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ | Atiyahโ€‘Singer ์ง€ํ‘œ ์ •๋ฆฌ โ†’ ๋“ฑ๊ฐ€ ๋ฒ„์ „(Atiyahโ€‘Segalโ€‘Singer) โ†’ Lorentzian ์ง€ํ‘œ ์ •๋ฆฌ(Bรคrโ€‘Strohmaier, 2019) <br> ๊ธฐ์กด ๋“ฑ๊ฐ€ ์ง€ํ‘œ๋Š” ์ฃผ๋กœ ๋น„์••์ถ• ์ƒํ™ฉ(Lยฒโ€‘์ธ๋ฑ์Šค)์—์„œ ๋‹ค๋ฃจ์–ด์ง | ์ €์ž๋Š” ์ปดํŒฉํŠธ ๋กœ๋ Œ์ธ  ์‹œ๊ณต๊ฐ„์— ๋“ฑ๊ฐ€์„ฑ ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋น„๋“ฑ๊ฐ€ โ†’ ๋“ฑ๊ฐ€ ์ „์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šด๋‹ค. | | ์ฃผ์š” ์ •๋ฆฌ | Theorem 1.1 : ๋“ฑ๊ฐ€ ์ง€ํ‘œ๋Š” ๊ณ ์ •์  ์ง‘ํ•ฉ ์œ„์˜ (widehat{A})ยท(operatorname

Mathematics
No Image

A Topology-Aware Graph Convolutional Network for Human Pose Similarity and Action Quality Assessment

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ AQA์˜ ๋‚œ์ œ : ๋™์ž‘์„ ๋‹จ์ˆœํžˆ ์ขŒํ‘œ๊ฐ’์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ๊ด€์ ˆ ๊ฐ„ ๊ด€๊ณ„(์—ฐ๊ฒฐ ๊ตฌ์กฐ)์™€ ๊ด€์ ˆ ๊ฐ„ ๊ฑฐ๋ฆฌ ๋น„์œจ ๋“ฑ ์ค‘์š”ํ•œ ํ† ํด๋กœ์ง€ ์ •๋ณด๋ฅผ ๋†“์น˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ : ์ธ๊ฐ„ ๊ณจ๊ฒฉ์€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋…ธ๋“œ(๊ด€์ ˆ)์™€ ์—ฃ์ง€(๋ผˆ)๋กœ ๊ตฌ์„ฑ๋œ ๊ทธ๋ž˜ํ”„์ด๋ฏ€๋กœ, GCN์„ ์ด์šฉํ•˜๋ฉด ํ† ํด๋กœ์ง€ ์ •๋ณด๋ฅผ ์ง์ ‘ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด Topologyโ€‘Aware GCN : ๊ธฐ์กด GCN์— ๋™์  ์ธ์ ‘ ํ–‰๋ ฌ ๊ณผ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ์„ ๋„์ž…ํ•ด, ๊ด€์ ˆ ๊ฐ„ ๊ฑฐ๋ฆฌ์™€ ์—ฐ๊ฒฐ ๊ฐ•๋„๋ฅผ ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ž๋™์œผ๋กœ ์กฐ์ •ํ•œ๋‹ค. Siamese Archit

Network
A type theory for invertibility in weak $ฯ‰$-categories

A type theory for invertibility in weak $ฯ‰$-categories

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Homotopy Type Theory (HoTT) ์—์„œ๋Š” ๋ชจ๋“  ํƒ€์ž…์ด ์•ฝํ•œ ๊ณ ์ฐจ๊ตฐoid ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ด์šฉํ•ด ๊ณ ์ฐจ๋™ํ˜•๋ก ์„ ์ „๊ฐœํ•œ๋‹ค. Brunerie์™€ Finsterโ€‘Mimram์€ ๊ฐ๊ฐ weak ฯ‰โ€‘groupoid ์™€ weak ฯ‰โ€‘category ๋ฅผ ํƒ€์ž… ์ด๋ก ์œผ๋กœ ๊ธฐ์ˆ ํ–ˆ์œผ๋ฉฐ, ํ›„์ž๋Š” CaTT ๋กœ ๋ช…๋ช…๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์—ญ์ „๊ฐ€๋Šฅ์„ฑ (invertibility)์€ ๊ณ ์ฐจ ์นดํ…Œ๊ณ ๋ฆฌ ์ด๋ก ์—์„œ ํ•ต์‹ฌ์ด์ง€๋งŒ, ฯ‰โ€‘์ฐจ์›์—์„œ๋Š” ๊ณต๋™๊ท€ํ™˜(coinductive) ๋ฐฉ์‹์œผ๋กœ ๋ฌดํ•œํžˆ ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•ด ๊ธฐ์กด CaTT๋กœ๋Š” ํ‘œํ˜„์ด ์–ด๋ ค

Mathematics
A Universal Neural Receiver that Learns at the Speed of Wireless

A Universal Neural Receiver that Learns at the Speed of Wireless

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ | 5Gโ€‘Advancedยท6G๋Š” ๋‹ค์ค‘ numerology, ๋ณต์žกํ•œ MIMO, ๋น„์„ ํ˜• ๋””๋ฐ”์ด์Šค, ์ดˆ๊ณ ์† ์Šค์ผ€์ค„๋ง ๋“ฑ์œผ๋กœ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์„ค๊ณ„๊ฐ€ ํ™•์žฅ์„ฑยทํšจ์œจ์„ฑ์—์„œ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ๊ธฐ์กด AI/ML ์ ‘๊ทผ์€ ์ด๋ฏธ์ง€ยทNLP์—์„œ ์„ฑ๊ณตํ•œ ์˜คํ”„๋ผ์ธ ๋Œ€๊ทœ๋ชจ ํ•™์Šต ์— ์˜์กดํ•˜์ง€๋งŒ, ๋ฌด์„  ํ™˜๊ฒฝ์€ TTI(โ‰ค1 ms) ์ˆ˜์ค€์—์„œ ๊ธ‰๋ณ€ ํ•˜๋ฏ€๋กœ ๋™์ผํ•œ ์ ‘๊ทผ์ด ๋น„ํ˜„์‹ค์ ์ด๋‹ค. | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๋ชจ๋“  ์ „ํŒŒ ์ „์†ก์„ ์„ ํ˜• ์‹œ๋ถˆ๋ณ€(LTI) ์‹œ์Šคํ…œ ์œผ๋กœ ๋ณด๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ๋ชจ๋ธ์— ์ฐฉ์•ˆ, โ€œ์ปจ๋ณผ๋ฃจ์…˜์„ ์—ญ์ „ํ•˜๋Š”โ€ ์‹ ๊ฒฝ๋ง์„ ์„ค

Computer Science Information Theory
A.E. Convergence vs Boundedness

A.E. Convergence vs Boundedness

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ์œ„์น˜ ํด๋ž˜์‹ ์„ ํ˜• ๊ฒฐ๊ณผ์™€์˜ ๋Œ€๋น„ : Stein(1970)๊ณผ Sawyer(1978)์˜ ์„ ํ˜• ์ตœ๋Œ€์ •๋ฆฌ๋Š” โ€œ์ ๋ณ„ ์ˆ˜๋ ด + ์œ ํ•œํ•œ ์„ ํ˜• ์—ฐ์‚ฐ์ž ์ง‘ํ•ฉ โ†’ ์•ฝํ•œ ํƒ€์ž… ๊ฒฝ๊ณ„โ€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ €์ž๋Š” ์ด ๋ฐฉํ–ฅ์„ ๋’ค์ง‘์–ด โ€œ์ ๋ณ„ ์ˆ˜๋ ด ์ž์ฒด๊ฐ€ ์•ฝํ•œ ํƒ€์ž… ๊ฒฝ๊ณ„๋ฅผ ๊ฐ•์ œํ•œ๋‹คโ€๋Š” ๋ฐ”์ด๋ฆฌ๋‹ˆ์–ด ๋ฒ„์ „์„ ์ œ์‹œํ•œ๋‹ค. ๋ฐ”์ด๋ฆฌ๋‹ˆ์–ด ์—ฐ์‚ฐ์ž์˜ ๊ธ‰์ฆ : Coifmanโ€“Meyer, Laceyโ€“Thiele ๋“ฑ ์ดํ›„ ๋‹ค์ค‘์„ ํ˜• Calderรณnโ€‘Zygmund ์ด๋ก ์ด ํ™œ๋ฐœํžˆ ์ „๊ฐœ๋œ ์ƒํ™ฉ์—์„œ, โ€œ์ ๋ณ„ ์ˆ˜๋ ด โ‡’ ์ตœ๋Œ€ ์—ฐ์‚ฐ์ž ๊ฒฝ๊ณ„โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ(์˜ˆ: ๋‹ค์ค‘์„ 

Mathematics
No Image

ALDEN: Reinforcement Learning for Active Navigation and Evidence Gathering in Long Documents

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธด ๋ฌธ์„œ์˜ ํŠน์„ฑ : ํŽ˜์ด์ง€ ๊ฐ„ ๋ ˆ์ด์•„์›ƒ ์ฐจ์ด, ํ‘œยท๊ทธ๋ฆผยท๋‹ค์ค‘ ์ปฌ๋Ÿผ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์‹œ๊ฐ ์š”์†Œ๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๊ธฐ์กด VLM์€ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ ํ•œ ๋ฒˆ์— ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ๊ณ ์ •๋œ โ€œ์ฝ๊ธฐโ€‘๋‹ต๋ณ€โ€ ํ๋ฆ„์— ๋จธ๋ฌด๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ค‘์š”ํ•œ ์ฆ๊ฑฐ๋ฅผ ๋†“์น˜๊ธฐ ์‰ฝ๋‹ค. ๊ฐ•ํ™”ํ•™์Šต์˜ ์žฅ์  : ์—์ด์ „ํŠธ๊ฐ€ ํ–‰๋™ (ํŽ˜์ด์ง€ ์ด๋™, ๊ฒ€์ƒ‰, fetch)๊ณผ ๋ณด์ƒ (์ •๋‹ต์— ๊ทผ์ ‘) ์‚ฌ์ด์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•™์Šตํ•จ์œผ๋กœ์จ, ํ•„์š”ํ•œ ์ •๋ณด๋งŒ์„ ํšจ์œจ์ ์œผ๋กœ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ  | ์š”์†Œ | ๊ธฐ์กด ์ ‘๊ทผ | ALDEN์˜ ์ฐจ๋ณ„์  | | | | | | ์•ก์…˜ ์ŠคํŽ˜์ด์Šค | ์ฃผ๋กœ ํ…์ŠคํŠธ

Learning
No Image

An Interdisciplinary and Cross-Task Review on Missing Data Imputation

1. ์—ฐ๊ตฌ์˜ ์˜์˜์™€ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ์ฃผ์š” ๋‚ด์šฉ | ํ‰๊ฐ€ | | | | | | ํ†ตํ•ฉ์  ํ”„๋ ˆ์ž„์›Œํฌ | ๊ฒฐ์† ๋ฉ”์ปค๋‹ˆ์ฆ˜, ๋ณด๊ฐ„ ๋ชฉํ‘œ, ๋ฐ์ดํ„ฐ ์œ ํ˜•์„ ๊ธฐ์ค€์œผ๋กœ ์ „ํ†ตยทํ˜„๋Œ€ ๊ธฐ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋งคํ•‘ | ๋ถ„์•ผ ๊ฐ„ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๋Š” ๋ฐ ํฐ ๊ธฐ์—ฌ | | ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜• ํฌ๊ด„ | ํ…์„œ, ์‹œ๊ณ„์—ด, ์ŠคํŠธ๋ฆฌ๋ฐ, ๊ทธ๋ž˜ํ”„, ๋ฒ”์ฃผํ˜•, ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋“ฑ ์ตœ์‹  ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๊นŒ์ง€ ํฌํ•จ | ์‹ค๋ฌด ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํฌ๊ฒŒ ํ™•๋Œ€ | | ๋‹ค์šด์ŠคํŠธ๋ฆผ ์—ฐ๊ณ„ | ๋ณด๊ฐ„ โ†’ ๋ถ„๋ฅ˜ยท๊ตฐ์ง‘ยท์ด์ƒ ํƒ์ง€ ๋“ฑ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ๊ณต๋™ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋น„๊ตยท๋ถ„์„ | ๋ณด๊ฐ„์ด ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ •์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ช…ํ™•ํžˆ

Data
Anticoncentration of Random Sums in $mathbb{Z}_p$

Anticoncentration of Random Sums in $mathbb{Z}_p$

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Littlewoodโ€“Offord ๋ฌธ์ œ๋Š” โ€œ๋…๋ฆฝ์ ์ธ ํ™•๋ฅ ๋ณ€์ˆ˜๋“ค์˜ ํ•ฉ์ด ํŠน์ • ๊ฐ’์— ์ง‘์ค‘๋  ํ™•๋ฅ โ€์„ ์ œํ•œํ•˜๋Š” ๊ณ ์ „์ ์ธ ์งˆ๋ฌธ์ด๋‹ค. ์ •์ˆ˜ ๊ฒฝ์šฐ์—๋Š” Erdล‘s, Halรกsz ๋“ฑ์œผ๋กœ๋ถ€ํ„ฐ (Theta(1/sqrt{ell})) ์ˆ˜์ค€์˜ ์ƒํ•œ์ด ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ์œ ํ•œ๊ตฐ, ํŠนํžˆ ์‚ฌ์ดํด ๊ตฐ (mathbb Z k) ํ˜น์€ ์†Œ์ˆ˜๊ตฐ (mathbb Z p)์—์„œ์˜ ๋น„๋Œ€์นญ ๋ฌธ์ œ๋„ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค(Griggs, Bibak, Juskeviciusโ€‘Semetulskis ๋“ฑ). ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ๊ฒฐ๊ณผ๋Š” โ„“ โ†’ โˆž ํ˜น

Mathematics
Approximation Theory for Lipschitz Continuous Transformers

Approximation Theory for Lipschitz Continuous Transformers

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์•ˆ์ •์„ฑยท๊ฒฌ๊ณ ์„ฑ ๋ฌธ์ œ : ๊ธฐ์กด ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ์ ๊ณฑ ์–ดํ…์…˜๊ณผ ์ž”์ฐจ ์—ฐ๊ฒฐ ๋•Œ๋ฌธ์— ์ „์—ญ์ ์ธ ๋ฆฌํ”„์‹œ์ธ  ์ƒ์ˆ˜๊ฐ€ ๋ฌดํ•œ๋Œ€๊ฐ€ ๋˜๊ธฐ ์‰ฌ์šฐ๋ฉฐ, ์ด๋Š” ์ ๋Œ€์  ๊ณต๊ฒฉ ๋ฐ ํ›ˆ๋ จ ๋ถˆ์•ˆ์ •์„ฑ์˜ ์ฃผ์š” ์›์ธ์œผ๋กœ ์ง€์ ๋ผ ์™”๋‹ค. ๋ฆฌํ”„์‹œ์ธ  ์ œ์–ด์˜ ๋‚œ์ด๋„ : ๋ฆฌํ”„์‹œ์ธ  ์ƒ์ˆ˜ ๊ณ„์‚ฐ์ด NPโ€‘hard์ž„์„ ๊ฐ์•ˆํ•˜๋ฉด, ๊ตฌ์กฐ์  ์„ค๊ณ„(์ŠคํŽ™ํŠธ๋Ÿผ ์ •๊ทœํ™”, ์–ดํ…์…˜ ๋ณ€ํ˜•, ์ž”์ฐจ ๊ฐ€์ค‘์น˜ ์กฐ์ ˆ ๋“ฑ)๋กœ ์ œํ•œ์„ ๋‘๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. 1โ€‘Lipschitz์˜ ์ค‘์š”์„ฑ : Wassersteinโ€‘1 ๊ฑฐ๋ฆฌ์™€ ๊ณ ์ •์  ์ˆ˜๋ ด ๋ถ„์„ ๋“ฑ์— ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋“ฑ์žฅํ•˜๋ฉฐ, Lโ€‘Lipschitz ํ•จ์ˆ˜๋Š” 1โ€‘Li

Machine Learning Computer Science
No Image

Bayesian Quadrature: Gaussian Processes for Integration

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ „ํ†ต์  ์ ๋ถ„ ๋ฐฉ๋ฒ•๊ณผ์˜ ๋Œ€๋น„ ๊ฐ€์šฐ์‹œ์•ˆ ์‚ฌ๊ฐํ˜• : ๋‹คํ•ญ์‹ ๊ทผ์‚ฌ ๊ฐ€์ • โ†’ ๊ณ ์ฐจ์›์—์„œ ์ œํ•œ์ . ๋ชฌํ…Œ์นด๋ฅผ๋กœ : ๊ฐ€์ • ๊ฑฐ์˜ ์—†์Œ โ†’ ๋А๋ฆฐ ์ˆ˜๋ ด (O(Nโปยน/ยฒ)). ์ฟผ์‹œ ๋ชฌํ…Œ์นด๋ฅผ๋กœ : ์ €๋ถˆ์ผ์น˜ ์‹œํ€€์Šค ์‚ฌ์šฉ โ†’ ๊ณ ์ฐจ์›์—์„œ ํšจ์œจ์ ์ด์ง€๋งŒ ๋…ธ๋“œ ์„ ํƒ์ด ๊ณ ์ •. ๋ฒ ์ด์ง€์•ˆ ์‚ฌ๊ฐํ˜• : ์‚ฌ์ „(์Šค๋ฌด์Šค์„ฑ, ๊ตฌ์กฐ) ๋ช…์‹œ โ†’ ๋…ธ๋“œ์™€ ์‚ฌ์ „์ด ๋…๋ฆฝ์ ์œผ๋กœ ์„ค๊ณ„ ๊ฐ€๋Šฅ, ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™” ์ œ๊ณต. ๋ฌธํ—Œ ์ •๋ฆฌ์˜ ๋ถ€์žฌ ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๊ฐœ๋ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ยท์‘์šฉ์— ์ดˆ์ , ์ „์ฒด์ ์ธ ์ฒด๊ณ„ยท๋น„๊ต๊ฐ€ ๋ถ€์กฑ. ํŠนํžˆ โ€œ๋ชจ๋ธยท์ถ”๋ก ยท์ƒ˜ํ”Œ๋งโ€ ์„ธ ์ถ•์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ์‹คํ—˜์ด ๊ฑฐ์˜ ์—†์—ˆ์Œ

Machine Learning Computer Science
No Image

Beyond Shortest Path: Agentic Vehicular Routing with Semantic Context

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ธฐ์กด ๋ผ์šฐํŒ… ํ•œ๊ณ„ : ์ „ํ†ต์ ์ธ ์ตœ๋‹จ ๊ฒฝ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Dijkstra, A )์€ ๊ฑฐ๋ฆฌยท์‹œ๊ฐ„ยท์—ฐ๋ฃŒ์™€ ๊ฐ™์€ ์ •๋Ÿ‰์  ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์ด ๋งž์ถฐ์ ธ ์žˆ์–ด, ์šด์ „์ž์˜ ์˜๋„ (์˜ˆ: โ€œ์นดํŽ˜์— ๋“ค๋Ÿฌ์„œ ์ปคํ”ผ๋ฅผ ์‚ฌ์•ผ ํ•จโ€)๋‚˜ ์ œํ•œ ์กฐ๊ฑด (์˜ˆ: โ€œ๊ณ ์†๋„๋กœ ํšŒํ”ผโ€, โ€œ๋ฐฐํ„ฐ๋ฆฌ ์ถฉ์ „ ํ•„์š”โ€)์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‹ค์ค‘ ๋ชฉํ‘œ ์ตœ์ ํ™” : ์‹œ๊ฐ„ยทCOโ‚‚์™€ ๊ฐ™์€ ๋‹ค๋ชฉ์  ์ตœ์ ํ™”๋Š” ํŒŒ๋ ˆํ†  ํ”„๋ก ํ‹ฐ์–ด๋ฅผ ์ƒ์„ฑํ•˜์ง€๋งŒ, ์‚ฌ์šฉ์ž๊ฐ€ ์‹ค์ œ๋กœ ์„ ํ˜ธํ•˜๋Š” ํฌ์ธํŠธ๋Š” ์ •๋Ÿ‰์  ์ง€ํ‘œ๋งŒ์œผ๋กœ๋Š” ํŒ๋‹จํ•  ์ˆ˜ ์—†๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ PAVe ํ”„๋ ˆ์ž„์›Œํฌ | ๊ตฌ์„ฑ ์š”์†Œ

Characterization of an MPPC-Based Scintillator Telescope and Measurement of Cosmic Muon Angular Distribution

Characterization of an MPPC-Based Scintillator Telescope and Measurement of Cosmic Muon Angular Distribution

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉํ‘œ ์šฐ์ฃผ์„  ๋ฎค์˜จ ์€ ๋Œ€๊ธฐ ์ƒ์ธต์—์„œ ์ƒ์„ฑ๋œ 2์ฐจ ์ž…์ž๋กœ, ํ‰๊ท  ์—๋„ˆ์ง€ โ‰ˆ 4 GeV์™€ ๋†’์€ ๊ด€ํ†ต๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ง€ํ‘œ๋ฉด์—์„œ ๊ฐ€์žฅ ํ’๋ถ€ํ•œ ์ž…์ž ํ”Œ๋Ÿญ์Šค๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ๊ด‘์ „๊ด€(PMT) ๋Œ€๋น„ MPPC(SiPM) ์€ ์ €์ „์•• ๊ตฌ๋™, ์†Œํ˜•ยท๊ฒฝ๋Ÿ‰, ๋†’์€ ๊ด‘์ž ํƒ์ง€ ํšจ์œจ ๋“ฑ ์‹คํ—˜์‹ค ๋ฐ ํ˜„์žฅ ์ ์šฉ์— ์œ ๋ฆฌํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” (โ‘  MPPCโ€‘์„ฌ๊ด‘ ์‹œ์Šคํ…œ์˜ ์ „๊ธฐยท๊ด‘ํ•™ ํŠน์„ฑ ์ •๋Ÿ‰ํ™”, โ‘ก 3์ค‘ ์ฝ”์ธ์‹œ๋˜์Šค ๋ง์›๊ฒฝ์„ ํ†ตํ•œ ๋ฎค์˜จ ๊ฒ€์ถœ, โ‘ข ๋ฎค์˜จ ํ”Œ๋Ÿญ์Šค์˜ ๊ฐ๋„ ๋ถ„ํฌ ์ •๋ฐ€ ์ธก์ •)์ด๋ผ๋Š” 3๋‹จ๊ณ„ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜์˜€๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ ๋ฐ

Physics
CL API: Real-Time Closed-Loop Interactions with Biological Neural Networks

CL API: Real-Time Closed-Loop Interactions with Biological Neural Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ BNN์˜ ์ž ์žฌ๋ ฅ : ์ „๋ ฅยท์ƒ˜ํ”Œ ํšจ์œจ์„ฑ, ํ’๋ถ€ํ•œ ๋ณ‘๋ ฌ ๋™์—ญํ•™, ์‹œ๋ƒ…์Šค ๊ฐ€์†Œ์„ฑ ๋“ฑ์€ ๊ธฐ์กด ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜ ์ปดํ“จํŒ…์„ ๋›ฐ์–ด๋„˜๋Š” ํŠน์„ฑ์œผ๋กœ, Synthetic Biological Intelligence(SBI)์™€ Organoid Intelligence ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ ๋™์ธ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ๋ณ‘๋ชฉ : ํ•˜๋“œ์›จ์–ดยท์„ธํฌ(์›Œํ„ฐ์›จ์–ด) ๊ฐœ๋ฐœ์€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋‚˜, ์‹ค์‹œ๊ฐ„ยทํ์‡„โ€‘๋ฃจํ”„ ์ œ์–ด๋ฅผ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ๋Š” ์•„์ง ํ‘œ์ค€ํ™”ยท์žฌํ˜„์„ฑ์ด ๋ถ€์กฑํ–ˆ๋‹ค. ๊ธฐ์กด ์‹œ์Šคํ…œ์€ FPGA ์ง์ ‘ ์ œ์–ด โ†’ ๋†’์€ ์†๋„ยท์ €์ง€์—ฐํ•˜์ง€๋งŒ ๊ฐœ๋ฐœยทํˆฌ๋ช…์„ฑ ๋‚ฎ์Œ ์ˆœ์ˆ˜

Network Quantitative Biology
No Image

CLIN-LLM: A Safety-Constrained Hybrid Framework for Clinical Diagnosis and Treatment Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ง„๋‹จยท์น˜๋ฃŒ ์ง€์›์˜ ์œ„ํ—˜์„ฑ : ์ฆ์ƒ๋งŒ์œผ๋กœ ์งˆํ™˜์„ ์ถ”๋ก ํ•˜๋Š” ๊ณผ์ •์€ ๋ถˆํ™•์‹ค์„ฑ์ด ํฌ๊ณ , ์ž˜๋ชป๋œ ์น˜๋ฃŒ ๊ถŒ๊ณ ๋Š” ํ™˜์ž ์•ˆ์ „์— ์ง์ ‘์ ์ธ ์œ„ํ˜‘์ด ๋œ๋‹ค. ๊ธฐ์กด LLM ํ•œ๊ณ„ : ์ผ๋ฐ˜ LLM์€ ๋ฐฉ๋Œ€ํ•œ ์–ธ์–ด ์ง€์‹์„ ๊ฐ–์ถ”์—ˆ์ง€๋งŒ, ์˜๋ฃŒ ๋„๋ฉ”์ธ์— ํŠนํ™”๋œ ๊ทผ๊ฑฐ์™€ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ๊ฐ€ ๋ถ€์กฑํ•ด ์‹ค์‚ฌ์šฉ์— ์ œ์•ฝ์ด ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ  ๊ตฌ์„ฑ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ๋ฒ• | | | | | | ๋‹ค์ค‘๋ชจ๋‹ฌ ํ™˜์ž ์ธ์ฝ”๋” | ์ž์œ  ํ…์ŠคํŠธ ์ฆ์ƒ + ๊ตฌ์กฐํ™”๋œ ํ™œ๋ ฅ์ง•ํ›„ ํ†ตํ•ฉ | BioBERT ๋ฏธ์„ธ์กฐ์ • (Symptom2Disease 1,200๊ฑด) | | ๋ถˆ

Framework
Combined dynamic-kinematic validation of droplet-wall impact modeling

Combined dynamic-kinematic validation of droplet-wall impact modeling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์•ก์ โ€‘๋ฒฝ ์ถฉ๋Œ์€ ๊ณ ์˜จ ๋ƒ‰๊ฐ, ์Šคํ”„๋ ˆ์ด ์ฝ”ํŒ…, 3D ๋ฐ”์ด์˜คํ”„๋ฆฐํŒ…, ์ž‰ํฌ์ ฏ ์ธ์‡„ ๋“ฑ ์‚ฐ์—…ยทํ•™๋ฌธ ์ „๋ฐ˜์— ๊ฑธ์ณ ํ•ต์‹ฌ ํ˜„์ƒ์ด๋‹ค. ๊ธฐ์กด CFD ๊ฒ€์ฆ์€ ์ฃผ๋กœ ์ตœ๋Œ€ ์ „๊ฐœ ์ง๊ฒฝ ํ˜น์€ ๋ฐฉ์šธ ํ˜•ํƒœ ์— ๊ตญํ•œ๋ผ, ๋‚ด๋ถ€ ์œ ๋™(๋ฐฉ์‚ฌํ˜• ์†๋„, ์ „๊ฐœ ์†๋„)๊ณผ ๊ฐ™์€ ๋™์—ญํ•™์  ์ง€ํ‘œ๋ฅผ ๋ฌด์‹œํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์‹ค์ œ ๋ฌผ๋ฆฌ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ๋Œ€๋กœ ํฌ์ฐฉํ–ˆ๋Š”์ง€ ํŒ๋‹จํ•˜๊ธฐ์— ๋ถ€์กฑํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋œ๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | | | | | ์‹คํ—˜ | ๋ฌผโ€‘๊ธ€๋ฆฌ์„ธ๋กค(60 % / 40 %) ํ˜ผํ•ฉ์•ก, ์ž…์ž 1 g/L, ์ดˆ๊ธฐ ์ง๊ฒฝ Dโ‚€ 2.9 mm. ๊ณ ์† ์ดฌ์˜ +

Model Physics
No Image

Constraint-Informed Active Learning for End-to-End ACOPF Optimization Proxies

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ACOPF ๋ฌธ์ œ ๋Š” ์ „๋ ฅ ์‹œ์Šคํ…œ ์šด์˜์—์„œ ํ•ต์‹ฌ์ด์ง€๋งŒ, ๋น„์„ ํ˜•ยท๋น„๋ณผ๋ก์„ฑ ๋•Œ๋ฌธ์— ์‹ค์‹œ๊ฐ„ ํ•ด๊ฒฐ์ด ์–ด๋ ค์›€. ์ตœ์ ํ™” ํ”„๋ก์‹œ (ML ๋ชจ๋ธ)๋Š” ๊ทผ์‚ฌ ํ•ด๋ฅผ ๋น ๋ฅด๊ฒŒ ์ œ๊ณตํ•˜์ง€๋งŒ, ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ์‹ค์ œ ์šด์˜ ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ์ปค๋ฒ„ํ•˜์ง€ ๋ชปํ•˜๋ฉด ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋œ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ์‹์€ ๋ฌด์ž‘์œ„ ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ์‹œ๋‚˜๋ฆฌ์˜ค์— ์˜์กดํ•ด ๋‹ค์–‘์„ฑยทํ˜„์‹ค์„ฑ ์ด ๋ถ€์กฑํ–ˆ๋‹ค๋Š” ์ ์ด ํ•œ๊ณ„์ ์œผ๋กœ ์ง€์ ๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋Šฅ๋™ ํ•™์Šต(active learning) ๊ฐœ๋…์„ ACOPF์— ์ ์šฉํ•ด, ๋ชจ๋ธ์ด ํ˜„์žฌ ์•ฝ์ ์œผ๋กœ ํŒ๋‹จํ•˜๋Š” ์˜์—ญ์„ ๋ชฉํ‘œ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜

Learning

< Category Statistics (Total: 5051) >

Electrical Engineering and Systems Science
102
General
4147
General Relativity
4
HEP-EX
3
HEP-PH
3
HEP-TH
6
MATH-PH
12
Quantitative Finance
2
Quantum Physics
21

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut