KOINEU Logo
No Image

Nested Sampling with Slice-within-Gibbs: Efficient Evidence Calculation for Hierarchical Bayesian Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Nested Sampling ์€ ๋ฒ ์ด์ง€์•ˆ ์ฆ๊ฑฐ๋ฅผ ์ง์ ‘ ์ถ”์ •ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ๋น„๊ต์— ๊ฐ•์ ์„ ๊ฐ€์ง€์ง€๋งŒ, ๊ณ ์ฐจ์›์—์„œ ์ œํ•œ๋œ ์‚ฌ์ „ ์ƒ˜ํ”Œ๋ง ์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๊ตฌํ˜„์€ ๋ธ”๋ž™๋ฐ•์Šค MCMC (ellipsoidal, slice ๋“ฑ) ๋ฅผ ์‚ฌ์šฉํ•ด ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. Gradientโ€‘๊ธฐ๋ฐ˜ ์ƒ˜ํ”Œ๋Ÿฌ(HMC, NUTS) ๊ฐ€ ๊ณ ์ฐจ์›์—์„œ ํšจ์œจ์ ์ด์ง€๋งŒ, ๊ฐ€๋Šฅ๋„ ์ œ์•ฝ ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ณ€ํ˜•์€ ์•„์ง ๋ฏธ์„ฑ์ˆ™ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ€๋Šฅ๋„ ๊ตฌ์กฐ๊ฐ€ ๋ธ”๋กโ€‘๋ถ„ํ•ด ๊ฐ€๋Šฅํ•œ ๊ณ„์ธต ๋ชจ๋ธ ์— ํŠนํ™”๋œ ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์ด ์ ˆ์‹คํžˆ ํ•„์š”ํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ์š”์†Œ

Statistics Model
No Image

Neural Implicit Representations for 3D Synthetic Aperture Radar Imaging

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ SAR 3D ์žฌ๊ตฌ์„ฑ์˜ ํ•œ๊ณ„ : ๊ณ ํ•ด์ƒ๋„ 3D SAR ์ด๋ฏธ์ง€๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐฉ์œ„(azimuth)์™€ ๊ณ ๋„(elevation) ๊ฐ๋„๊ฐ€ ๋ชจ๋‘ ์ด˜์ด˜ํžˆ ์ƒ˜ํ”Œ๋ง๋˜์–ด์•ผ ํ•œ๋‹ค. ์‹ค์ œ ๋ฐ์ดํ„ฐ์…‹(GOTCHA ๋“ฑ)์€ ๊ณ ๋„ ์ƒ˜ํ”Œ๋ง์ด ํฌ์†Œํ•˜๊ณ  ๋น„๊ท ์ผํ•ด, ์ „ํ†ต์ ์ธ 3D ์—ญํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ ๋ฐฉ์‹์€ ์‹ฌ๊ฐํ•œ ๋ณ„๋„(aliased)์™€ ์žก์Œ ์•„ํ‹ฐํŒฉํŠธ๋ฅผ ๋งŒ๋“ ๋‹ค. ์ „ํ†ต์  ์ •๊ทœํ™” ๊ธฐ๋ฒ• : ํฌ์†Œ์„ฑ, ๊ฐ๋„ ์ง€์†์„ฑ(persistence), ์ˆ˜์ง ๊ตฌ์กฐ ๊ฐ€์ • ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋„์ž…ํ–ˆ์ง€๋งŒ, ๋ณต์žกํ•œ ๋ฌผ์ฒด์˜ ๋‚ด๋ถ€ ๋ฐ˜์‚ฌยท๋‹ค์ค‘ ์‚ฐ๋ž€์„ ์ถฉ๋ถ„ํžˆ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2.

Electrical Engineering and Systems Science
Noise-Resilient Quantum Aggregation on NISQ for Federated ADAS Learning

Noise-Resilient Quantum Aggregation on NISQ for Federated ADAS Learning

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ์ฐจ๋Ÿ‰ ๊ฐ„ ์‹ค์‹œ๊ฐ„ ํ†ต์‹ ์ด ๋ถˆ์•ˆ์ •ํ•˜๊ณ , ์„ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณ ๋„๋กœ ํ”„๋ผ์ด๋ฒ„์‹œ๊ฐ€ ์š”๊ตฌ๋˜๋Š” ํ™˜๊ฒฝ์—์„œ ์—ฐํ•ฉ ํ•™์Šต์„ ์ ์šฉํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์žก์Œ๊ณผ ์ง€์—ฐ, ๋ณด์•ˆ ์œ„ํ˜‘์ด๋‹ค. ์ „ํ†ต์ ์ธ ์—ฐํ•ฉ ํ•™์Šต์€ ์„œ๋ฒ„โ€‘ํด๋ผ์ด์–ธํŠธ ๊ตฌ์กฐ์—์„œ ๊ฐ ํด๋ผ์ด์–ธํŠธ๊ฐ€ ๋กœ์ปฌ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ด๋ฅผ ํ‰๊ท ํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋Š” ์ด๋™์„ฑ, ์ „ํŒŒ ์†์‹ค, ๊ทธ๋ฆฌ๊ณ  ์ œํ•œ๋œ ๋Œ€์—ญํญ์œผ๋กœ ์ธํ•ด ์ „์†ก ์ค‘์— ๋ฐœ์ƒํ•˜๋Š” ์–‘์žํ™” ์˜ค๋ฅ˜์™€ ํŒจํ‚ท ์†์‹ค์ด ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌผ๋ฆฌ์  ์žก์Œ์€ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ •ํ™•์„ฑ์„ ์ €ํ•˜์‹œ์ผœ ์ˆ˜๋ ด ์†๋„๋ฅผ ๋Šฆ์ถ”๊ณ , ๊ฒฝ์šฐ์— ๋”ฐ๋ผ ๋ฐœ์‚ฐ๊นŒ์ง€

Machine Learning Computer Science Learning
No Image

Non-BPS Monopoles and Dyons via Resurgent Transseries

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๋ฐ˜์–‘์ž์žฅ๋ก ์—์„œ ๋ฐ˜๊ณ ์ „์ (semiโ€‘classical) ๋ถ„์„ ์€ ๊ณ ์ „ ์‚ฌ๋œ(saddle) ์œ„์˜ ์–‘์ž ์š”๋™์„ ์ „๊ฐœํ•จ์œผ๋กœ์จ ๋น„์ •์ƒ์ ์ธ ํ˜„์ƒ์„ ์ดํ•ดํ•˜๋Š” ํ•ต์‹ฌ ๋„๊ตฌ๋‹ค. BPS ํ•œ๊ณ„((beta 0))์—์„œ๋Š” ์ผ์ฐจ ๋ฐฉ์ •์‹์œผ๋กœ ์ถ•์†Œ๋ผ ํ•ด์™€ ์š”๋™์ด ๋ชจ๋‘ ๋ช…์‹œ์  ์ด๋ฉฐ, ์ „์ด๊ธ‰์ˆ˜๋Š” ์‚ฌ์‹ค์ƒ ์ˆ˜๋ ด ๊ธ‰์ˆ˜ ๊ฐ€ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ๋ฌผ๋ฆฌ์—์„œ๋Š” (betaneq0)์ธ ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋ฉฐ, ์ด๋•Œ๋Š” ๋น„์„ ํ˜• coupled ODE๊ฐ€ ๊ฐ•ํ•˜๊ฒŒ ๋น„์„ ํ˜• ์ด์–ด์„œ ๊ธฐ์กด์˜ ํผํŠธurbative ๋ฐฉ๋ฒ•์ด๋‚˜ ๋‹จ์ˆœ ์ˆ˜์น˜ ์ ๋ถ„์— ์˜์กดํ•ด์•ผ ํ–ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ O. C

HEP-TH
No Image

Not Everything That Counts Can Be Counted: A Case for Safe Qualitative AI

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ ๋ฐ ํ‰๊ฐ€ | ํ–ฅํ›„ ์—ฐ๊ตฌยท๊ฐœ๋ฐœ ์ œ์–ธ | | | | | | ๋ฌธ์ œ ์ œ๊ธฐ | ์ •๋Ÿ‰ AI๋Š” ๊ธ‰์†ํžˆ ๋ฐœ์ „ํ–ˆ์ง€๋งŒ, ์ •์„ฑ ์—ฐ๊ตฌ๋Š” ์—ฌ์ „ํžˆ ์ธ๊ฐ„ ์ค‘์‹ฌ ๋„๊ตฌ์— ์˜์กด.<br> ํ˜„์žฌ ์‚ฌ์šฉ๋˜๋Š” ์ผ๋ฐ˜ LLM์€ ํŽธํ–ฅยท๋ถˆํˆฌ๋ช…ยท์žฌํ˜„์„ฑ ๋ถ€์กฑยทํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ๋‚ดํฌ. | ์ •์„ฑ ์—ฐ๊ตฌ ํŠน์œ ์˜ โ€œ๋งฅ๋ฝยทํ•ด์„ยท์ฃผ๊ด€์„ฑโ€์„ ์ง€์›ํ•˜๋„๋ก ์„ค๊ณ„๋œ AI ํ•„์š”์„ฑ์„ ๋ช…ํ™•ํžˆ ์ œ์‹œ. | | ํ•ต์‹ฌ ์ฃผ์žฅ | โ€œ์ „์šฉ ์ •์„ฑ AIโ€๋Š” ํˆฌ๋ช…์„ฑ , ์žฌํ˜„์„ฑ , ํ”„๋ผ์ด๋ฒ„์‹œ ์นœํ™”์„ฑ ์„ ๊ธฐ๋ณธ ์„ค๊ณ„ ์›์น™์œผ๋กœ ์‚ผ์•„์•ผ ํ•จ.<br> ๊ธฐ์กด ์ž๋™ํ™” ํŒŒ์ดํ”„๋ผ์ธ์— ์ •์„ฑ ๊ธฐ๋Šฅ์„ ํ†ตํ•ฉํ•˜๋ฉด ํ˜ผํ•ฉโ€‘๋ฐฉ๋ฒ• ์—ฐ๊ตฌ ์˜ ํšจ์œจ

No Image

Occlusion-Aware Diffusion Model for Pedestrian Intention Prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ณดํ–‰์ž ์˜๋„ ์˜ˆ์ธก ์€ ์ž์œจ์ฃผํ–‰ยท๋กœ๋ด‡ ๋‚ด๋น„๊ฒŒ์ด์…˜์—์„œ โ€˜๊ต์ฐจยท์ •์ง€ยท์ง„ํ–‰โ€™ ํŒ๋‹จ์— ์ง์ ‘ ์—ฐ๊ฒฐ๋˜๋Š” ํ•ต์‹ฌ ๊ณผ์ œ์ด๋‹ค. ์‹ค์ œ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ๋Š” ๊ฐ€์‹œ์„ฑ ์ฐจ๋‹จ(์ฐจ๋Ÿ‰, ๊ฑด๋ฌผ, ๋‹ค๋ฅธ ๋ณดํ–‰์ž ๋“ฑ) ์œผ๋กœ ์ธํ•ด ๊ด€์ธก ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ๋ˆ„๋ฝ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ๊ธฐ์กด ์‹œ๊ณ„์—ดยท๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์€ ์™„์ „ํ•œ ํŠธ๋ž™ ์„ ์ „์ œ๋กœ ํ•™์Šต๋˜๋ฉฐ, ๊ฐ€๋ ค์ง„ ๊ตฌ๊ฐ„์„ ๋‹จ์ˆœํžˆ ๋ฌด์‹œํ•˜๊ฑฐ๋‚˜ ๋ณด๊ฐ„์— ์˜์กดํ•œ๋‹ค. ์ด๋Š” ์˜ค๋ฅ˜ ์ „ํŒŒ ์™€ ๋ถˆํ™•์‹ค์„ฑ ์ฆ๊ฐ€ ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ ๋ฐ ํ˜์‹ ์„ฑ | ๊ธฐ์—ฌ | ๊ธฐ์กด ์ ‘๊ทผ๊ณผ ์ฐจ๋ณ„์  | | | | | Occlusionโ€‘awa

Model
No Image

Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๋‹ค์–‘์„ฑ : ํ˜„์žฌ LLMยทVLM ๊ธฐ๋ฐ˜ RM์€ ํ…์ŠคํŠธยท์ด๋ฏธ์ง€์— ์ตœ์ ํ™”๋ผ ์žˆ์–ด, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์—์ด์ „ํŠธ(์˜ˆ: ๋น„๋””์˜ค ์ƒ์„ฑ, ์Œ์„ฑ ์–ด์‹œ์Šคํ„ดํŠธ, 3D ์”ฌ ์„ค๊ณ„)์—๋Š” ์ ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ์„ ํ˜ธ ํ‘œํ˜„์˜ ๋ณต์žก์„ฑ : ์ธ๊ฐ„์˜ ์„ ํ˜ธ๋Š” ๋‹จ์ˆœ โ€œ์ข‹๋‹ค/๋‚˜์˜๋‹คโ€๋ฅผ ๋„˜์–ด, ์ด์œ , ๋งฅ๋ฝ, ์Šคํƒ€์ผ, ์œค๋ฆฌ์  ๊ณ ๋ ค ๋“ฑ์„ ํฌํ•จํ•œ๋‹ค. ๊ณ ์ •๋œ ์ด์ง„ ๋ผ๋ฒจ์€ ์ด๋Ÿฌํ•œ ๋ฏธ๋ฌ˜ํ•จ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. Omniโ€‘Reward๋Š” โ€œ์ „์ฒœํ›„(omniโ€‘modal) + ์ž์œ ํ˜•์‹(freeโ€‘form) ์„ ํ˜ธโ€ ๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ํ™•์žฅํ•จ์œผ๋กœ์จ, ์ฐจ์„ธ๋Œ€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์—์ด์ „ํŠธ์˜ ์ •

Model
No Image

OmniMER: Auxiliary-Enhanced LLM Adaptation for Indonesian Multimodal Emotion Recognition

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์–ธ์–ดยท๋ฌธํ™”์  ๊ฒฉ์ฐจ : ์ธ๋„๋„ค์‹œ์•„์–ด๋Š” ์„ธ๊ณ„ 6์œ„ ์‚ฌ์šฉ ์ธ๊ตฌ๋ฅผ ๋ณด์œ ํ•˜์ง€๋งŒ, ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ฐ์ • ์ธ์‹ ๋ฐ์ดํ„ฐ๋Š” ๊ฑฐ์˜ ์—†์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํ˜„์ง€ SNSยท์˜์ƒ ํ”Œ๋žซํผ์—์„œ ๊ฐ์ • ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค(์˜ˆ: ์ž๋™ ์ฝ˜ํ…์ธ  ํ•„ํ„ฐ๋ง, ๋งž์ถคํ˜• ๊ด‘๊ณ ) ๊ฐœ๋ฐœ์— ํฐ ์ œ์•ฝ์ด ๋ฉ๋‹ˆ๋‹ค. ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํŠน์„ฑ : ํ…์ŠคํŠธ, ์Œ์„ฑ, ์˜์ƒ์ด ๋™์‹œ์— ์ œ๊ณต๋˜๋Š” ์ƒํ™ฉ์—์„œ ๊ฐ์ •์€ ๋ชจ๋‹ฌ ๊ฐ„ ๋ถˆ์ผ์น˜ (์˜ˆ: ํ…์ŠคํŠธ๋Š” ์ค‘๋ฆฝ์ ์ด์ง€๋งŒ ํ‘œ์ •์€ ๋ถ„๋…ธ)์™€ ๋ฌธํ™”์  ํ‘œํ˜„ ์ฐจ์ด (์˜ˆ: ์ธ๋„๋„ค์‹œ์•„์—์„œ๋Š” ์–ต์–‘๋ณด๋‹ค ๋ชธ์ง“์ด ๊ฐ์ • ์ „๋‹ฌ์— ๋” ํฐ ์—ญํ• ) ๋•Œ๋ฌธ์— ๊ธฐ์กด ์˜์–ดยท์ค‘๊ตญ์–ด ์ค‘์‹ฌ ๋ชจ๋ธ์ด ๊ทธ๋Œ€๋กœ ์ ์šฉ๋˜๊ธฐ ์–ด

No Image

On the Banach-Mazur Ellipse

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์„ค์ • Banachโ€‘Mazur ๊ฑฐ๋ฆฌ (d(X,Y) inf {T}|T||T^{ 1}|)๋Š” ๋‘ ์œ ํ•œ ์ฐจ์› ๋…ธ๋ฆ„๊ณต๊ฐ„ ์‚ฌ์ด์˜ ๋™ํ˜• ์‚ฌ์ƒ ์ค‘ ์ตœ์ ์˜ โ€œ์™œ๊ณก ์ •๋„โ€๋ฅผ ์ธก์ •ํ•œ๋‹ค. 2์ฐจ์› ๊ฒฝ์šฐ, ํŠนํžˆ ๋‹จ์œ„์› (mathbb{S}^{1})์™€์˜ ๊ฑฐ๋ฆฌ (d {2}(X))๋Š” โ€œ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ํƒ€์›โ€์„ ์ฐพ๋Š” ๋ฌธ์ œ์™€ ๋™์น˜๊ฐ€ ๋œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ(Ader, Maurey ๋“ฑ)๋Š” ์ ‘์ด‰์ (contact points) ๊ณผ ๊ทน์ (extremal points) ์˜ ์กด์žฌ์™€ ๋ฐฐ์น˜๋ฅผ ํ†ตํ•ด ์ตœ์  ํƒ€์›์„ ํŠน์„ฑํ™”ํ–ˆ์œผ๋ฉฐ, Lรถwnerโ€‘John ํƒ€

Mathematics
No Image

On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ž ์žฌ ๋ณ€์ˆ˜ ๋ชจ๋ธ์˜ ์žฅ์  : ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๊ณผ์ •์—์„œ โ€œ์™œโ€์™€ โ€œ์–ด๋–ป๊ฒŒโ€๋ฅผ ๋ถ„๋ฆฌํ•ด ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ์  ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ ์Œ์•…๊ณผ ๊ฐ™์ด ๊ณ ์ฐจ์› ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃฐ ๋•Œ, ์ž ์žฌ ๊ณต๊ฐ„์„ ํ†ตํ•ด ๋ฉœ๋กœ๋””, ๋ฆฌ๋“ฌ, ํ™”์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ์Œ์•…์  ์†์„ฑ์„ ๋…๋ฆฝ์ ์œผ๋กœ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ •๊ทœํ™” ์†์‹ค์˜ ์—ญํ•  : VAE ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์—์„œ๋Š” ์žฌ๊ตฌ์„ฑ ์†์‹ค(๋ฐ์ดํ„ฐ ์žฌํ˜„)๊ณผ KLD(์ž ์žฌ ๋ถ„ํฌ์™€ ์‚ฌ์ „ ๋ถ„ํฌ ๊ฐ„ ์ฐจ์ด)๋ฅผ ๋™์‹œ์— ์ตœ์†Œํ™”ํ•จ์œผ๋กœ์จ ์ƒ์„ฑ ํ’ˆ์งˆ ๊ณผ ์ž ์žฌ ๊ณต๊ฐ„์˜ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ์„ ๊ท ํ˜• ์žˆ๊ฒŒ ์œ ์ง€ํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๋ฌธ์ œ: KLD โ†” AR ํŠธ๋ ˆ์ด๋“œ์˜คํ”„

No Image

Optimizing Multi-Lane Intersection Performance in Mixed Autonomy Environments

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜„์žฌ ๊ต์ฐจ๋กœ ์ œ์–ด๋Š” ๋Œ€๋ถ€๋ถ„ ์ธ๊ฐ„ ์šด์ „์ž๋ฅผ ์ „์ œ๋กœ ์„ค๊ณ„๋œ ์ „ํ†ต์ ์ธ ์‹ ํ˜ธ ์ฒด๊ณ„์— ์˜์กดํ•œ๋‹ค. CAV๊ฐ€ ์ ์ฐจ ๋ณด๊ธ‰๋จ์— ๋”ฐ๋ผ ์ฐจ๋Ÿ‰ ๊ฐ„ ํ†ต์‹ ยทํ˜‘์กฐ๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ์ง€๋งŒ, HDV์™€์˜ ํ˜ผํ•ฉ ํ™˜๊ฒฝ์—์„œ๋Š” ๊ธฐ์กด ์ œ์–ด ๋ฐฉ์‹์ด ๋น„ํšจ์œจ์ ์ด๋ฉฐ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋”ฐ๋ผ์„œ HDV์™€ CAV๊ฐ€ ๋™์‹œ์— ์กด์žฌํ•˜๋Š” โ€˜ํ˜ผํ•ฉ ์ž์œจโ€™ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•œ ์‹ ํ˜ธ ์ œ์–ด๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ : GAT + SAC Graph Attention Network (GAT) ๊ต์ฐจ๋กœ๋ฅผ ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ(๋…ธ๋“œ ์ฐจ์„ ยท์‹ ํ˜ธ ๋‹จ๊ณ„, ์—ฃ์ง€ ์ฐจ๋Ÿ‰ ํ๋ฆ„)๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜

No Image

Order of Magnitude Analysis and Data-Based Physics-Informed Symbolic Regression for Turbulent Pipe Flow

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํŒŒ์ดํ”„ ํ๋ฆ„ ์„ค๊ณ„ยท์—๋„ˆ์ง€ ์‹œ์Šคํ…œ์—์„œ ๋งˆ์ฐฐ ์†์‹ค ์€ ํ•ต์‹ฌ ์„ค๊ณ„ ๋ณ€์ˆ˜์ด๋ฉฐ, ์ „ํ†ต์  ๋ฐ˜๊ฒฝํ—˜์‹์€ ์ฐจ์› ๋ฌด์ฐจ์›ํ™” ์— ๊ธฐ๋ฐ˜ํ•˜์ง€๋งŒ ๋ฌผ๋ฆฌ์  ์ œํ•œ(์˜ˆ: ์ง€์ˆ˜ ๋ฒ”์œ„, ๋‹จ์กฐ์„ฑ) ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ตœ๊ทผ ๋ฐ์ดํ„ฐโ€‘๋“œ๋ฆฌ๋ธ ๋ฐฉ๋ฒ•(์‹ฌ๋ณผ๋ฆญ ํšŒ๊ท€, ๋จธ์‹ ๋Ÿฌ๋‹)์€ ์ฐจ์› ์ผ๊ด€์„ฑ๋งŒ์„ ๊ฐ•์ œํ•˜๊ณ , ๋น„๋ฌผ๋ฆฌ์  ์™ธ์‚ฝ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. 2. ์ฐจ์› ๊ทœ๋ชจ ๋ถ„์„(OMA) โ€“ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ์ฃผ์š” ๊ฒฐ๊ณผ | | | | | | (a) ํ๋ฆ„ ๊ฐ€์ • | ์™„์ „ ๋ฐœ๋‹ฌ, ์ˆ˜ํ‰, ๋น„์••์ถ•์„ฑ, 2โ€‘D ์ฑ„๋„(ํŒŒ์ดํ”„) ํ๋ฆ„ | ์••๋ ฅ ๊ตฌ๋ฐฐ๋Š” ์ผ์ •, ๋ฒฝ ์ „๋‹จ

Analysis Physics Data
No Image

Parallel BiLSTM-Transformer networks for forecasting chaotic dynamics

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜ผ๋ˆ ์‹œ์Šคํ…œ์˜ ํŠน์„ฑ : ์ดˆ๊ธฐ ์กฐ๊ฑด์— ๋Œ€ํ•œ ์ง€์ˆ˜์  ๋ฏผ๊ฐ๋„์™€ ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ถค์ ์€ ์ „ํ†ต์ ์ธ ์‹œ๊ณ„์—ด ๋ชจ๋ธ(ARIMA, ์ „ํ†ต์ ์ธ RNN ๋“ฑ)์ด ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ : LSTMยทGRU ๋“ฑ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง์€ ์ง€์—ญ์  ํŒจํ„ด์„ ์ž˜ ํ•™์Šตํ•˜์ง€๋งŒ, ๊ธด ์‹œ๊ณ„์—ด์—์„œ์˜ ์ „์—ญ์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด Transformer๋Š” selfโ€‘attention์„ ํ†ตํ•ด ์ „์—ญ ์˜์กด์„ฑ์„ ์žก์•„๋‚ด์ง€๋งŒ, ๊ณ ์ฃผํŒŒยท์งง์€ ์‹œ๊ฐ„ ์Šค์ผ€์ผ์˜ ๋ฏธ์„ธํ•œ ๋ณ€๋™์„ ๋†“์น˜๊ธฐ ์‰ฝ๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ

Network
No Image

Penetration of impact-induced jets into skin-simulating materials

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐ”๋Š˜โ€‘์—†๋Š” ์ฃผ์‚ฌ ๋Š” ๊ฐ์—ผ ์œ„ํ—˜ยทํ๊ธฐ๋ฌผ ๋ฌธ์ œยทํ†ต์ฆ ๊ฐ์†Œ ์ธก๋ฉด์—์„œ ํฐ ๊ธฐ๋Œ€๋ฅผ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์Šคํ”„๋งยท๊ฐ€์Šคยท๋กœ๋ Œ์ธ  ํž˜ ๊ตฌ๋™ ๋ฐฉ์‹์€ ํ™•์‚ฐํ˜• ์ œํŠธ ๋ฅผ ๋งŒ๋“ค์–ด ๊นŠ์€ ์กฐ์ง(๊ทผ์œก)์œผ๋กœ ์ฃผ์ž…๋˜๋ฉฐ, ํ†ต์ฆ๊ณผ ๊ณผ๋‹ค ์ฃผ์ž…๋Ÿ‰์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ ˆ์ด์ €โ€‘์œ ๋„ ์ œํŠธ ๋Š” ๊ณ ์†ยท๊ณ ์ง‘์ค‘ ์ œํŠธ๋ฅผ ์ œ๊ณตํ•ด ํ‘œํ”ผยทํ‘œํ”ผโ€‘ํ•˜๋ถ€(Langerhans ์„ธํฌ) ํƒ€๊นƒ์— ์ ํ•ฉํ•˜์ง€๋งŒ, ์บ๋น„ํ…Œ์ด์…˜ ์†์ƒยท์—ด ๋ณ€์„ฑยท๊ณ ๋น„์šฉ ์ด๋ผ๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ ˆ์ด์ €โ€‘ํ”„๋ฆฌ, ์ €๋น„์šฉ, ๊ณ ์ง‘์ค‘ ์ œํŠธ ๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์ถฉ๊ฒฉโ€‘์œ ๋„ ๋ฐฉ์‹์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ๊ทœ๋ช…ํ•˜๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ๊ณผ์ œ์ด๋‹ค. 2.

Physics
No Image

PerCoR: Evaluating Commonsense Reasoning in Persian via Multiple-Choice Sentence Completion

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํŽ˜๋ฅด์‹œ์•„์–ด NLP ๋Š” ์˜์–ด์— ๋น„ํ•ด ๋ฆฌ์†Œ์Šค๊ฐ€ ๋ถ€์กฑํ•˜๊ณ , ํŠนํžˆ ์ƒ์‹ ์ถ”๋ก  ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๊ฑฐ์˜ ์—†์—ˆ๋‹ค. ๊ธฐ์กด ์˜์–ด ๊ธฐ๋ฐ˜ ์ƒ์‹ ๋ฐ์ดํ„ฐ(HellaSwag, CommonsenseQA ๋“ฑ)๋Š” ์–ธ์–ดยท๋ฌธํ™”์  ์ฐจ์ด ๋•Œ๋ฌธ์— ๊ทธ๋Œ€๋กœ ์ „์ดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ PerCoR์€ ํŽ˜๋ฅด์‹œ์•„์–ด ๊ณ ์œ ์˜ ๋ฌธํ™”ยท์‚ฌํšŒ์  ๋ฐฐ๊ฒฝ์„ ๋ฐ˜์˜ํ•œ ๋ฌธ์ œ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ํ˜„์ง€ํ™”๋œ ํ‰๊ฐ€ ๊ธฐ์ค€์„ ๋งˆ๋ จํ•œ๋‹ค. 2. ๋ฐ์ดํ„ฐ ๊ตฌ์ถ• ๋ฐฉ๋ฒ• | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์žฅ์  | ์ž ์žฌ์  ํ•œ๊ณ„ | | | | | | | ์†Œ์Šค ์ˆ˜์ง‘ | 40+ ๋‰ด์Šคยท๋ฌธํ™”ยท์›น ์‚ฌ์ด

No Image

Performance of the Endcap Time-of-Flight detector in the STAR beam-energy scan

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ•ต๋ฌผ์งˆ ์œ„์ƒ๋„ ํƒ์ƒ‰ : RHIC BESโ€‘II๋Š” ์˜จ๋„์™€ ๋ฐ”๋ฆฌ์˜จ ํ™”ํ•™ํผํ…์…œ(ยต B) ์˜์—ญ์„ ๋„“ํžˆ๊ธฐ ์œ„ํ•ด ์ €์—๋„ˆ์ง€ ์ถฉ๋Œ์„ ์‹œ๋„ํ•œ๋‹ค. ๊ณ ์ •โ€‘ํ‘œ์ (FXT) ๋ฐฉ์‹์€ โˆšsโ‚™โ‚™ 3.0 GeV๊นŒ์ง€ ๋‚ด๋ ค๊ฐˆ ์ˆ˜ ์žˆ์–ด ยต B โ‰ˆ 720 MeV๊นŒ์ง€ ์ ‘๊ทผ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๊ธฐ์กด ๋ฐ”๋  TOF(bTOF)์˜ ์ˆ˜์šฉ ๋ฒ”์œ„(ฮท < 1.5)๋กœ๋Š” ์ค‘๊ฐ„โ€‘๋ž˜ํ”ผ๋””ํ‹ฐ ์ž…์ž ์‹๋ณ„์ด ์–ด๋ ค์› ๋‹ค. eTOF ๋„์ž… ์˜์˜ : eTOF๋Š” ฮท 1.55 ~ 2.17 ๊ตฌ๊ฐ„์„ ์ถ”๊ฐ€๋กœ ์ปค๋ฒ„ํ•ด, FXT ๋ชจ๋“œ์—์„œ๋„ ์ค‘๊ฐ„โ€‘๋ž˜ํ”ผ๋””ํ‹ฐ(โ‰ˆ midโ€‘rapidity) PID๋ฅผ ํ™•๋ณดํ•œ๋‹ค. ์ด๋Š”

Physics
No Image

Personalized Image Editing in Text-to-Image Diffusion Models via Collaborative Direct Preference Optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ T2I ํ™•์‚ฐ ๋ชจ๋ธ ์€ ํ…์ŠคํŠธ โ†’ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, โ€œ๋ชจ๋‘์—๊ฒŒ ๊ฐ™์€ ๊ฒฐ๊ณผโ€๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์‹ค์ œ ์„œ๋น„์Šค(์˜ˆ: ๊ฐœ์ธํ™”๋œ ์•„ํŠธ ์ƒ์„ฑ, ๋งž์ถคํ˜• ๊ด‘๊ณ , ์†Œ์…œ ๋ฏธ๋””์–ด ์ฝ˜ํ…์ธ )์—์„œ๋Š” ์‚ฌ์šฉ์ž๋ณ„ ๋ฏธ์  ์„ ํ˜ธ ๊ฐ€ ํ•ต์‹ฌ ๊ฐ€์น˜์ด๋ฏ€๋กœ, ์ด๋ฅผ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์š”๊ตฌ๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์„ค๋ช… | | | | | ๋™์  ์„ ํ˜ธ ๊ทธ๋ž˜ํ”„ | ๊ฐ ์‚ฌ์šฉ์ž๋ฅผ ๊ทธ๋ž˜ํ”„ ๋…ธ๋“œ๋กœ ๋‘๊ณ , ์„ ํ˜ธ ์œ ์‚ฌ๋„(์˜ˆ: ์ด๋ฏธ์ง€ ํด๋ฆญยท์ข‹์•„์š” ๊ธฐ๋ก) ๊ธฐ๋ฐ˜์œผ๋กœ edge๋ฅผ ํ˜•์„ฑ. ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๊ทธ๋ž˜ํ”„๊ฐ€ ์—…๋ฐ์ดํŠธ๋˜์–ด ์ƒˆ๋กœ์šด

Model
No Image

Perturbative sensing of nanoscale materials with millimeter-wave photonic crystals

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒยทํ…Œ๋ผํ—ค๋ฅด์ธ  ์˜์—ญ ์€ ๋งˆ์ดํฌ๋กœํŒŒ์™€ ๊ด‘ํ•™ ์‚ฌ์ด์˜ โ€œํ‹ˆ์ƒˆโ€ ์ฃผํŒŒ์ˆ˜๋Œ€๋กœ, ์–‘์ž ๋ฌผ์งˆ์˜ ์ €์—๋„ˆ์ง€ ์ง‘๋‹จ ๋ชจ๋“œ, ์ž‘์€ ๋ถ„์ž์˜ ํšŒ์ „, ๋Œ€๋ถ„์ž์˜ ๊ตฌ์กฐ ์ง„๋™ ๋“ฑ์„ ์ง์ ‘ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ์ดˆ๊ณ ์† THz ํƒ€์ž„๋„๋ฉ”์ธ ๋ถ„๊ด‘๋ฒ•์€ ์ž์œ ๊ณต๊ฐ„ ๊ด‘ํ•™ ๊ตฌ์„ฑ์ด ํ•„์š”ํ•˜๊ณ , ์ €์˜จยท๊ณ ์ž๊ธฐ์žฅ ํ™˜๊ฒฝ์—์„œ ๊ตฌํ˜„์ด ์–ด๋ ค์›Œ ์‹คํ—˜์  ์ œ์•ฝ์ด ํฌ๋‹ค. ํ†ตํ•ฉ ํฌํ†ค๋‹‰ ํฌ๋ฆฌ์Šคํƒˆ ์€ ์‹ค๋ฆฌ์ฝ˜์˜ ์ €์†์‹คยท๊ณ ์ •๋ฐ€ ๊ฐ€๊ณต ๊ฐ€๋Šฅ์„ฑ์„ ํ™œ์šฉํ•ด ์†Œํ˜•ยท๊ณ ํ’ˆ์งˆ(Highโ€‘Q) ๊ณต์ง„๊ธฐ๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ํŠนํžˆ ์ „์ž๊ธฐ์žฅ์ด ๊ฐ•ํ•œ ํ™˜๊ฒฝ์—์„œ๋„ ์ดˆ์ „๋„ ์žฌ๋ฃŒ์™€ ๋‹ฌ๋ฆฌ ์†์‹ค์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜์ง€ ์•Š๋Š”๋‹ค. 2

Condensed Matter
No Image

Phonon-enhanced strain sensitivity of quantum dots in two-dimensional semiconductors

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์–‘์ž์ (QD)๊ณผ 2D TMD : ๋‹จ์ผ์ธต ์ „์ด๊ธˆ์† ๋””์นผ์ฝ”๊ฒŒ๋‚˜์ด๋“œ(TMD)๋Š” ๊ฐ•ํ•œ ๊ตฌ์† ํšจ๊ณผ์™€ ๋†’์€ ๋ฐœ๊ด‘ ํšจ์œจ์„ ๋™์‹œ์— ์ œ๊ณตํ•ด ์ฐจ์„ธ๋Œ€ ์–‘์ž๊ด‘ํ•™ ํ”Œ๋žซํผ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ QD ๊ฐ„ ํŒŒ์žฅ ๋ณ€๋™์ด ์ปค์„œ ๋™์ผ ํŒŒ์žฅ์˜ ๋‹ค์ค‘ QD ๊ตฌํ˜„์ด ์–ด๋ ค์›Œ, ์‚ฌํ›„ ํŠœ๋‹ ๊ธฐ์ˆ ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ŠคํŠธ๋ ˆ์ธ ํŠœ๋‹์˜ ์žฅ์  : ์ „๊ธฐยท์ž๊ธฐ์žฅ๋ณด๋‹ค ๊ตฌ์กฐ ๋ณ€ํ˜•์— ์ง์ ‘์ ์ธ ๋ฐด๋“œ ๊ตฌ์กฐ ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋ฉฐ, ๋™์‹œ์— ํฌ๋…ผ ์ŠคํŽ™ํŠธ๋Ÿผ๋„ ๋ณ€ํ˜•์‹œ์ผœ ์ƒˆ๋กœ์šด ๋ฌผ๋ฆฌ ํ˜„์ƒ์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ํ•ต์‹ฌ ํฌ์ธํŠธ | | | | | | ์‹œ

Quantum Physics
No Image

PIMfused: Near-Bank DRAM-PIM with Fused-layer Dataflow for CNN Data Transfer Optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ Nearโ€‘bank PIM ์€ DRAM ์€ํ–‰ ๋‚ด๋ถ€์— ์—ฐ์‚ฐ ์œ ๋‹›์„ ๋ฐฐ์น˜ํ•ด ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญยท์ง€์—ฐ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ์„ธ๋Œ€ AI ๊ฐ€์†๊ธฐ์— ์œ ๋งํ•˜๋‹ค. ๊ธฐ์กด PIM ๊ธฐ๋ฐ˜ CNN ๊ฐ€์†๊ธฐ๋Š” layerโ€‘byโ€‘layer ๋ฐฉ์‹์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ํ๋ฅด๊ฒŒ ํ•˜๋Š”๋ฐ, ์ด๋Š” ์€ํ–‰ ๊ฐ„(๋˜๋Š” PIMcore ๊ฐ„) ์˜์กด์„ฑ ์„ ๋งŒ๋“ค๊ณ , ์€ํ–‰ ๊ฒฝ๊ณ„๋ฅผ ๋„˜๋Š” ๋ฐ์ดํ„ฐ ์ด๋™์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ต์ฐจโ€‘์€ํ–‰ ์ „์†ก์€ DRAM ๋‚ด๋ถ€์˜ bankโ€‘toโ€‘bank interconnect ๊ฐ€ ์ œํ•œ๋œ ๋Œ€์—ญํญยท๋†’์€ ์ง€์—ฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ „์ฒด ์„ฑ๋Šฅยท์—๋„ˆ์ง€ ํšจ์œจ์„

Data
No Image

PIP-LLM: Integrating PDDL-Integer Programming with LLMs for Coordinating Multi-Robot Teams Using Natural Language

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋‹ค์ค‘ ๋กœ๋ด‡ ํ˜‘์—… ์€ ์ž‘์—… ํ• ๋‹น, ๊ฒฝ๋กœ ๊ณ„ํš, ์ถฉ๋Œ ํšŒํ”ผ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํฌํ•จํ•œ๋‹ค. ๊ธฐ์กด LLM + PDDL ์ ‘๊ทผ๋ฒ•์€ ๋‹จ์ผ ๋กœ๋ด‡ ํ˜น์€ ์ž‘์€ ํŒ€ ์—๋งŒ ์ ์šฉ ๊ฐ€๋Šฅํ–ˆ์œผ๋ฉฐ, ๋ฌธ๋ฒ• ๊ธฐ๋ฐ˜ ์ž‘์—… ๋ถ„ํ•ด ๊ฐ€ ๋ณต์žกํ•œ ์˜์กด ๊ด€๊ณ„๋ฅผ ์ œ๋Œ€๋กœ ํ‘œํ˜„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ž์—ฐ์–ด โ†’ ํŒ€โ€‘๋ ˆ๋ฒจ ๊ณ„ํš โ†’ ๋กœ๋ด‡โ€‘๋ ˆ๋ฒจ ํ• ๋‹น ์ด๋ผ๋Š” 2๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์ด ํ•„์š”ํ•˜๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ์ž…๋ ฅ | ์ฒ˜๋ฆฌ | ์ถœ๋ ฅ | | | | | | | โ‘  ํŒ€โ€‘๋ ˆ๋ฒจ ํ”Œ๋ž˜๋‹ | ์ž์—ฐ์–ด ๋ช…๋ น | LLM์ด ๋ช…๋ น์„ PDDL(ํŒ€โ€‘๋ ˆ๋ฒจ) ๋ฌธ์ œ๋กœ

No Image

PISA-Bench: The PISA Index as a Multilingual and Multimodal Metric for the Evaluation of Vision-Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ถ”๋ก ์˜ ํ•œ๊ณ„ : ํ˜„์žฌ VLM ๋ฒค์น˜๋งˆํฌ๋Š” ๋Œ€๋ถ€๋ถ„ ์˜์–ด ๊ธฐ๋ฐ˜์ด๋ฉฐ, ์ธ๊ฐ„ ๊ฒ€์ฆ์ด ๋ถ€์กฑํ•ด ์‹ค์ œ ์–ธ์–ดยท๋ฌธํ™” ๋‹ค์–‘์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. PISA ์‹œํ—˜ ํ™œ์šฉ : PISA๋Š” ๊ต์œก ํ‰๊ฐ€ ๋ถ„์•ผ์—์„œ ๊ตญ์ œ์ ์œผ๋กœ ๊ฒ€์ฆ๋œ ์‹œํ—˜์œผ๋กœ, ๋‹ค์–‘ํ•œ ์ธ์ง€ยท๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ์ธก์ •ํ•œ๋‹ค. ์ด๋ฅผ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ™œ์šฉํ•˜๋ฉด VLM์˜ โ€˜์‹ค์ œ ๊ต์œก์  ์‚ฌ๊ณ โ€™๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ | ์š”์†Œ | ๋‚ด์šฉ | ํŠน์ง• | | | | | | ์ง€์‹œ๋ฌธยท์งˆ๋ฌธยท๋‹ต๋ณ€ ์˜ต์…˜ | ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ง์ ‘ ์ถ”์ถœ | ์ธ๊ฐ„ ์ค‘์‹ฌ, ๊ณ ํ’ˆ์งˆ | | ์ด๋ฏธ์ง€ | ์งˆ๋ฌธ์— ์ง์ ‘ ์—ฐ

Model
No Image

PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธ€๋กœ๋ฒŒ ์‹๋ฌผ ํŠน์„ฑ ์ง€๋„ ๋Š” ํƒ„์†Œ ์ˆœํ™˜, ๋ฌผ ์ˆœํ™˜, ๊ธฐํ›„ ๋ชจ๋ธ๋ง ๋“ฑ ๋‹ค์–‘ํ•œ Earth system ๋ชจ๋ธ์— ํ•ต์‹ฌ ์ž…๋ ฅ๊ฐ’์ด๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ๋Š” ํ˜„์žฅ ์กฐ์‚ฌ ์— ์˜์กดํ•ด ๋น„์šฉยท์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๊ณ , ํŠนํžˆ ์—ด๋Œ€ยท๊ทน์ง€ ๋“ฑ ์ ‘๊ทผ์ด ์–ด๋ ค์šด ์ง€์—ญ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋นˆ์•ฝํ•˜๋‹ค. ์‹œ๋ฏผ๊ณผํ•™ (iNaturalist, Pl@ntNet ๋“ฑ)์—์„œ ์ถ•์ ๋œ ์ˆ˜์ฒœ๋งŒ ์žฅ์˜ ์ง€์˜คํƒœ๊น… ์‚ฌ์ง„์€ ์ „ ์„ธ๊ณ„์— ๊ณ ๋ฅด๊ฒŒ ๋ถ„ํฌ๋ผ ์žˆ์–ด, ๋ฐ์ดํ„ฐ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๋Š” ์ž ์žฌ์  ์ž์›์ด๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | | | | | ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌยท๋ฉ€ํ‹ฐํƒœ์Šคํฌ ์„ค๊ณ„ | ์‚ฌ์ง„ ์ด๋ฏธ์ง€์™€ ๋ฉ”

Framework Data
No Image

Platinum: Path-Adaptable LUT-Based Accelerator Tailored for Low-Bit Weight Matrix Multiplication

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ดˆ๋Œ€ํ˜• ๋ชจ๋ธ์˜ ํ•˜๋“œ์›จ์–ด ์š”๊ตฌ : GPTโ€‘4 ์ˆ˜์ค€์˜ ๋ชจ๋ธ์€ ์ˆ˜๋ฐฑ GB ๋ฉ”๋ชจ๋ฆฌ์™€ ๋†’์€ ์—ฐ์‚ฐ๋Ÿ‰์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ๋Š” ํ˜„์‹ค์ ์ด์ง€ ์•Š๋‹ค. ์–‘์žํ™”์™€ LUT ํ™œ์šฉ : 1โ€‘bit~4โ€‘bit ์ˆ˜์ค€์˜ ์ดˆ์ €๋น„ํŠธ ์–‘์žํ™”๋Š” ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ธ‰๊ฐ์‹œํ‚ค์ง€๋งŒ, ์—ฌ์ „ํžˆ ๋งคํŠธ๋ฆญ์Šค ๊ณฑ ์—ฐ์‚ฐ์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. LUT๋Š” ๋ฏธ๋ฆฌ ๊ณ„์‚ฐ๋œ ๊ณฑ์…ˆ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•ด ์žฌ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์ด ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•œ๋‹ค. 2. ๊ธฐ์กด LUTโ€‘๊ธฐ๋ฐ˜ ๊ฐ€์†๊ธฐ์˜ ํ•œ๊ณ„ | ๊ธฐ์กด ๋ฐฉ๋ฒ• | ์ฃผ์š” ๋ฌธ์ œ์  | | | | | SpikingEyeriss | LUT ์ƒ์„ฑ ์‹œ ๋‹ค์ค‘ ๋น„ํŠธ ์กฐํ•ฉ์„ ๋ชจ๋‘

No Image

Poisson-MNL Bandit: Nearly Optimal Dynamic Joint Assortment and Pricing with Decision-Dependent Customer Arrivals

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ „ํ†ต์  ํ•œ๊ณ„ : ๊ธฐ์กด MNL ๊ธฐ๋ฐ˜ ์–ด์†Œ๋ฆฌ๋จผํŠธยท๊ฐ€๊ฒฉ ์ตœ์ ํ™”๋Š” ๊ณ ๊ฐ ๋„์ฐฉ์„ ์™ธ์ƒ (๊ณ ์ •)์œผ๋กœ ๊ฐ€์ •ํ•ด, ๊ธฐ๊ฐ„๋‹น ๋งค์ถœ ์„ ๊ณผ๋Œ€/๊ณผ์†Œํ‰๊ฐ€ํ•œ๋‹ค. ์‹ค์ œ ํ˜„์žฅ : ์†Œ๋งคยทํ”Œ๋žซํผ์—์„œ๋Š” ์ƒํ’ˆ ๊ตฌ์ƒ‰ยท๊ฐ€๊ฒฉ์ด ํŠธ๋ž˜ํ”ฝ(๋ฐฉ๋ฌธ์ž ์ˆ˜) ์— ์ง์ ‘ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์ด๋Š” ํฌ์•„์†ก ๋„์ฐฉ ํ˜•ํƒœ๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ชจ๋ธ๋ง ๊ฐ€๋Šฅ. ํ•ต์‹ฌ ์งˆ๋ฌธ : โ€œ์–ด์†Œ๋ฆฌ๋จผํŠธยท๊ฐ€๊ฒฉ์„ ์–ด๋–ป๊ฒŒ ์กฐ์ •ํ•ด์•ผ ๋„์ฐฉ๋ฅ ๊ณผ ๊ตฌ๋งค ์ „ํ™˜์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€?โ€ 2. Poissonโ€‘MNL ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ | ๊ตฌ์„ฑ ์š”์†Œ | ์ˆ˜ํ•™์  ํ‘œํ˜„ | ์˜๋ฏธ | | | | | | ๋„์ฐฉ ๋ชจ๋ธ | (N

Machine Learning Statistics
No Image

Prefactorization algebras for the conformal Laplacian: Central charge and Hilbert Fock space

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํŒฉํ„ฐ๋ผ์ด์ œ์ด์…˜ ๋Œ€์ˆ˜ ๋Š” Costelloโ€‘Gwilliam์ด ์ œ์‹œํ•œ ์–‘์ž์žฅ๋ก ์˜ ํ˜„๋Œ€์  ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ์ด๋ฉฐ, ๊ธฐ์กด BV ๋ณตํ•ฉ์ฒด๋ฅผ ํ†ตํ•ด ์ž์œ  ์Šค์นผ๋ผ ์žฅ์„ ๊ธฐ์ˆ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ BV ๋ณตํ•ฉ์ฒด๋Š” ๋“ฑ๊ฑฐ๋ฆฌ(isometric) ์ž„๋ฒ ๋”ฉ์—๋งŒ ์ž์—ฐ์Šค๋Ÿฌ์šฐ๋ฉฐ, ๊ณต๋ณ€(conformal) ๋ณ€ํ™˜์— ๋Œ€ํ•œ ํ˜ธํ™˜์„ฑ์ด ๋ถ€์กฑํ•˜๋‹ค. ๊ณต๋ณ€ ๋ผํ”Œ๋ผ์‹œ์•ˆ(์•ผ๋งˆ๋ฒ  ์—ฐ์‚ฐ์ž)์€ ์ฐจ์› (d)์—์„œ ๊ณต๋ณ€์„ฑ ์„ ๊ฐ–๋Š” ๋Œ€ํ‘œ์ ์ธ 2๊ณ„ ๋ฏธ๋ถ„ ์—ฐ์‚ฐ์ž๋กœ, ์ด๋ฅผ ์ด์šฉํ•˜๋ฉด ๊ณต๋ณ€ ํŒฉํ„ฐ๋ผ์ด์ œ์ด์…˜ ๋Œ€์ˆ˜ ๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ์ฃผ์š” ์ •์˜์™€ ๊ตฌ์„ฑ | ๊ฐœ๋… | ์„ค๋ช… | | | | |

MATH-PH
No Image

Privacy Preserving Ordinal-Meta Learning with VLMs for Fine-Grained Fruit Quality Prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ๊ธฐ๋ฌผ ๊ฐ์†Œ์™€ ๊ฒฝ์ œ์  ๊ฐ€์น˜ : ๋ถ€ํŒจ์„ฑ ๊ณผ์ผ์€ ์œ ํ†ต ๋‹จ๊ณ„์—์„œ ์‹ ์„ ๋„ ํŒ๋‹จ์ด ์–ด๋ ค์›Œ ํ๊ธฐ ๋น„์šฉ์ด ํฌ๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ๋น„์นจ์Šต์  ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก์€ ๋น„์šฉ ํšจ์œจ์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด๋‹ค. ๋ผ๋ฒจ๋ง ๋น„์šฉ ๋ฌธ์ œ : ์‹ ์„ ๋„ ๋ผ๋ฒจ์€ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ง์ ‘ ํ‰๊ฐ€ํ•ด์•ผ ํ•˜๋ฉฐ, ํŠนํžˆ โ€˜๋งค์šฐ ์‹ ์„ โ€™, โ€˜์‹ ์„ โ€™, โ€˜๋ณดํ†ตโ€™, โ€˜๋…ธํ›„โ€™ ๋“ฑ ์„ธ๋ถ„ํ™”๋œ ๋“ฑ๊ธ‰์€ ์ธ๊ฑด๋น„์™€ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ํฌ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ํฌ์†Œํ•œ ์ƒํ™ฉ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ํ์‡„ํ˜• ๋ชจ๋ธ : Gemini ๋“ฑ ์ƒ์šฉ VLM์€ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ API ํ˜ธ์ถœ ์‹œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๊ฐ€ ์™ธ๋ถ€ ์„œ

Learning
No Image

Probability-Invariant Random Walk Learning on Gyral Folding-Based Cortical Similarity Networks for Alzheimer's and Lewy Body Dementia Diagnosis

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ž„์ƒ์  ํ˜ผ๋™ : AD์™€ LBD๋Š” ์ดˆ๊ธฐ ์ฆ์ƒ์ด ์œ ์‚ฌํ•ด ์˜์ƒ ๊ธฐ๋ฐ˜ ๋ฐ”์ด์˜ค๋งˆ์ปค๊ฐ€ ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. ๊ธฐ์กด ์•„ํ‹€๋ผ์Šค ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ ํ•œ๊ณ„ : ๊ณ ์ •๋œ ํŒŒ์…€๋ ˆ์ด์…˜์€ ๊ฐœ์ธ๋ณ„ ์ฃผ๋ฆ„ยทํ”ผ์งˆ ๋‘๊ป˜ ๋ณ€์ด๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ฃผ๋ฆ„ ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ์˜ ๋ฌธ์ œ์  : 3HG์™€ ๊ฐ™์€ ํ•ด๋ถ€ํ•™์  ๋žœ๋“œ๋งˆํฌ๋Š” ๊ฐœ์ธ๋งˆ๋‹ค ์ˆ˜์™€ ์œ„์น˜๊ฐ€ ๋‹ฌ๋ผ ๋…ธ๋“œ ์ •๋ ฌ ๊ณผ ๊ณ ์ • ํ† ํด๋กœ์ง€ ๊ฐ€์ •์ด ๊นจ์ง„๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์„ค๋ช… | ์™œ ์ค‘์š”ํ•œ๊ฐ€ | | | | | | ํ™•๋ฅ  ๋ถˆ๋ณ€ ๋žœ๋ค ์›Œํฌ | MDLR ๊ธฐ๋ฐ˜ ์ „์ด ํ™•๋ฅ ๋กœ ์ƒ˜ํ”Œ๋ง, ๋น„์—ญ์ „(backtracking) ์ œํ•œ

Network Learning Quantitative Biology
No Image

Probing Ultralight Dark Matter at the Mega-Planck Scale with the Thorium Nuclear Clock

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ดˆ๊ฒฝ๋Ÿ‰ ์•”ํ‘๋ฌผ์งˆ(ULDM) ์€ ์งˆ๋Ÿ‰์ด $10^{ 22}$ eV ์ˆ˜์ค€๊นŒ์ง€ ๋‚ด๋ ค๊ฐˆ ์ˆ˜ ์žˆ๋Š” ํ›„๋ณด๊ตฐ์œผ๋กœ, ๊ณ ์ „์ ์ธ ๋ฐฐ๊ฒฝ์žฅ ํ˜•ํƒœ๋กœ ์šฐ์ฃผ ์ „์—ญ์— ํผ์ ธ ์žˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ULDM ๋ชจ๋ธ์€ ๊ฐ•ํ•œ ์ƒํ˜ธ์ž‘์šฉ(ํ•ตยท์ฟผํฌยท๊ธ€๋ฃจ์˜จ) ์— ์ฃผ๋กœ ๊ฒฐํ•ฉํ•œ๋‹ค๋Š” ์ ์—์„œ, ์ „ํ†ต์ ์ธ ์ „์ž๊ธฐ ๊ธฐ๋ฐ˜ ํƒ์ƒ‰๋ณด๋‹ค ํ•ต ๋ฌผ๋ฆฌํ•™์— ํŠนํ™”๋œ ์‹คํ—˜์ด ํ•„์š”ํ•˜๋‹ค. ํ”Œ๋ž‘ํฌ ์Šค์ผ€์ผ($M {rm P}simeq1.22times10^{19}$ GeV)์€ ์ค‘๋ ฅ์ด ๊ฐ•ํ•ด์ง€๋Š” ๊ทผ๋ณธ์ ์ธ ์—๋„ˆ์ง€ ๊ธฐ์ค€์ด๋ฉฐ, ์ด๋ณด๋‹ค ๋†’์€ ์–ต์ œ ์Šค์ผ€์ผ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๊ฒƒ์€ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅ์— ๊ฐ€๊นŒ์šด ๋„์ „์ด

HEP-PH
No Image

QG-CoC: Question-Guided Chain-of-Captions for Large Multimodal Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐ์ด๋ฏธ์ง€ ์ธ์‹์˜ ๋‚œ์ œ : ๊ธฐ์กด MLLM์€ ์ด๋ฏธ์ง€ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•ด, ๋ณต์ˆ˜ ์ด๋ฏธ์ง€๊ฐ€ ์ œ์‹œ๋  ๋•Œ ์„ธ๋ถ€์ ์ธ ๊ฐ์ฒดยท๊ด€๊ณ„ ํŒŒ์•…์ด ์•ฝํ•จ. ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„ โ€œDescribe the imageโ€ ํ˜น์€ โ€œAnswer the questionโ€ ํ˜•ํƒœ์˜ ๋‹จ์ผ ์ด๋ฏธ์ง€ ์ „์šฉ ํ”„๋กฌํ”„ํŠธ์— ๋จธ๋ฌผ๋Ÿฌ, ๋‹ค์ค‘ ์ด๋ฏธ์ง€ ์ƒํ™ฉ์—์„œ ์ •๋ณด ํ†ตํ•ฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ถ€์žฌํ•จ. 2. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ์ฒด๊ณ„์  ์กฐ์‚ฌ Fineโ€‘grained Perception : ์ด๋ฏธ์ง€๋ณ„ ์บก์…˜์„ ๋…๋ฆฝ์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ์‹์€ ์ด๋ฏธ์ง€ ๊ฐ„ ์—ฐ๊ด€์„ฑ์„ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•จ

Model
No Image

QuantiPhy: A Quantitative Benchmark Evaluating Physical Reasoning Abilities of Vision-Language Models

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ํ•„์š”์„ฑ ๊ธฐ์กด VLM ํ‰๊ฐ€๊ฐ€ VQA์™€ ๊ฐ™์€ ์ •์„ฑ์  ์งˆ๋ฌธ์— ๊ตญํ•œ๋ผ ๋ฌผ๋ฆฌ๋Ÿ‰์˜ ์ •๋Ÿ‰์  ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๊ฒ€์ฆํ•˜์ง€ ๋ชปํ•จ์„ ์ •ํ™•ํžˆ ์ง€์ ํ•œ๋‹ค. ๋ฌผ๋ฆฌ์  ์„ธ๊ณ„๋ฅผ ๋‹ค๋ฃจ๋Š” ์‹ค์ œ ๋กœ๋ด‡ยท์‹œ๋ฎฌ๋ ˆ์ด์…˜ยทAR/VR ์‘์šฉ์—์„œ๋Š” ์ •ํ™•ํ•œ ์ˆ˜์น˜ ๊ฐ€ ํ•„์ˆ˜์ด๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๋Š” ๋ฒค์น˜๋งˆํฌ๋Š” ๋งค์šฐ ์‹œ์˜์ ์ ˆํ•˜๋‹ค. 2. ๋ฒค์น˜๋งˆํฌ ์„ค๊ณ„ ๋ฐ์ดํ„ฐ ๊ทœ๋ชจ : 3.3K ์ด์ƒ์˜ ๋น„๋””์˜คโ€‘ํ…์ŠคํŠธ ์ธ์Šคํ„ด์Šค๋Š” ํ˜„์žฌ ๊ณต๊ฐœ๋œ ๋ฌผ๋ฆฌ ์ถ”๋ก  ๋ฐ์ดํ„ฐ์…‹๋ณด๋‹ค ๊ทœ๋ชจ๊ฐ€ ํฌ๊ณ  ๋‹ค์–‘ํ•˜๋‹ค. ๋ฌธ์ œ ํ˜•์‹ : โ€œ์‹œ์  t์—์„œ ๋ฌผ์ฒด์˜ ํฌ๊ธฐ๋ฅผ ๊ตฌํ•˜๋ผโ€์™€ ๊ฐ™์ด ๋‹จ์ผ ์‹œ์  ์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ๋Ÿ‰์„ ์š”๊ตฌํ•˜๊ณ , ํ•˜๋‚˜์˜ ๋ฌผ๋ฆฌ๋Ÿ‰์„

Model
No Image

Quantum cascade laser roadmap

1. ์ „์ฒด ๊ตฌ์กฐ์™€ ํ๋ฆ„ ์„ธ ํŒŒํŠธ ๊ตฌ์„ฑ : 1) ๋””๋ฐ”์ด์Šค ์„ค๊ณ„ยท๊ธฐ์ˆ  โ€“ ์ „์ž ์ˆ˜์†ก ๋ชจ๋ธ๋ง, ๋ ˆ์ด์–ด ๊ตฌ์กฐ ์ตœ์ ํ™”, ์žฌ๋ฃŒ ์„ ํƒ ๋“ฑ. 2) ์ฃผํŒŒ์ˆ˜ ์ฝคยทํŽ„์Šค ํ˜•์„ฑ โ€“ ์ฝค ์ƒ์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜, ๋ชจ๋“œ ์ž ๊ธˆ, ๋งฅ์Šค์›ฐโ€‘๋ณผ์ธ ๋งŒ ๋ฐฉ์ •์‹ ๋“ฑ. 3) ์‘์šฉ โ€“ ๋ถ„๊ด‘, ํ†ต์‹ , ์„ผ์„œ, ์˜จ์นฉ ํ†ตํ•ฉ ๋“ฑ ์‹ค์ œ ํ™œ์šฉ ์‚ฌ๋ก€. ๊ฐ ํŒŒํŠธ๋Š” ๋ฐฐ๊ฒฝ โ†’ ํ˜„ํ™ฉ โ†’ ๊ณผ์ œ โ†’ ์ „๋ง ์ˆœ์œผ๋กœ ์ „๊ฐœ๋ผ, ๋…์ž๊ฐ€ ํ˜„์žฌ ์—ฐ๊ตฌ ์ˆ˜์ค€์„ ํ•œ๋ˆˆ์— ํŒŒ์•…ํ•˜๊ณ  ํ–ฅํ›„ ์—ฐ๊ตฌ ๋กœ๋“œ๋งต์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋•๋Š”๋‹ค. 2. ์ „์ž ์ˆ˜์†ก ๋ชจ๋ธ๋ง์˜ ํ•ต์‹ฌ ๋…ผ์˜ | ๋ชจ๋ธ | ํŠน์ง• | ์žฅ์  | ๋‹จ์  | | | | | | | Monteโ€‘

Physics
No Image

RAGFort: Dual-Path Defense Against Proprietary Knowledge Base Extraction in Retrieval-Augmented Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ RAG ์‹œ์Šคํ…œ ์€ ์™ธ๋ถ€ ์ง€์‹๋ฒ ์ด์Šค๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฒ€์ƒ‰ํ•ด ์ƒ์„ฑ ๋ชจ๋ธ์— ์ œ๊ณตํ•จ์œผ๋กœ์จ ์ตœ์‹  ์ •๋ณด์™€ ์ „๋ฌธ์„ฑ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค. ์žฌ๊ตฌ์„ฑ ๊ณต๊ฒฉ ์€ ๋ชจ๋ธ์ด ๋ฐ˜ํ™˜ํ•œ ํ…์ŠคํŠธ๋ฅผ ์ˆ˜์ง‘ยท๋ถ„์„ํ•ด ์›๋ณธ ์ง€์‹๋ฒ ์ด์Šค๋ฅผ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ณต์›ํ•œ๋‹ค. ํŠนํžˆ, Intraโ€‘class : ๋™์ผ ์ฃผ์ œ ๋‚ด์—์„œ ์„ธ๋ถ€ ํ•ญ๋ชฉ์„ ์ฐจ๋ก€๋กœ ์ถ”์ถœ. Interโ€‘class : ์„œ๋กœ ์—ฐ๊ด€๋œ ์ฃผ์ œ ๊ฐ„์— ์ •๋ณด๋ฅผ ๊ต์ฐจ์‹œ์ผœ ์ „์ฒด ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…. ๊ธฐ์กด ๋ฐฉ์–ด๋Š” ๋…ธ์ด์ฆˆ ์ฃผ์ž… , ์‘๋‹ต ์ œํ•œ ๋“ฑ ๋‹จ์ผ ๊ฒฝ๋กœ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๋‹ค๋ฅธ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•œ ๋ˆ„์ˆ˜๋Š” ๋ฐฉ์น˜ํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ

No Image

Realization of fractional Fermi seas

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉํ‘œ ์–‘์ž ํ†ต๊ณ„์˜ ํ™•์žฅ : ์ „ํ†ต์ ์ธ ๋ณด์†ยทํŽ˜๋ฅด๋ฏธ์˜จ ๊ตฌ๋ถ„์„ ๋„˜์–ด, ํ• ๋ฐ์ธ์˜ ์ผ๋ฐ˜ํ™”๋œ ๋ฐฐ์ œ ํ†ต๊ณ„(GES)์™€ ๊ทธ์— ๋”ฐ๋ฅธ โ€œ์ŠˆํผํŽ˜๋ฅด๋ฏธ์˜จโ€ ๊ฐœ๋…์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•จ. ๋ถ„์ˆ˜ ํŽ˜๋ฅด๋ฏธ ๋ฐ”๋‹ค(FFS) : ๊ฐ ์ž…์ž๊ฐ€ ฮฑ>1๊ฐœ์˜ ์–‘์ž ์ƒํƒœ๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๊ณ ์œ ํ•œ ๋ชจ๋ฉ˜ํ…€ ๋ถ„ํฌ(๊ท ์ผํ•˜์ง€๋งŒ ๋ถ„์ˆ˜ ์ ์œ ์œจ)๋ฅผ ๊ฐ–๋Š” ์ƒํƒœ๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ํ•ต์‹ฌ ์งˆ๋ฌธ : ๋น„์—ด์—ญํ•™์  ํฅ๋ถ„ ์ƒํƒœ์—์„œ๋„ GES๊ฐ€ ์˜ˆ์ธกํ•˜๋Š” FFS๊ฐ€ ์‹ค์ œ ๋ฌผ๋ฆฌ๊ณ„์—์„œ ์•ˆ์ •ํ™”๋  ์ˆ˜ ์žˆ๋Š”๊ฐ€? 2. ์‹คํ—˜ ์„ค๊ณ„ ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ๋‚ด์šฉ | ๋ฌผ๋ฆฌ์  ์˜๋ฏธ | | | | | | ์‹œ์ž‘ | Cs ์›

Condensed Matter
No Image

Reasoning Planning for Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ถ”๋ก  ๋ฐฉ๋ฒ• ์„ ํƒ์˜ ์ค‘์š”์„ฑ : ์–ธ์–ด ๋ชจ๋ธ(LM)์€ ๋™์ผํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ ์ถ”๋ก  ์ „๋žต(์˜ˆ: ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์ƒ๊ฐ, ๋„๊ตฌ ์‚ฌ์šฉ, ์ง์ ‘ ๋‹ต๋ณ€ ๋“ฑ)์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์–ด๋А ์ „๋žต์ด ๊ฐ€์žฅ ์ ํ•ฉํ•œ์ง€๋Š” ์งˆ๋ฌธ์˜ ํŠน์„ฑ์— ํฌ๊ฒŒ ์ขŒ์šฐ๋œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” โ€œ๋‹ค์ˆ˜์˜ ํ›„๋ณด๋ฅผ ๋งŒ๋“ค๊ณ , ํˆฌํ‘œ ํ˜น์€ ํ™•๋ฅ ์  ์ง‘๊ณ„๋กœ ์ตœ์ข… ๋‹ต์„ ์„ ํƒโ€ํ•˜๋Š” ๋ฐฉ์‹์— ์˜์กดํ•œ๋‹ค. ์ด๋•Œ ํ›„๋ณด ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ์ด ์ •ํ™•๋„ ํ–ฅ์ƒ์œผ๋กœ ์ง๊ฒฐ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ํ›„๋ณด ํ’ˆ์งˆ๊ณผ ๋ถ„ํฌ๊ฐ€ ์ค‘์š”ํ•จ์„ ๊ฐ„๊ณผํ•œ๋‹ค. 2. ์ด๋ก ์  ๊ธฐ์—ฌ ์ •ํ™•๋„ ๊ฒฝ๊ณ„ ๋„์ถœ : ๋…ผ

Model
Reply To: Global Gridded Population Datasets Systematically Underrepresent Rural Population by Josias Lรกng-Ritter et al

Reply To: Global Gridded Population Datasets Systematically Underrepresent Rural Population by Josias Lรกng-Ritter et al

| ๊ตฌ๋ถ„ | ์› ๋…ผ๋ฌธ์˜ ์ฃผ์žฅ | ๋น„ํŒยท๋ฌธ์ œ์  | ๊ตฌ์ฒด์  ๊ทผ๊ฑฐ ๋ฐ ์ œ์–ธ | | | | | | | 1. ์‹œ๊ณ„์—ด ์ •ํ•ฉ์„ฑ | ๋Œ ๊ฑด์„ค 10๋…„ ์ „ ์ธ๊ตฌ ์ถ”์ •์น˜๋ฅผ ์‹ค์ œ ์žฌ์ •์ฐฉ ์ธ๊ตฌ์™€ ๋น„๊ต | ๋Œ ํ”„๋กœ์ ํŠธ๋Š” ์ฐฉ๊ณตยทํ† ์ง€ ์ˆ˜์šฉ ๋‹จ๊ณ„๊ฐ€ ๊ฑด์„ค 10๋…„ ์ „๋ณด๋‹ค ํ›จ์”ฌ ์•ž์„œ ์ง„ํ–‰๋จ. ์˜ˆ: ๋…์ผ Brombachsee ๋Œ์€ ์ฐฉ๊ณต ~30๋…„ ์ „๋ถ€ํ„ฐ ์ธ๊ตฌ ์ด๋™์ด ์‹œ์ž‘๋จ. ๋”ฐ๋ผ์„œ โ€œ10๋…„ ์ „โ€ ์‹œ์ ์— ์ด๋ฏธ ์ธ๊ตฌ๊ฐ€ ์ด๋™ํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„ ํŽธํ–ฅ์ด ๊ณผ๋Œ€ ํ‰๊ฐ€๋จ. | ์žฌ์ •์ฐฉ ์‹œ์ ๊ณผ ์ธ๊ตฌ ์ถ”์ • ์‹œ์ ์„ ์ •ํ™•ํžˆ ๋งž์ถ”๋Š” ๊ฒƒ์ด ํ•„์ˆ˜. ํ”„๋กœ์ ํŠธ ๋‹จ๊ณ„๋ณ„ ์ธ๊ตฌ ์ด๋™ ๊ธฐ๋ก์„ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ์ตœ์†Œ

Data System Quantitative Biology
No Image

Resistive instabilities of current sheets in stratified plasmas with a gravitational field

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์žฌ์—ฐ๊ฒฐ์˜ ๋ณดํŽธ์„ฑ : ์ž๊ธฐ ์žฌ์—ฐ๊ฒฐ์€ ํ•ต์œตํ•ฉ ์žฅ์น˜, ํƒœ์–‘ ํ”Œ๋ ˆ์–ด, ์ง€๊ตฌ ์ž๊ธฐ๊ถŒ, ๊ทธ๋ฆฌ๊ณ  ์ฒœ์ฒด ๋ฌผ๋ฆฌํ•™์  ํ˜„์ƒ(์˜ˆ: accretion disk, relativistic jet) ๋“ฑ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ์—๋„ˆ์ง€ ๋ฐฉ์ถœ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. ์ธตํ™”ยท์ค‘๋ ฅ ํšจ๊ณผ์˜ ์ค‘์š”์„ฑ : ์‹ค์ œ ํ”Œ๋ผ์ฆˆ๋งˆ๋Š” ์ข…์ข… ์ค‘๋ ฅ, ์ž๊ธฐ ๊ณก๋ฅ , ํ˜น์€ ์™ธ๋ถ€ ๊ฐ€์†์— ์˜ํ•ด โ€œ๋ฌด๊ฑฐ์šด ํ”Œ๋ผ์ฆˆ๋งˆ๊ฐ€ ๊ฐ€๋ฒผ์šด ํ”Œ๋ผ์ฆˆ๋งˆ ์œ„์— ๋†“์ด๋Š”โ€ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ์ด๋Š” Rayleighโ€‘Taylor(RT) ํ˜น์€ interchange ๋ถˆ์•ˆ์ •๊ณผ ๊ฒฐํ•ฉํ•ด ์žฌ์—ฐ๊ฒฐ ํŠน์„ฑ์„ ํฌ๊ฒŒ ๋ฐ”๊พผ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š”

Physics
No Image

Retrieving the Baby: Reichenbach's Principle, Bell Locality, and Selection Bias

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ œ๊ธฐ ๋ฒจ์˜ Factorizability : ๋ฒจ์€ โ€œ๊ฐ€๋Šฅํ•œ ๊ณผ๊ฑฐ ์›์ธ๋“ค์„ ๊ณ ์ •ํ•˜๋ฉด, ์‹œ๊ณต๊ฐ„์ ์œผ๋กœ ๋ถ„๋ฆฌ๋œ ์ธก์ • ๊ฒฐ๊ณผ๋“ค์˜ ๊ฒฐํ•ฉ ํ™•๋ฅ ์ด ๊ฐ ์ง€์—ญ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์˜ ๊ณฑ์ด ๋œ๋‹คโ€๋Š” ์ˆ˜ํ•™์  ๊ทœ์น™์„ ์ œ์‹œํ•˜๊ณ , ์ด๊ฒƒ์ด QM์˜ ์˜ˆ์ธก(ํŠนํžˆ CHSH ๋ถ€๋“ฑ์‹ ์œ„๋ฐ˜)๊ณผ ๋ชจ์ˆœ๋œ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ๋‹ค. ๋ฒจ์˜ ๊ฒฝ๊ณ  : ๋ฒจ์€ ์ง๊ด€์  ์•„์ด๋””์–ด๋ฅผ ์ˆ˜ํ•™ํ™”ํ•˜๋Š” ๊ณผ์ •์—์„œ โ€œ์•„๊ธฐ๋ฅผ ์š•์กฐ ๋ฌผ๊ณผ ํ•จ๊ป˜ ๋ฒ„๋ฆดโ€ ์œ„ํ—˜์„ ๊ฒฝ๊ณ ํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ๋กœ ์„ ํƒ ํŽธํ–ฅ ์ด๋ผ๋Š” ์ค‘์š”ํ•œ ์š”์†Œ๊ฐ€ ๋ˆ„๋ฝ๋œ ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๋…ผ๋ฆฌ ์ „๊ฐœ | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ํ•ต์‹ฌ ํฌ์ธํŠธ | | | | |

Quantum Physics
No Image

Revisiting Multilingual Data Mixtures in Language Model Pretraining

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹ค๊ตญ์–ด LLM์€ ํ•œ ๋ชจ๋ธ์ด ์—ฌ๋Ÿฌ ์–ธ์–ด๋ฅผ ๋™์‹œ์— ๋‹ค๋ฃจ๊ฒŒ ํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ๊ณผ ๋ฐฐํฌ ๋น„์šฉ์„ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์œผ๋กœ โ€œ๋‹ค๊ตญ์–ด์„ฑ์˜ ์ €์ฃผโ€(curse of multilinguality)๋ผ ๋ถˆ๋ฆฌ๋Š” ํ˜„์ƒโ€”์ฆ‰, ์–ธ์–ด ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก ๊ฐ ์–ธ์–ด๋‹น ์„ฑ๋Šฅ์ด ๊ฐ์†Œํ•œ๋‹ค๋Š” ๊ฐ€์ •โ€”์ด ์กด์žฌํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ฐ€์„ค์„ ์‹คํ—˜์ ์œผ๋กœ ์žฌ๊ฒ€์ฆํ•˜๊ณ , ํŠนํžˆ ํ”ผ๋ฒ— ์–ธ์–ด (highโ€‘resource language) ์—ญํ• ์ด ์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ | ๋ณ€์ˆ˜ | ์„ค์ • | | | | | ๋ชจ๋ธ ๊ทœ๋ชจ | 1

Model Data
No Image

Robust Model Predictive Control for Linear Systems with Interval Matrix Model Uncertainty

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ฐ•์ธ MPC ๋Š” ์ œ์•ฝ์ด ์žˆ๋Š” ๋‹ค๋ณ€๋Ÿ‰ ์‹œ์Šคํ…œ์„ ์ œ์–ดํ•˜๋ฉด์„œ ์™ธ๋ž€ยท๋ชจ๋ธ ๋ถˆํ™•์‹ค์„ฑ์„ ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋‰œ๋‹ค. 1. ๋ฏธ๋‹ˆ๋งฅ์Šค(minโ€‘max)ยทํด๋ฆฌํ† ํ”„(polytope) ๊ธฐ๋ฐ˜ : ์ตœ์•… ์ƒํ™ฉ์„ ์ง์ ‘ ์ตœ์ ํ™”ํ•˜์ง€๋งŒ ์ฐจ์›ยทํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. 2. ํŠœ๋ธŒโ€‘MPC(tubeโ€‘MPC) : ๋ช…๋ชฉ ๊ถค์ ์„ ๋ณด๊ฐ•ํ•˜์ง€๋งŒ ๋ณด์ˆ˜์„ฑ์ด ์ปค์ง€๊ณ , ๋ถˆํ™•์‹ค์„ฑ ์ „ํŒŒ๋ฅผ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ตฌ๊ฐ„ ํ–‰๋ ฌ ๋ชจ๋ธ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๊ฐ๊ฐ ๋…๋ฆฝ์ ์ธ ๊ตฌ๊ฐ„์— ์†ํ•œ๋‹ค๋Š” ๊ฐ€์ • ํ•˜์—, ์ง‘ํ•ฉ ์‹๋ณ„

System Model Electrical Engineering and Systems Science
No Image

Scalable GPU-Based Integrity Verification for Large Machine Learning Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ GPU ์ค‘์‹ฌ์˜ ML ์›Œํฌ๋กœ๋“œ : ํ˜„์žฌ ๋Œ€๊ทœ๋ชจ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜์‹ญ์—์„œ ์ˆ˜๋ฐฑ GB์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํ•™์Šตยท์ถ”๋ก  ๋ชจ๋‘ GPU ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ „ํ†ต์  ๋ณด์•ˆ ๊ฒ€์ฆ์˜ ํ•œ๊ณ„ : ๋ฌด๊ฒฐ์„ฑ ๊ฒ€์ฆ์€ ์ฃผ๋กœ CPU ๊ธฐ๋ฐ˜ ํ”„๋กœ์„ธ์Šค์—์„œ ์ˆ˜ํ–‰๋ผ, GPU์™€ ๋ฉ”๋ชจ๋ฆฌยท์—ฐ์‚ฐ ๊ฒฝ๋กœ๊ฐ€ ๋ถ„๋ฆฌ๋ผ ์žˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ์ด๋™ ๋น„์šฉ๊ณผ ๊ฒ€์ฆ ์ง€์—ฐ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ณด์•ˆยท์„ฑ๋Šฅ ํ†ตํ•ฉ ํ•„์š”์„ฑ : ๋ชจ๋ธ ๋ฌด๊ฒฐ์„ฑ ์œ„ํ˜‘(์˜ˆ: ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€์กฐ, ๋ฉ”๋ชจ๋ฆฌ ์Šค๋‹ˆํ•‘)์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐฉ์–ดํ•˜๋ ค๋ฉด ๊ฒ€์ฆ์ด ๋ชจ๋ธ ์‹คํ–‰๊ณผ ๋™๊ธฐํ™”๋ผ์•ผ ํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ

Model Learning
No Image

Security Risk of Misalignment between Text and Image in Multi-modal Model

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ •๋ ฌ์˜ ์ค‘์š”์„ฑ : ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€๊ฐ€ ์„œ๋กœ ์˜๋ฏธ์ ์œผ๋กœ ์ผ์น˜ํ•ด์•ผ ๋ชจ๋ธ์ด ์˜๋„ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ •๋ ฌ์ด ๊นจ์ง€๋ฉด ๋ชจ๋ธ์€ ํ…์ŠคํŠธ์™€ ๋ฌด๊ด€ํ•œ ์‹œ๊ฐ์  ํŒจํ„ด์„ ํ•™์Šตํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋Š” ์•…์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ธ๋‹ค. ๋ณด์•ˆ ๊ด€์ ์˜ ๋นˆํ‹ˆ : ๊ธฐ์กด ๋ณด์•ˆ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ ์ž์ฒด๋ฅผ ๋ณ€์กฐํ•˜๊ฑฐ๋‚˜, ์ „์ฒด ์ž…๋ ฅ(ํ…์ŠคํŠธ+์ด๋ฏธ์ง€)์„ ๋™์‹œ์— ๊ต๋ž€ํ•˜๋Š” ๋ฐฉ์‹์„ ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ด๋ฏธ์ง€๋งŒ์„ ๋ณ€์กฐํ•ด๋„ ์›ํ•˜๋Š” ์ถœ๋ ฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์€ ๊ธฐ์กด ๊ฐ€์ •์— ํฐ ๋„์ „์„ ์ œ์‹œํ•œ๋‹ค. 2. PReMA ๊ณต๊ฒฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜ | ๋‹จ๊ณ„ | ์„ค๋ช… | ํ•ต์‹ฌ ์•„์ด๋””์–ด | | |

Model
Self-Improving AI Agents through Self-Play

Self-Improving AI Agents through Self-Play

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ์—์ด์ „ํŠธ์˜ ์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์ •ํ˜•ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์—์„œ ๋ˆˆ์— ๋ˆ๋‹ค. ๊ธฐ์กด์˜ ์‹ฌ๋ฆฌ์ธก์ • ๋ฐฐํ„ฐ๋ฆฌ ์ด๋ก ์€ ์ •์  ๋Šฅ๋ ฅ ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„ ํ˜น์€ ์ธ๊ณต ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์œผ๋ฉฐ, ๊ทธ ํ•œ๊ณ„๋Š” ๋™์  ํ™˜๊ฒฝ์—์„œ์˜ ์ ์‘๊ณผ ํ•™์Šต ๊ณผ์ •์„ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€œ๊ณ„์‚ฐ ์ž์› rโ€์ด๋ผ๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜๊ณ , ์—์ด์ „ํŠธ๋ฅผ ฮฝ r ๋ผ๋Š” ์—ฐ์† ํ๋ฆ„์œผ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด ํ๋ฆ„์€ ์žฌ๊ท€์ ์ธ ์ƒ์„ฑโ€‘๊ฒ€์ฆโ€‘์—…๋ฐ์ดํŠธ(GVU) ์—ฐ์‚ฐ์ž์— ์˜ํ•ด ๊ตฌ๋™๋˜๋ฉฐ, ์ด๋Š” ํ˜„๋Œ€ ๋”ฅ๋Ÿฌ๋‹์—์„œ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๋Š” ์ƒ์„ฑ ๋ชจ๋ธ(์˜ˆ: GAN)๊ณผ ๊ฒ€

No Image

Semi-Local Exchange-Correlation Approximations in Density Functional Theory

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ฒ”์œ„ ์ €์ž๋Š” DFT๊ฐ€ ํ˜„๋Œ€ ๊ณผํ•™ยท๊ณตํ•™ ์ „๋ฐ˜์— ๋ฏธ์นœ ํ˜์‹ ์  ์˜ํ–ฅ์„ ๊ฐ•์กฐํ•˜๋ฉด์„œ, ๊ทธ ํ•ต์‹ฌ์ธ xc ํ•จ์ˆ˜์˜ ์ •ํ™•ํ•œ ํ˜•ํƒœ๊ฐ€ ์•„์ง ๋ฏธ์ง€์ˆ˜์ž„์„ ์žฌ์ฐจ ํ™•์ธํ•œ๋‹ค. โ€œ๋ฐ˜โ€‘๊ตญ์†Œโ€๋ผ๋Š” ํ‚ค์›Œ๋“œ์— ์ดˆ์ ์„ ๋งž์ถค์œผ๋กœ์จ, ์‹ค์šฉ์„ฑ๊ณผ ์ •ํ™•์„ฑ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์œ ์ง€ํ•˜๋Š” LDAยทGGAยทMGGA ๊ณ„์—ด์„ ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ์ด๋Š” ๋Œ€๊ทœ๋ชจ ๊ณ ์ฒดยทํ‘œ๋ฉดยท์ƒ์ฒด๊ณ„ ๊ณ„์‚ฐ์—์„œ ์—ฌ์ „ํžˆ ๊ฐ€์žฅ ๋„๋ฆฌ ์“ฐ์ด๋Š” ํ•จ์ˆ˜๊ตฐ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์‹ค์šฉ์ ์ธ ์„ ํƒ์ด๋‹ค. 2. ๊ตฌ์กฐ์™€ ๋‚ด์šฉ ์ „๊ฐœ ์„น์…˜ 2 : Kohnโ€‘Sham DFT์˜ ๊ธฐ๋ณธ ๋ฐฉ์ •์‹, ์ •ํ™•ํ•œ ๊ตํ™˜ ์—๋„ˆ์ง€ ํ‘œํ˜„, ๊ทธ๋ฆฌ๊ณ  ๋ฐ˜โ€‘๊ตญ์†Œ ๊ทผ์‚ฌ์˜ ํ•„

Physics
No Image

Shared Spatial Memory Through Predictive Coding

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ถ€๋ถ„ ๊ด€์ธกยท์ œํ•œ๋œ ๋Œ€์—ญํญ : ์‹ค์ œ ๋กœ๋ด‡ยท๋“œ๋ก  ๊ตฐ์ง‘์—์„œ๋Š” ์„ผ์„œ ์‹œ์•ผ๊ฐ€ ์ œํ•œ๋˜๊ณ , ๋ฌด์„  ์ฑ„๋„์ด ์ œํ•œ์ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ „๋ฉด ๋ธŒ๋กœ๋“œ์บ์ŠคํŠธ ํ˜น์€ ๊ณ ์ •๋œ ํ†ต์‹  ์Šค์ผ€์ค„์— ์˜์กดํ•ด ๋Œ€์—ญํญ ์ดˆ๊ณผ ์‹œ ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋œ๋‹ค. ์˜ˆ์ธก ์ฝ”๋”ฉ(Predictive Coding) : ๋‡Œ ๊ณผํ•™์—์„œ ์ œ์‹œ๋œ โ€˜์˜ˆ์ธก ์˜ค๋ฅ˜ ์ตœ์†Œํ™”โ€™๋ฅผ ํ•™์Šต ๋ชฉํ‘œ๋กœ ์‚ผ์•„, ์ •๋ณด ํšจ์œจ์„ฑ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์ด ๋งค๋ ฅ์ ์ด๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. ์ƒํ˜ธ ๋ถˆํ™•์‹ค์„ฑ ์ตœ์†Œํ™” โ†’ ๊ณต๋™ ๋ชฉํ‘œ ๋‹ฌ์„ฑ์„ ์œ„ํ•œ ์ตœ์  ํ†ต์‹  ์ •์ฑ…์„ ์ •๋ณด ๋ณ‘๋ชฉ ์›๋ฆฌ์™€ ๊ฒฐํ•ฉ. 2. ๊ทธ๋ฆฌ๋“œ ์…€โ€‘์œ ์‚ฌ

No Image

Shortcut learning in geometric knot classification

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋งค๋“ญ ์œ„์ƒ ๋ถ„๋ฅ˜ ๋Š” ํ˜„์žฌ๊นŒ์ง€ ์™„์ „ํ•œ ๋ถˆ๋ณ€๋Ÿ‰(complete invariant)์ด ์กด์žฌํ•˜์ง€ ์•Š์•„, ์ˆ˜ํ•™ยท๋ฌผ๋ฆฌยท์ƒ๋ฌผํ•™์—์„œ ์ง€์†์ ์ธ ๋„์ „ ๊ณผ์ œ์ด๋‹ค. ๊ธฐ์กด ์œ„์ƒ ๋ถˆ๋ณ€๋Ÿ‰(Jones, HOMFLYโ€‘PT, Vassiliev ๋“ฑ)์€ ๊ณ„์‚ฐ ๋น„์šฉ์ด ํฌ๊ณ , ์„œ๋กœ ๋‹ค๋ฅธ ๋งค๋“ญ์ด ๋™์ผํ•œ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค. ML์€ ๋ณต์žกํ•œ ํŒจํ„ด์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค๋Š” ์ ์—์„œ ๋งค๋“ญ ๋ถ„๋ฅ˜์— ๋งค๋ ฅ์ ์ธ ๋„๊ตฌ๋กœ ๋ถ€์ƒํ–ˆ์ง€๋งŒ, โ€˜๋‹จ์ถ• ํ•™์Šตโ€™ ์ด๋ผ๋Š” ์œ„ํ—˜์„ฑ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ฐœ๋… โ€“ Shortcut Learning ์ •์˜ : ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์กด์žฌํ•˜๋Š” ๋ผ๋ฒจ๊ณผ

Machine Learning Computer Science Learning
No Image

Simultaneous Blackwell Approachability and Applications to Multiclass Omniprediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์˜ด๋‹ˆํ”„๋ ˆ๋”•์…˜ ์€ ํ•˜๋‚˜์˜ ์˜ˆ์ธก๊ธฐ๊ฐ€ ์—ฌ๋Ÿฌ ์†์‹ค์— ๋Œ€ํ•ด ์ตœ์ ์— ๊ทผ์ ‘ํ•˜๋„๋ก ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๊ฐœ๋…์œผ๋กœ, ๋‹ค์ค‘ ์†์‹คยท๋‹ค์ค‘ ๋น„๊ต์ž ์ƒํ™ฉ์„ ํฌ๊ด„ํ•œ๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ(

Data Structures Computer Science
No Image

Sketch-to-Layout: Sketch-Guided Multimodal Layout Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ œ์•ฝ์กฐ๊ฑด์˜ ๋ณต์žก์„ฑ : ๊ธฐ์กด ๋ ˆ์ด์•„์›ƒ ์ƒ์„ฑ ์‹œ์Šคํ…œ์€ โ€œํ…์ŠคํŠธ ๋ผ๋ฒจโ€, โ€œ์œ„์น˜ ์ขŒํ‘œโ€, โ€œํฌ๊ธฐ ๋น„์œจโ€ ๋“ฑ ์ •ํ˜•ํ™”๋œ ์ œ์•ฝ์„ ์š”๊ตฌํ•œ๋‹ค. ๋น„์ „๋ฌธ๊ฐ€์—๊ฒŒ๋Š” ์ด๋Ÿฌํ•œ ์ž…๋ ฅ์ด ์ง๊ด€์ ์ด์ง€ ์•Š์•„ ์‚ฌ์šฉ์„ฑ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์Šค์ผ€์น˜์˜ ์ง๊ด€์„ฑ : ์†์œผ๋กœ ๊ทธ๋ฆฐ ์Šค์ผ€์น˜๋Š” ๋””์ž์ธ ์˜๋„๋ฅผ ๋น ๋ฅด๊ฒŒ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ๋งค๊ฐœ์ฒด์ด๋ฉฐ, ์ธ๊ฐ„ ์ปดํ“จํ„ฐ ์ธํ„ฐ๋ž™์…˜(HCI) ๋ถ„์•ผ์—์„œ ์ด๋ฏธ ์œ ์šฉ์„ฑ์ด ์ž…์ฆ๋˜์—ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Sketchโ€‘toโ€‘Layout ๋ฌธ์ œ ์ •์˜ : ์Šค์ผ€์น˜๋ฅผ ๋ ˆ์ด์•„์›ƒ ์ œ์•ฝ์œผ

No Image

Smaller Models, Smarter Rewards: A Two-Sided Approach to Process and Outcome Rewards

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ฝ”๋“œ ์ƒ์„ฑ์€ ์ •ํ™•๋„ ์™€ ์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ, ๋Œ€ํ˜• ๋ชจ๋ธ์— ์˜์กดํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์€ ์—ฐ์‚ฐ ๋น„์šฉ๊ณผ ํ™˜๊ฒฝ ๋ถ€๋‹ด์ด ํฌ๋‹ค. ๋ณด์ƒ ๋ชจ๋ธ์€ ๋ฆฌ์›Œ๋“œ ๋ชจ๋ธ๋ง ์„ ํ†ตํ•ด ์ƒ์„ฑ ๊ณผ์ •์—์„œ์˜ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์ด ์Šค์Šค๋กœ โ€œ๋ฐ˜์„ฑโ€ํ•˜๊ณ  ๊ฐœ์„ ํ•˜๋„๋ก ๋•๋Š”๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๋Œ€ํ˜• ๋ชจ๋ธ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์†Œํ˜• ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ๊ฒ€์ฆ์€ ๋ถ€์กฑํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ ์†Œํ˜• ๋ชจ๋ธ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ ๊ฒ€์ฆ : Phiโ€‘4 ๊ณ„์—ด(โ‰ˆ 1โ€‘2 B ํŒŒ๋ผ๋ฏธํ„ฐ) ๋ชจ๋ธ์„ ๋ณด์ƒ ๋ชจ๋ธ๋กœ ์ „ํ™˜ํ•˜๊ณ , ํ”„๋กœ์„ธ์Šค ๋ณด์ƒ(์ค‘๊ฐ„ ๋‹จ๊ณ„)๊ณผ ๊ฒฐ๊ณผ

Model
No Image

Smooth trajectory generation and hybrid B-splines-Quaternions based tool path interpolation for a 3T1R parallel kinematic milling robot

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ณ‘๋ ฌ ๊ธฐ๊ตฌ(PKM)์˜ ์žฅ์  : ๊ณ ๊ฐ•์„ฑยท์ €์งˆ๋Ÿ‰ ๊ตฌ์กฐ๋กœ ๊ณ ์†ยท๊ณ ์ •๋ฐ€ ๊ฐ€๊ณต์— ์œ ๋ฆฌํ•˜์ง€๋งŒ, ํ์‡„ํ˜• ๊ธฐ๊ตฌ ํŠน์„ฑ์ƒ ์ž‘์—…๊ณต๊ฐ„ยท๊ด€์ ˆ๊ณต๊ฐ„ ๊ฐ„ ๋น„์„ ํ˜• ๋งคํ•‘์ด ๋ณต์žกํ•˜๋‹ค. ๊ธฐ์กด ๋ณด๊ฐ„ ํ•œ๊ณ„ : ๋‹คํ•ญ์‹ยท๋ฒ ์ง€์—ยทBโ€‘์Šคํ”Œ๋ผ์ธ ๊ธฐ๋ฐ˜ ๋ณด๊ฐ„์€ ๊ณก๋ฅ  ๊ธ‰๋ณ€ ์‹œ ๊ธ‰๊ฒฉํ•œ ํ”ผ๋“œโ€‘๋ ˆ์ดํŠธ ๋ณ€๋™, ๊ณ„์‚ฐ๋Ÿ‰ ์ฆ๊ฐ€, ํ˜น์€ ๊ธฐ์šธ๊ธฐ ๊ณ ์ • ๋ฌธ์ œ(gimbal lock) ๋“ฑ์„ ์•ผ๊ธฐํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๊ธฐ์กด ๋ฐฉ๋ฒ• | ๋ณธ ๋…ผ๋ฌธ์˜ ์ฐจ๋ณ„์  | | | | | | ์œ„์น˜ ๋ณด๊ฐ„ | 5์ฐจ ๋‹คํ•ญ์‹, Bโ€‘์Šคํ”Œ๋ผ์ธ(๋‹จ์ผ ํŒŒ๋ผ๋ฏธํ„ฐ) | 5์ฐจ Bโ€‘์Šคํ”Œ๋ผ์ธ + ์ˆ˜์ • ๋‹คํ•ญ์‹ (mo

Computer Science Robotics

< Category Statistics (Total: 5060) >

Electrical Engineering and Systems Science
102
General
4147
General Relativity
2
HEP-EX
3
HEP-PH
3
HEP-TH
3
MATH-PH
7
NUCL-EX
1
NUCL-TH
1
Quantum Physics
19

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut