KOINEU Logo
No Image

FedRW: Efficient Privacy-Preserving Data Reweighting for Enhancing Federated Learning of Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฐ์ดํ„ฐ ์ค‘๋ณต : ๋Œ€๊ทœ๋ชจ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋Š” ๋™์ผ ๋ฌธ์žฅยท๊ตฌ์ ˆ์ด ์—ฌ๋Ÿฌ ํด๋ผ์ด์–ธํŠธ์— ์ค‘๋ณต ์ €์žฅ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•ด, ๋ชจ๋ธ์ด ๊ณผ์ ํ•ฉํ•˜๊ฑฐ๋‚˜ ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์ด ์ฆ๊ฐ€ํ•œ๋‹ค. ์—ฐํ•ฉ ํ•™์Šต(Federated Learning, FL) : ๋ฐ์ดํ„ฐ๊ฐ€ ๋กœ์ปฌ์— ๋จธ๋ฌด๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ค‘์•™ ์„œ๋ฒ„๊ฐ€ ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ํ™•์ธํ•  ์ˆ˜ ์—†์–ด, ๊ธฐ์กด์˜ ์ค‘์•™ ์ง‘์ค‘ํ˜• ์ค‘๋ณต ์ œ๊ฑฐ ๊ฐ€ ์ ์šฉ ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๋Š” ์ œ3์ž์— ์˜์กดํ•˜๊ฒŒ ๋œ๋‹ค. 2. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ | ์ ‘๊ทผ๋ฒ• | ์ค‘๋ณต ์ฒ˜๋ฆฌ ๋ฐฉ์‹ | ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜ | ์ •๋ณด ์†์‹ค | ํšจ์œจ์„ฑ | | | | | |

Model Learning Data
No Image

Fints: Efficient Inference-Time Personalization for LLMs with Fine-Grained Instance-Tailored Steering

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM ๊ฐœ์ธํ™”์˜ ๋‘ ์ถ• : (1) ๋น„ํŒŒ๋ผ๋ฏธํ„ฐ (inโ€‘context learning)์™€ (2) ํŒŒ๋ผ๋ฏธํ„ฐ ๊ธฐ๋ฐ˜ (PEFT, reward modeling). ๋น„ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฐฉ์‹์€ ์ฆ‰์‹œ ์ ์šฉ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ์‚ฌ์šฉ์ž ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ค์›€ . ํŒŒ๋ผ๋ฏธํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ์‹์€ ์„ฑ๋Šฅ ํ–ฅ์ƒ ์„ ๋ณด์ด์ง€๋งŒ ์žฌํ•™์Šต ๋น„์šฉ ๊ณผ ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ ์— ์ทจ์•ฝํ•œ๋‹ค. ํŠนํžˆ ์‹ค์‹œ๊ฐ„ ์„œ๋น„์Šค (์ฑ—๋ด‡, ๊ฐœ์ธ ๋น„์„œ)์—์„œ๋Š” ์‚ฌ์šฉ์ž ํ–‰๋™์ด ๋น ๋ฅด๊ฒŒ ๋ณ€ ํ•˜๊ณ , ์ˆ˜์ง‘ ๊ฐ€๋Šฅํ•œ ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๊ฐ€ ๋งค์šฐ ์ œํ•œ ๋˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํ•˜๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ์ƒ˜ํ”Œโ€‘๋ ˆ๋ฒจ ์Šคํ‹ฐ์–ด๋ง ์ƒ˜ํ”Œโ€‘

No Image

Fluid viscoelasticity controls acoustic streaming via shear waves

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์Œํ–ฅ ์ŠคํŠธ๋ฆฌ๋ฐ ์€ ๊ณ ์ฃผํŒŒ(> 1 MHz) ์ง„๋™์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋น„์„ ํ˜• ์ •๋ฅ˜ ํ๋ฆ„์œผ๋กœ, ๋งˆ์ดํฌ๋กœ์ฑ„๋„ ๋‚ด ์œ ์ฒดยท์ž…์ž ์šด๋ฐ˜์„ ์ขŒ์šฐํ•œ๋‹ค. ๊ธฐ์กด ์ŠคํŠธ๋ฆฌ๋ฐ ์–ต์ œยท๊ฐ•ํ™” ๋ฐฉ๋ฒ•์€ (i) ์œ ์ฒด ๋ถˆ๊ท ์ผ์„ฑ (๋†๋„ยท์˜จ๋„ ๊ตฌ๋ฐฐ)์ด๋‚˜ (ii) ์ฑ„๋„ ํ˜•์ƒ ์ตœ์ ํ™” ์— ์˜์กดํ•œ๋‹ค. ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ ์ œ์กฐ ๋ณต์žก์„ฑ ยท ์ œ์–ด ๋ฒ”์œ„ ์ œํ•œ ์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. ์ ํƒ„์„ฑ ์œ ์ฒด๋Š” ํƒ„์„ฑ ์ €์žฅ ๊ณผ ์ ์„ฑ ์†์‹ค ์„ ๋™์‹œ์— ๊ฐ–๋Š” ํŠน์„ฑ์œผ๋กœ, ๊ณ ์ฃผํŒŒ ์ง„๋™์— ๋Œ€ํ•œ ๋ฐ˜์‘์ด ๋ณตํ•ฉ์ ์ด๋ฉฐ ์•„์ง ์ถฉ๋ถ„ํžˆ ํ™œ์šฉ๋˜์ง€ ์•Š์•˜๋‹ค. 2. ํ•ต์‹ฌ ๊ฐ€์„ค ๋ฐ ์ด๋ก ์  ํ”„๋ ˆ์ž„์›Œํฌ Oldroydโ€‘B

Physics
No Image

Frame Semantic Patterns for Identifying Underreporting of Notifiable Events in Healthcare: The Case of Gender-Based Violence

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์„ฑํญ๋ ฅ์€ ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์‹ฌ๊ฐํ•œ ๊ณต์ค‘๋ณด๊ฑด ๋ฌธ์ œ์ด๋ฉฐ, ํŠนํžˆ ์‹ ๊ณ  ๋ˆ„๋ฝ์ด ๋นˆ๋ฒˆํ•ด ์ •ํ™•ํ•œ ์—ญํ•™์กฐ์‚ฌ๊ฐ€ ์–ด๋ ต๋‹ค. ๊ธฐ์กด์˜ ์‹ ๊ณ  ์ฒด๊ณ„๋Š” ์ฃผ๋กœ ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ์— ์˜์กดํ•˜์ง€๋งŒ, ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ์˜๋ฃŒ์ง„์ด ์ž์œ  ์„œ์ˆ ํ˜• ํ•„๋“œ์— ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ๋‚จ๊ธฐ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  ํ•ต์‹ฌ ์˜๋ฏธ ํ”„๋ ˆ์ž„ ๊ธฐ๋ฐ˜ ํŒจํ„ด ์ •์˜ : FrameNet๊ณผ ๊ฐ™์€ ํ”„๋ ˆ์ž„ ์ด๋ก ์„ ์ฐจ์šฉํ•ด โ€˜ํญ๋ ฅโ€™, โ€˜๊ฐ€ํ•ด์žโ€™, โ€˜ํ”ผํ•ด์žโ€™, โ€˜์‹ ๊ณ โ€™ ๋“ฑ ํ•ต์‹ฌ ๊ฐœ๋…์„ ํ”„๋ ˆ์ž„์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ฐ ํ”„๋ ˆ์ž„์— ๋Œ€์‘ํ•˜๋Š” ์–ดํœ˜ยท๊ตฌ๋ฌธ ํŒจํ„ด์„ ์ •๊ตํ•˜๊ฒŒ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์–ธ์–ดยท๋„๋ฉ”์ธ ๋…๋ฆฝ์„ฑ : ํ”„๋ ˆ์ž„ ์ž

No Image

Free Lunch in Medical Image Foundation Model Pre-training via Randomized Synthesis and Disentanglement

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฐ์ดํ„ฐ ๋ณ‘๋ชฉ : ์˜๋ฃŒ ์˜์ƒ์€ ํš๋“ยท์ €์žฅยท๋ผ๋ฒจ๋ง ๋น„์šฉ์ด ๋†’๊ณ , ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ œ๋กœ ์ธํ•ด ๋Œ€๊ทœ๋ชจ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด ์–ด๋ ค์›€. ๊ธฐ์กด ์ ‘๊ทผ ํ•œ๊ณ„ : ์ง€๋„ ํ•™์Šต ์€ ๋ผ๋ฒจ ๋น„์šฉ์ด ๋น„๊ฒฝ์ œ์ . ์ž๊ธฐ์ง€๋„ ํ•™์Šต ์€ ๊ฐ•๋ ฅํ•œ ์‹ ํ˜ธ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์›Œ, ๋ณตํ•ฉ์ ์ธ ์˜๋ฏธ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ถ„๋ฆฌํ•˜์ง€ ๋ชปํ•จ. ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์˜ ๊ฐ€๋Šฅ์„ฑ : ๊ทœ์น™ ๊ธฐ๋ฐ˜ยท๋ฌด์ž‘์œ„ ํ•ฉ์„ฑ์€ ๋น„์šฉยทํ”„๋ผ์ด๋ฒ„์‹œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€๋งŒ, ๊ธฐ์กด ์—ฐ๊ตฌ(์˜ˆ: Anatomix)๋Š” ์™ธ๊ด€ ์ผ๊ด€์„ฑ์— ์ดˆ์ ์„ ๋งž์ถฐ ์ œํ•œ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ž„. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ RaSD | ์š”์†Œ | ๊ตฌํ˜„ ๋ฐฉ์‹ | ๊ธฐ๋Œ€ ํšจ๊ณผ

Model Quantitative Biology
No Image

From Uniform to Adaptive: General Skip-Block Mechanisms for Efficient PDE Neural Operators

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์—ฐ์‚ฐ ๋น„์šฉ ๋ฌธ์ œ : ๊ธฐ์กด ๋‰ด๋Ÿด ์—ฐ์‚ฐ์ž๋Š” ์ „์ฒด ์ž…๋ ฅ ํ† ํฐ์— ๋Œ€ํ•ด ๋™์ผํ•œ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. PDE ํ•ด์„์—์„œ ๋ฌผ๋ฆฌ๋Ÿ‰์˜ ๋ณต์žก๋„๋Š” ๊ณต๊ฐ„ยท์‹œ๊ฐ„์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๋ฏ€๋กœ, ๋ถˆํ•„์š”ํ•œ ์—ฐ์‚ฐ์ด ๋งŽ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋ถˆ๊ท ํ˜• ์ฒ˜๋ฆฌ : ๋‚œ๋ฅ˜, ์ถฉ๊ฒฉํŒŒ, ๊ฒฝ๊ณ„์ธต ๋“ฑ ๊ณ ๋ณต์žก๋„ ์˜์—ญ์€ ๋” ๋งŽ์€ ํ‘œํ˜„๋ ฅ์ด ํ•„์š”ํ•˜์ง€๋งŒ, ํ˜„์žฌ ๋ชจ๋ธ์€ ์ด๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Skipโ€‘Block Routing (SBR) | ๋‹จ๊ณ„ | ์„ค๋ช… | | | | | ๋ณต์žก๋„ ๋ผ์šฐํŒ… | ํ† ํฐ(๊ณต๊ฐ„ ์œ„์น˜)์˜ ํŠน์ง•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ณต์žก๋„ ์ ์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ์ด๋ฅผ ์ˆœ์œ„(r

No Image

Full-Field Metasurface Characterization with Polarization Sensitive Coherent Modulation Imaging

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ”ํƒ€ํ‘œ๋ฉด ์€ ์ดˆ๋ฐ•๋ง‰ ๊ตฌ์กฐ๋กœ ์œ„์ƒยท์ง„ํญยทํŽธ๊ด‘์„ ๋™์‹œ์— ์ œ์–ดํ•  ์ˆ˜ ์žˆ์–ด ์ฐจ์„ธ๋Œ€ ๊ด‘ํ•™ ์†Œ์ž๋กœ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋‹ค. ์‹ค์ œ ๋””๋ฐ”์ด์Šค ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋ ค๋ฉด ์ „์žฅ(fullโ€‘field) ์ˆ˜์ค€์—์„œ ์œ„์ƒยท์ง„ํญยทํŽธ๊ด‘ ์„ ๋ชจ๋‘ ๊ณ ํ•ด์ƒ๋„๋กœ ๋ณต์›ํ•ด์•ผ ํ•˜์ง€๋งŒ, ๊ธฐ์กด ์ธํ„ฐํŽ˜๋กœ๋ฉ”ํŠธ๋ฆฌยทCDI ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ํŽธ๊ด‘ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜ ๋ณต์žกํ•œ ๋“€์–ผํŒจ์Šค ๊ตฌ์„ฑ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ํŽธ๊ด‘์„ ํฌํ•จํ•œ ๋ฒกํ„ฐ ๊ด‘์žฅ ์ธก์ • ์ด ๊ฐ€๋Šฅํ•œ ๊ฐ„๋‹จํ•˜๊ณ  ์•ˆ์ •์ ์ธ ๋ฐฉ๋ฒ•์ด ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ๋‚ด์šฉ | | | | | ์ธก์ • ์ธ์ฝ”๋”ฉ |

Physics
No Image

General sample size analysis for probabilities of causation: a delta method approach

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ PoC์˜ ๋น„์‹๋ณ„์„ฑ : Tian & Pearl(2000) ๋“ฑ์€ PoC๋ฅผ ์‹คํ—˜ยท๊ด€์ฐฐ ํ™•๋ฅ ์˜ ์กฐํ•ฉ์œผ๋กœ ๊ตฌ๊ฐ„ ๋งŒ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ–ˆ์œผ๋ฉฐ, ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ •์—์„œ๋Š” ์ด ๊ตฌ๊ฐ„์˜ ์ •๋ฐ€๋„ ๊ฐ€ ํ•ต์‹ฌ์ด๋‹ค. ํ‘œ๋ณธ ํฌ๊ธฐ ์—ฐ๊ตฌ ๋ถ€์žฌ : Li et al.(2022)๋Š” PNS ๊ตฌ๊ฐ„์— ํ•œ์ •๋œ ํ‘œ๋ณธ ํฌ๊ธฐ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ์ง€๋งŒ, ์ผ๋ฐ˜์ ์ธ PoC ๊ตฌ๊ฐ„ (PNS, PN, PS, ์„ ํ˜• ๊ฒฐํ•ฉ ๋“ฑ)์—๋Š” ์ ์šฉ๋˜์ง€ ์•Š๋Š”๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๊ตฌ๊ฐ„ ํ‘œํ˜„์˜ ์ผ๋ฐ˜ํ™” : ๋Œ€๋ถ€๋ถ„์˜ PoC ๊ตฌ๊ฐ„์€

Statistics Analysis
No Image

Geometric and topological constraints on oral seal formation during infant breastfeeding

1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜„์‹ค์  ๋ฌธ์ œ : ๋ชจ์œ ์ˆ˜์œ  ํšจ์œจ์€ โ€œ์ž…์ˆ ยทํ˜€ยท์ –๊ผญ์ง€โ€ ๊ฐ„์˜ ์ง€์†์ ์ธ ์ง„๊ณต ์œ ์ง€ ์— ๋‹ฌ๋ ค ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ดˆ์ŒํŒŒ ์˜์ƒ์ด๋‚˜ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์ด์šฉํ•ด ๊ตญ๋ถ€์ ์ธ ๋ณ€์œ„ยท์••๋ ฅ ๋งŒ์„ ์ธก์ •ํ–ˆ์œผ๋ฉฐ, ์‹ค์˜ ์ „์—ญ์ ์ธ ์—ฐ์†์„ฑ ์„ ์ •๋Ÿ‰ํ™”ํ•  ๋ฐฉ๋ฒ•์ด ๋ถ€์กฑํ–ˆ๋‹ค. ํ•™๋ฌธ์  ๊ณต๋ฐฑ : ๊ตฌ๊ฐ• ์‹ค์„ ์œ„์ƒํ•™์  ๋ถˆ๋ณ€๋Ÿ‰ ์œผ๋กœ ์ •์˜ํ•œ๋‹ค๋Š” ์‹œ๋„๋Š” ๊ฑฐ์˜ ์—†์œผ๋ฉฐ, ํŠนํžˆ ์‹œ์Šคํ† ๋ฆญ ๊ธฐํ•˜ํ•™ ์„ ์ ์šฉํ•œ ์‚ฌ๋ก€๋Š” ์ „๋ฌดํ–ˆ๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ์ฃผ์š” ์ˆ˜ํ•™ยท์ปดํ“จํŒ… ๋„๊ตฌ | | | | | | (1) ์˜์—ญ ๋ชจ๋ธ๋ง | ์ดˆ์ŒํŒŒ ํ•œ ํ”„๋ ˆ์ž„์„ ฮฉโ‚œ โŠ‚

Physics
No Image

Geometric Inverse Flight Dynamics on SO(3) and Application to Tethered Fixed-Wing Aircraft

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์ฐจ๋ณ„์„ฑ | ๊ธฐ์กด ์ ‘๊ทผ | ํ•œ๊ณ„ | ๋ณธ ๋…ผ๋ฌธ์˜ ๊ธฐ์—ฌ | | | | | | ๋‹ค์ค‘ ๋กœํ„ฐ(๋ฉ€ํ‹ฐ์ฝ”ํ”„ํ„ฐ) ํ•ญ๊ณต์กฐ์ž‘ โ€“ ์ด์ค‘ ์ ๋ถ„๊ธฐ ๋ชจ๋ธ, ํ•ญ๊ณต์—ญํ•™ ๋ฏธํฌํ•จ | ์‹ค์ œ ๊ณ ์ •์ต์˜ ์–‘๋ ฅยท๋ฐ›์Œ๊ฐยท๋ชจ๋ฉ˜ํŠธ ๋น„์„ ํ˜•์„ฑ ๋ฌด์‹œ | ๊ณ ์ •์ต ์ „์šฉ SO(3) ๊ธฐํ•˜ํ•™์  ๋ชจ๋ธ ์ œ์‹œ | | ํ•ญ๊ณตํ’๋ ฅ(AWE) ์—ฐ๊ตฌ โ€“ ํ…๋” ๋น„ํ–‰์—ญํ•™ ์ค‘์‹ฌ, ์—ญ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ€์žฌ | ๋กœ๋ด‡๊ณตํ•™์  ๊ถค๋„ยท์ž…๋ ฅ ๋งคํ•‘ ๋ถ€์žฌ | ์—ญ๋น„ํ–‰์—ญํ•™(์—ญ์‹œ๋ฎฌ๋ ˆ์ด์…˜) โ†’ ์ž…๋ ฅยท์ž์„ธ ์ง์ ‘ ํ•ฉ์„ฑ | | ์ „ํ†ต ์—ญ์‹œ๋ฎฌ๋ ˆ์ด์…˜ โ€“ ๋กœ์ปฌ ์˜ค์ผ๋Ÿฌ ๊ฐ, ์ขŒํ‘œ ์˜์กด | ๋กœ๋ด‡ ํ”Œ๋ž˜๋„ˆ์™€ ์—ฐ๋™ ์–ด๋ ค์›€ | ์ขŒํ‘œโ€‘ํ”„๋ฆฌ, ์„ธ๊ณ„ ํ”„๋ ˆ

Computer Science Robotics
No Image

Global Self-Attention with Exact Fourier Propagation for Phase-Only Far-Field Holography

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์›๊ฑฐ๋ฆฌ(ํ”„๋ผ์šดํ˜ธํผ) ์ „ํŒŒ์˜ ํŠน์„ฑ : ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜์€ ์ „์—ญ ์—ฐ์‚ฐ์œผ๋กœ, SLM์˜ ํ•œ ํ”ฝ์…€ ๋ณ€ํ™”๊ฐ€ ์ „์ฒด ์žฌ๊ตฌ์„ฑ ํ‰๋ฉด์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ด๋Š” ์ „ํ†ต์ ์ธ CNN์ด ๊ฐ–๋Š” ์ง€์—ญ์„ฑ ํŽธํ–ฅ๊ณผ ์ •๋ฐ˜๋Œ€์ด๋ฉฐ, ์ „์—ญ์ ์ธ ์œ„์ƒ ๊ฐ„์„ญ์„ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์œ„์ƒโ€‘์ „์šฉ ์ œ์•ฝ : ์ง„ํญ์„ ๊ณ ์ •ํ•˜๊ณ  ์œ„์ƒ๋งŒ์„ ์กฐ์ ˆํ•ด์•ผ ํ•˜๋ฏ€๋กœ, ๋ชฉํ‘œ ๊ฐ•๋„์™€ ์œ„์ƒ ์‚ฌ์ด์˜ ๋งคํ•‘์€ ๋น„์„ ํ˜• ์ตœ์ ํ™” ๋ฌธ์ œ์ด๋ฉฐ, ๊ธฐ์กด์˜ ๊ต๋Œ€ ํˆฌ์˜(GS, HIO ๋“ฑ)์€ ์ดˆ๊ธฐ๊ฐ’์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ์š”์†Œ | ์„ค๋ช… | ์žฅ์  | | | | | | Physicsโ€‘inโ€‘th

Physics
No Image

Graphs are maximally expressive for higher-order interactions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ œ๊ธฐ ๊ณ ์ฐจ ๋„คํŠธ์›Œํฌ(HON) ํ๋ฆ„ : ์ตœ๊ทผ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ โ€œํ•˜์ดํผ๊ทธ๋ž˜ํ”„๊ฐ€ ํ•„์ˆ˜โ€๋ผ๋Š” ์ฃผ์žฅ์ด ๋“ฑ์žฅํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ทธ๋ž˜ํ”„๊ฐ€ โ€œ์Œ(pairwise) ์ƒํ˜ธ์ž‘์šฉ๋งŒโ€์„ ํ‘œํ˜„ํ•œ๋‹ค๋Š” ์ „์ œ์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ์ €์ž๋“ค์˜ ๋ฐ˜๋ฐ• ํฌ์ธํŠธ : ๊ทธ๋ž˜ํ”„์™€ ํ•˜์ดํผ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ํ•ต์‹ฌ์€ ๊ตฌ์กฐ(์—ฐ๊ฒฐ ๊ด€๊ณ„) ์™€ ํ•จ์ˆ˜์  ์ƒํ˜ธ์ž‘์šฉ ์„ ํ˜ผ๋™ํ•œ ๋ฐ ์žˆ๋‹ค. ๊ทธ๋ž˜ํ”„๋Š” ์–ด๋–ค ๋…ธ๋“œ๊ฐ€ ์„œ๋กœ ์—ฐ๊ฒฐ๋  ์ˆ˜ ์žˆ๋Š”๊ฐ€ ๋ฅผ ์ •์˜ํ•˜๊ณ , ์‹ค์ œ ์ƒํ˜ธ์ž‘์šฉ ํ˜•ํƒœ๋Š” ๋ณ„๋„์˜ ํ•จ์ˆ˜๋กœ ์ง€์ •๋œ๋‹ค. 2. ํ•ต์‹ฌ ์ด๋ก ์  ์ฃผ์žฅ | ์ฃผ์žฅ | ๋‚ด์šฉ | ์˜๋ฏธ | | | | | | ๊ทธ๋ž˜ํ”„๋Š” ๋‹ค๋ณ€๋Ÿ‰ ์ƒํ˜ธ์ž‘์šฉ์„

Physics
No Image

Green AI: A systematic review and meta-analysis of its definitions, lifecycle models, hardware and measurement attempts

1. ์—ฐ๊ตฌ์˜ ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | โ‘  | ๊ทธ๋ฆฐ AI ์™€ Sustainable AI ๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๋Š” ์šด์˜ ์ •์˜ ์ œ์‹œ | ์šฉ์–ด ํ˜ผ๋™์„ ํ•ด์†Œํ•˜๊ณ , ์ •์ฑ…ยท์‚ฐ์—…ยทํ•™๊ณ„์—์„œ ์ผ๊ด€๋œ ๋ชฉํ‘œ ์„ค์ • ๊ฐ€๋Šฅ | | โ‘ก | 5โ€‘phase ์ˆ˜๋ช…์ฃผ๊ธฐ ๋ชจ๋ธ ์„ LCA ๋‹จ๊ณ„์™€ ๋งคํ•‘ (์„ค๊ณ„ยท์ œ์กฐ โ†’ ๋ฐฐํฌ โ†’ ์šด์˜ โ†’ ์œ ์ง€ยท์—…๊ทธ๋ ˆ์ด๋“œ โ†’ ํ๊ธฐ) | ์—๋„ˆ์ง€ยทํƒ„์†Œยท๋ฌผยท๋‚ด์žฌ ์˜ํ–ฅ์„ ์ „ ๋‹จ๊ณ„์—์„œ ์ •๋Ÿ‰ํ™”ยท๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ ์ œ๊ณต | | โ‘ข | PDCA(Planโ€‘Doโ€‘Checkโ€‘Act) ์‚ฌ์ดํด ๊ธฐ๋ฐ˜ ๊ฑฐ๋ฒ„๋„Œ์Šค์™€ ์˜์‚ฌ๊ฒฐ์ • ๊ฒŒ์ดํŠธ

System Analysis Model
No Image

Grothendieck's Geometric Universes and A Sheaf-Theoretic Foundation of Information Network

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ทธ๋กœํ…๋””ํฌ ํ˜๋ช… : ์  ๊ธฐ๋ฐ˜ ๊ธฐํ•˜ํ•™์„ ๊ด€๊ณ„ยท๊ตฌ์กฐ ์ค‘์‹ฌ์œผ๋กœ ์ „ํ™˜ํ•œ ๊ทธ๋กœํ…๋””ํฌ์˜ ์‚ฌ์ƒ์€ ์œ„์ƒ์ˆ˜ํ•™ยท๋Œ€์ˆ˜๊ธฐํ•˜ํ•™์„ ๋„˜์–ด ๋ถ„์‚ฐ ์‹œ์Šคํ…œ ์˜ ๋ฉ”ํƒ€๋ชจ๋ธ๋ง์— ์ ํ•ฉํ•œ ์ถ”์ƒํ™”๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ •๋ณด ๋„คํŠธ์›Œํฌ์™€ ๋…ผ๋ฆฌ : ๊ธฐ์กด์˜ ๋„คํŠธ์›Œํฌ ์ด๋ก ์€ ๊ทธ๋ž˜ํ”„ยทํ™•๋ฅ  ๋ชจ๋ธ์— ์˜์กดํ•˜์ง€๋งŒ, โ€˜์ง€์—ญ์  ์ง„๋ฆฌ โ†’ ์ „์—ญ์  ํ•ฉ์˜โ€™ ๋ผ๋Š” ๋ฌธ์ œ๋Š” ์ˆ˜ํ•™์  ์ผ๊ด€์„ฑ(๋…ผ๋ฆฌ)๊ณผ ์ง์ ‘ ์—ฐ๊ฒฐ๋œ๋‹ค. ์ €์ž๋Š” ์ด๋ฅผ ์ธต ์ด๋ก (sheaf theory) ์œผ๋กœ ํฌ์ฐฉํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ฐœ๋… | ๋„คํŠธ์›Œํฌ ํ•ด์„ | ์ˆ˜ํ•™์  ์ •์˜ | | | | | | Grothendieck ์œ„์ƒ | ๋…ธ

Network Mathematics
No Image

huff: A Python package for Market Area Analysis

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํ‰๊ฐ€ยท์‹œ์‚ฌ์  | | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ | ๊ธฐ์กด์— HuffยทMCI ๋ชจ๋ธ์„ ์ง€์›ํ•˜๋Š” ์˜คํ”ˆ์†Œ์Šค๋Š” R ํŒจํ‚ค์ง€์— ๊ตญํ•œ๋˜๊ณ , ์ „์ฒด ์›Œํฌํ”Œ๋กœ(๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ โ†’ ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ โ†’ ๋ชจ๋ธ ์ ํ•ฉ โ†’ ์‹œ๊ฐํ™”)๋ฅผ ํฌ๊ด„ํ•˜๋Š” ๋„๊ตฌ๋Š” ๋ถ€์žฌํ•จ. ํŠนํžˆ ๋ณด๊ฑด์ง€๋ฆฌ ๋ถ„์•ผ์—์„œ GIS์™€ ๋ชจ๋ธ๋ง์„ ๋™์‹œ์— ๋‹ค๋ฃจ๋Š” ์—ฐ๊ตฌ๊ฐ€ ๋Š˜๊ณ  ์žˆ์Œ. | ํ˜„์žฅ์˜ ์‹ค์ œ ์š”๊ตฌ์™€ ์ •ํ™•ํžˆ ๋งž๋ฌผ๋ฆฌ๋Š” โ€˜์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ ์ œ๊ณตโ€™์ด๋ผ๋Š” ๊ฐ•์ ์ด ๋šœ๋ ทํ•จ. | | ํ•ต์‹ฌ ๊ธฐ์—ฌ | 1๏ธโƒฃ ํŒŒ์ด์ฌ ๊ธฐ๋ฐ˜ ์ „์ฒด ์›Œํฌํ”Œ๋กœ ๊ตฌํ˜„ <br>2๏ธโƒฃ ๋น„์„ ํ˜• HuffยทMCI ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ธฐ๋Šฅ (

Statistics Applications Analysis
Ibom NLP: A Step Toward Inclusive Natural Language Processing for Nigeria's Minority Languages

Ibom NLP: A Step Toward Inclusive Natural Language Processing for Nigeria's Minority Languages

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์–ธ์–ด ๋‹ค์–‘์„ฑ vs. ์—ฐ๊ตฌ ํŽธ์ค‘ : ๋‚˜์ด์ง€๋ฆฌ์•„๋Š” ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ์–ธ์–ด๊ฐ€ ํ’๋ถ€ํ•œ ๊ตญ๊ฐ€ ์ค‘ ํ•˜๋‚˜์ž„์—๋„, NLP ์—ฐ๊ตฌ๋Š” ์†Œ์ˆ˜ ์–ธ์–ด๋ฅผ ๊ฑฐ์˜ ๋ฌด์‹œํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๋””์ง€ํ„ธ ๊ฒฉ์ฐจ๋ฅผ ์‹ฌํ™”์‹œํ‚ฌ ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ ๋ถ€์žฌ : ๊ธฐ์กด ๋Œ€ํ˜• ๋ฐ์ดํ„ฐ์…‹(Floresโ€‘200, SIBโ€‘200 ๋“ฑ)์€ ์ฃผ๋กœ ๊ตญ์ œ์ ยท์ฃผ๋ฅ˜ ์–ธ์–ด์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์–ด, ์ง€์—ญ ์†Œ์ˆ˜ ์–ธ์–ด์— ๋Œ€ํ•œ ํ‰๊ฐ€ยทํ•™์Šต์ด ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• | Anaang, Efik, Ibibio, Oro 4๊ฐœ ์–ธ์–ด์— ๋Œ€ํ•œ ๋ณ‘๋ ฌ ๋ฒˆ์—ญ ์ฝ”ํผ

No Image

ImagebindDC: Compressing Multi-modal Data with Imagebind-based Condensation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ : ์ด๋ฏธ์ง€, ํ…์ŠคํŠธ, ์˜ค๋””์˜ค ๋“ฑ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฐ„์˜ ์˜๋ฏธ์  ์—ฐ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ์ธ๋ฐ, ๊ธฐ์กด ์‘์ถ• ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ๊ฐ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•ด ๊ต์ฐจ ๋ชจ๋‹ฌ ์˜์กด์„ฑ์„ ์†์‹คํ•œ๋‹ค. ImageBind ํ™œ์šฉ : ImageBind๋Š” ๋‹ค์–‘ํ•œ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ํ•˜๋‚˜์˜ ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์— ๋งคํ•‘ํ•˜๋Š” ์‚ฌ์ „ํ•™์Šต ๋ชจ๋ธ๋กœ, ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฐ„ ์ •๋ ฌ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ œ๊ณตํ•œ๋‹ค. ์ด๋ฅผ ์‘์ถ• ๊ณผ์ •์— ์ง์ ‘ ํ™œ์šฉํ•œ ์ ์ด ํฐ ์ฐจ๋ณ„์ ์ด๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ์š”์†Œ | ์„ค๋ช… | ์žฅ์  | | | | | | CF ์†์‹ค (Characteri

Data
Infection models on dense dynamic random graphs

Infection models on dense dynamic random graphs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๊ธฐ์กด ๋ฌธํ—Œ๊ณผ์˜ ์ฐจ๋ณ„์  | ๋ถ„์•ผ | ๊ธฐ์กด ์—ฐ๊ตฌ | ํ•œ๊ณ„ | ๋ณธ ๋…ผ๋ฌธ์˜ ๊ธฐ์—ฌ | | | | | | | ํฌ์†Œ ์ •์  ๊ทธ๋ž˜ํ”„ | SIR on configuration model, stochastic block model | ์ •์ ยท๊ฐ„์„  ์ˆ˜๊ฐ€ (O(n)) ์ˆ˜์ค€, ๋™์ ยท๊ณต๋™ ์ง„ํ™” ๋ฏธํฌํ•จ | ๋ฐ€์ง‘((O(n^2))) ๊ทธ๋ž˜ํ”„์™€ ๋™์  ๊ตฌ์กฐ๋ฅผ ๋™์‹œ์— ๊ณ ๋ ค | | ๋ฐ€์ง‘ ์ •์  ๊ทธ๋ž˜ํ”„ | Graphon ๊ธฐ๋ฐ˜ FLLN (์˜ˆ:

Model Mathematics
Insider Threat Detection Using GCN and Bi-LSTM with Explicit and Implicit Graph Representations

Insider Threat Detection Using GCN and Bi-LSTM with Explicit and Implicit Graph Representations

๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฌ๋‚ด ์œ„ํ˜‘ ํƒ์ง€ ๋ถ„์•ผ์—์„œ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ํ‘œํ˜„๊ณผ ์‹œ๊ณ„์—ด ๋ชจ๋ธ๋ง์„ ์œตํ•ฉํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๋ช…์‹œ์  ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐฉ์‹์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋กœ๊ทธ ๊ธฐ๋ฐ˜ ๊ด€๊ณ„ ์ถ”์ถœ๊ณผ ์œ ์‚ฌํ•˜์ง€๋งŒ, ์ €์ž๋Š” ์‚ฌ์ „์— ์ •์˜๋œ ๊ทœ์น™์„ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ ํ๋ฆ„, ํŒŒ์ผ ์ ‘๊ทผ, ์ธ์ฆ ์ด๋ฒคํŠธ ๋“ฑ์„ ์ •ํ˜•ํ™”๋œ ์—ฃ์ง€๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ตฌํ˜„์˜ ํˆฌ๋ช…์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ช…์‹œ์  ๊ทธ๋ž˜ํ”„๋Š” ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์„ค๊ณ„ํ•œ ๊ทœ์น™์— ๊ธฐ๋ฐ˜ํ•˜๋ฏ€๋กœ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์ง€๋งŒ, ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ๋Š” ๋กœ๊ทธ ๋ˆ„๋ฝ, ๋น„์ •ํ˜• ํ–‰์œ„, ์ •์ฑ… ๋ณ€ํ™” ๋“ฑ์œผ๋กœ ์ธํ•ด ์žก์Œ์ด ๋ฐœ์ƒํ•˜๊ณ , ๊ทœ์น™ ์ž์ฒด๊ฐ€

Detection
Intelligent Human-Machine Partnership for Manufacturing: Enhancing Warehouse Planning through Simulation-Driven Knowledge Graphs and LLM Collaboration

Intelligent Human-Machine Partnership for Manufacturing: Enhancing Warehouse Planning through Simulation-Driven Knowledge Graphs and LLM Collaboration

์ด ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์˜ ๋ณต์žกํ•œ ์šด์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์™€ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์ด ๋™๋“ฑํ•œ ํŒŒํŠธ๋„ˆ๋กœ์„œ ํ˜‘์—…ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋‘ ๊ฐ€์ง€ ์ตœ์‹  ๊ธฐ์ˆ , ์ฆ‰ ์ง€์‹ ๊ทธ๋ž˜ํ”„(Knowledge Graph) ์™€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์„ ๊ฒฐํ•ฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ์˜ ์˜๋ฏธ๋ก ์  ๊ตฌ์กฐํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์—ฐ์–ด ์งˆ์˜์™€ ์‘๋‹ต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ฒซ์งธ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ์˜ ์˜๋ฏธ๋ก ์  ๋ณ€ํ™˜ ์€ ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๋ฐฉ์‹๊ณผ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋‹ค์ฐจ์›, ์‹œ๊ฐ„โ€‘์—ฐ์†์ ์ธ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ์ด๋ฉฐ,

No Image

Isometric Invariant Quantification of Gaussian Divergence over Poincare Disc

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ตฌ๋ฉด ์ œ๊ณฑโ€‘ํ—ฌ๋ง๊ฑฐ ๊ฑฐ๋ฆฌ(ฮฆ) ๋Š” ์ •๋ณด ์ด๋ก ยทํ†ต๊ณ„ํ•™์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋Œ€์นญ์  ๋ฐœ์‚ฐ ์ธก๋„์ด๋ฉฐ, Lยฒโ€‘๋…ธ๋ฆ„์„ ์ด์šฉํ•ด ํ™•๋ฅ ๋ฐ€๋„ ํ•จ์ˆ˜์˜ ์ œ๊ณฑ๊ทผ์„ ๋‹จ์œ„ ๊ตฌ๋ฉด ์œ„์˜ ์ ์œผ๋กœ ๋งคํ•‘ํ•œ๋‹ค. ํฌ์ธ์นด๋ ˆ ์›ํŒ(D) ์€ ์ƒ์ˆ˜ ์Œ์˜ ๊ณก๋ฅ (ฮบ โ€“1)์„ ๊ฐ–๋Š” ํ•˜์ดํผ๋ณผ๋ฆญ ๋ชจ๋ธ๋กœ, Mรถbius ๋ณ€ํ™˜๊ตฐ์— ์˜ํ•ด ๋“ฑ๊ฑฐ๋ฆฌ์„ฑ์ด ๋ณด์กด๋œ๋‹ค. ์ €์ž๋Š” ๋‘ ๊ณต๊ฐ„ ์‚ฌ์ด์˜ ๊ตฌ๋ฉดโ€‘ํ•˜์ดํผ๋ณผ๋ฆญ ์ด์ค‘์„ฑ ์„ ๋ฐœ๊ฒฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ฐ€์šฐ์‹œ์•ˆ ์ธก๋„ ๊ฐ„ ๊ฑฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด ํ‘œํ˜„(ฮจ)์„ ์ œ์•ˆํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐฝ์˜์ ์ด๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 |

Computer Science Information Theory
No Image

Jasmine: A Simple, Performant and Scalable JAX-based World Modeling Codebase

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์›”๋“œ ๋ชจ๋ธ๋ง ์€ ํ™˜๊ฒฝ์˜ ๋™์  ๋ณ€ํ™”๋ฅผ ์˜ˆ์ธกํ•ด ๋กœ๋ด‡ ์ œ์–ด, ๊ฐ•ํ™”ํ•™์Šต ๋“ฑ์—์„œ ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ํ˜„์žฌ ๊ณต๊ฐœ๋œ ๊ตฌํ˜„์ฒด๋Š” ์„ฑ๋Šฅยทํ™•์žฅ์„ฑยท์žฌํ˜„์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด, ์—ฐ๊ตฌ์ž๋“ค์ด ๋Œ€๊ทœ๋ชจ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. JAX๋Š” ํ•จ์ˆ˜ํ˜• ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ณผ ์ž๋™ ๋ฏธ๋ถ„ , GPU/TPU ๊ฐ€์† ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฒฐํ•ฉํ•ด ๋Œ€๊ทœ๋ชจ ํ•™์Šต์— ์ ํ•ฉํ•˜์ง€๋งŒ, ์ด๋ฅผ ์›”๋“œ ๋ชจ๋ธ์— ์ ์šฉํ•œ ์‚ฌ๋ก€๋Š” ๋“œ๋ฌผ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ์˜์˜ | | | | | | ์ฝ”๋“œ๋ฒ ์ด์Šค ์„ค๊ณ„ | JAX ๊ธฐ๋ฐ˜ ๋ชจ๋“ˆํ™” ๊ตฌ์กฐ, ์ตœ์†Œ ์ฝ”๋“œ ๋ณ€๊ฒฝ์œผ๋กœ ์‹ฑ๊ธ€ยท๋ฉ€ํ‹ฐ ํ˜ธ

Model
No Image

JEPA-DNA: Grounding Genomic Foundation Models through Joint-Embedding Predictive Architectures

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ Granularity Trap : ๊ธฐ์กด MLM/NTP๋Š” ํ† ํฐ ์ˆ˜์ค€ ๋ณต์›์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๊ณ ๋นˆ๋„ โ€œ๋…ธ์ด์ฆˆโ€(์˜ˆ: ๋ฐ˜๋ณต ์š”์†Œ, ์ค‘๋ฆฝ ๋ณ€์ด)์™€ ๊ฐ™์€ ์ €์ฐจ์› ์ •๋ณด๋ฅผ ๊ณผ๋„ํ•˜๊ฒŒ ํ•™์Šตํ•œ๋‹ค. ์ด๋Š” ์žฅ๊ฑฐ๋ฆฌ ์กฐ์ ˆ ์š”์†Œ(์˜ˆ: enhancerโ€‘promoter ์ƒํ˜ธ์ž‘์šฉ)์™€ ๊ฐ™์€ ์ „์—ญ ๊ธฐ๋Šฅ์„ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๊ธฐ๋Šฅ์  ์˜๋ฏธ์˜ ๋ถ€์žฌ : DNA ์„œ์—ด์€ ๋‹จ์ˆœํžˆ ์•ŒํŒŒ๋ฒณ์ด ์•„๋‹ˆ๋ผ, ๋ณตํ•ฉ์ ์ธ ๊ทœ์ œ ๋กœ์ง์„ ๋‚ดํฌํ•œ๋‹ค. ์ด๋ฅผ ๋ฐ˜์˜ํ•˜๋ ค๋ฉด ๋ชจ๋ธ์ด ์ž ์žฌ์  ์„ธ๊ณ„ ๋ชจ๋ธ(world model) ์„ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹ค. 2. JE

Computer Science Model Artificial Intelligence
No Image

Kerr-Schild solutions in Multigravity and the Classical Double Copy

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹ค์ค‘์ค‘๋ ฅ์˜ ํ•„์š”์„ฑ : ์•”ํ‘ ๋ฌผ์งˆยท์—๋„ˆ์ง€, ๊ณ„์ธต ๋ฌธ์ œ ๋“ฑ GR์ด ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ˜„์ƒ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋Œ€์•ˆ์œผ๋กœ, ์งˆ๋Ÿ‰์„ ๊ฐ€์ง„ ์Šคํ•€โ€‘2 ์ž…์ž๋“ค์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋‹ค๋ฃจ๋Š” ๋‹ค์ค‘์ค‘๋ ฅ ์ด๋ก ์ด ์ œ์•ˆ๋˜์–ด ์™”๋‹ค. ํŠนํžˆ dRGT ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฌด๋ น(Boulwareโ€‘Deser) ๊ณ ์ŠคํŠธ๊ฐ€ ์—†๋Š” ๋‹ค์ค‘์ค‘๋ ฅ ๋ชจ๋ธ์€ ์ตœ๊ทผ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํด๋ž˜์‹ ๋”๋ธ” ์นดํ”ผ : ์ƒ‰โ€‘์šด๋™ํ•™ ์ด์ค‘์„ฑ(BCJ)๊ณผ KLT ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•ด ์ค‘๋ ฅ ์ง„ํญ์„ ๊ฒŒ์ด์ง€ ์ด๋ก  ์ง„ํญ์œผ๋กœ โ€˜๋ณต์‚ฌโ€™ํ•˜๋Š” ๋ฐฉ๋ฒ•์€, ํ•ด ์ˆ˜์ค€์—์„œ๋„ ์ผ€๋ฅดโ€‘์Šฌ๋ ˆ์ธ ํ˜•ํƒœ์˜ ํ•ด์— ๋Œ€ํ•ด ์„ฑ๊ณต์ ์œผ๋กœ ์ ์šฉ๋œ ๋ฐ”

General Relativity
No Image

KnowThyself: An Agentic Assistant for LLM Interpretability

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM ํ•ด์„์„ฑ์˜ ํ˜„์ฃผ์†Œ : ํ˜„์žฌ LLM ๋‚ด๋ถ€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํƒ์ƒ‰ํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ(์˜ˆ: ํ”„๋กœ๋น™, ์–ดํ…์…˜ ์‹œ๊ฐํ™”, ํŒŒ์ธํŠœ๋‹ ๋ถ„์„ ๋“ฑ)๋Š” ๊ฐ๊ฐ ๋…๋ฆฝ์ ์œผ๋กœ ์กด์žฌํ•˜๋ฉฐ, ์‚ฌ์šฉ์ž๋Š” ํŒŒ์ด์ฌ ๋“ฑ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์ง€์‹์ด ํ•„์š”ํ•˜๋‹ค. ํ†ตํ•ฉ ์ธํ„ฐํŽ˜์ด์Šค ๋ถ€์žฌ : ์—ฐ๊ตฌ์žยท๊ฐœ๋ฐœ์ž ๋ชจ๋‘ โ€œ์–ด๋””์„œ ์–ด๋–ค ๋„๊ตฌ๋ฅผ ์จ์•ผ ํ•˜๋Š”๊ฐ€?โ€์— ๋Œ€ํ•œ ์ธ์ง€ ๋ถ€ํ•˜๊ฐ€ ํฌ๋‹ค. ์ด๋Š” ํ•ด์„ ์—ฐ๊ตฌ์˜ ์ง„์ž… ์žฅ๋ฒฝ์„ ๋†’์ด๊ณ , ์žฌํ˜„์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ์„ค๊ณ„ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ์ˆ  | | | | | | ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ดํ„ฐ LLM | ์‚ฌ์šฉ์ž์˜ ์ž์—ฐ์–ด ์งˆ์˜๋ฅผ ๊ตฌ์กฐ

No Image

Learning Continuous Solvent Effects from Transient Flow Data: A Graph Neural Network Benchmark on Catechol Rearrangement

1. ๋ฌธ์ œ ์ •์˜์™€ ๋ฐ์ดํ„ฐ์…‹์˜ ํ˜์‹ ์„ฑ ๊ธฐ์กด ์šฉ๋งคโ€‘์กฐ๊ฑด ์˜ˆ์ธก ์—ฐ๊ตฌ๋Š” ์šฉ๋งค๋ฅผ โ€œ๋ฌผ, ์—ํƒ„์˜ฌ, DMF ๋“ฑโ€๊ณผ ๊ฐ™์€ ์ด์‚ฐํ˜• ๋ ˆ์ด๋ธ”๋กœ๋งŒ ์ทจ๊ธ‰ํ•ด, ์ƒˆ๋กœ์šด ์šฉ๋งค ์กฐํ•ฉ์— ๋Œ€ํ•œ ๋ณด๊ฐ„์ด ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์šฉ๋งค ํ˜ผํ•ฉ ๋น„์œจ์„ ์—ฐ์† ๋ณ€์ˆ˜(%)๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ, ์‹ค์ œ ๊ณต์ •์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” ์šฉ๋งค ๋น„์œจ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ์ง์ ‘ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ฒŒ ํ–ˆ๋‹ค. 1,227๊ฐœ์˜ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋Š” ๊ณ ์ฒ˜๋ฆฌ๋Ÿ‰ ์ „์ด ํ๋ฆ„(continuousโ€‘flow) ์‹œ์Šคํ…œ์„ ์ด์šฉํ•ด ์ž๋™ํ™”๋œ ์‹คํ—˜ ์„ค๊ณ„์™€ ์ •ํ™•ํ•œ ์ˆ˜์œจ ์ธก์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ์†Œ๊ทœ๋ชจ ๋ฐฐ์น˜ ์‹คํ—˜ ๋Œ€๋น„ ํ†ต๊ณ„์  ์‹ ๋ขฐ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ธ

Network Learning Data
No Image

Learning from Online Videos at Inference Time for Computer-Use Agents

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ปดํ“จํ„ฐ ์‚ฌ์šฉ ์—์ด์ „ํŠธ ๋Š” ์ตœ๊ทผ LLMยทVLM ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ–ˆ์ง€๋งŒ, ๋„๋ฉ”์ธโ€‘ํŠนํ™” UI ํ๋ฆ„ ์„ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ธ๊ฐ„์€ โ€œ์œ ํŠœ๋ธŒ ํŠœํ† ๋ฆฌ์–ผโ€์„ ํ†ตํ•ด ์‹œ๊ฐยทํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ๋™์‹œ์— ํ™œ์šฉํ•ด ๋น ๋ฅด๊ฒŒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ด ์ ์„ ์—์ด์ „ํŠธ์— ์ ์šฉํ•˜๋ฉด ์ถ”๋ก  ์‹œ์ ์— ์™ธ๋ถ€ ์ง€์‹์„ ๋™์ ์œผ๋กœ ์‚ฝ์ž… ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | โ‘  | ํŠœํ† ๋ฆฌ์–ผ ๋น„๋””์˜ค ๊ฒ€์ƒ‰ยทํ•„ํ„ฐ๋ง ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์ถ• (ํ‚ค์›Œ๋“œยท๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜) | ์žก์Œ์ด ๋งŽ์€ ์ธํ„ฐ๋„ท ๋น„๋””์˜ค ์ค‘ ์œ ์šฉํ•œ ์ƒ˜ํ”Œ์„ ์ž๋™์œผ๋กœ ์„ 

Learning
No Image

Lepton energy scale and resolution corrections based on the minimization of an analytical likelihood: IJazZ2.0

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํ‰๊ฐ€ยท์˜์˜ | | | | | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์—๋„ˆ์ง€ ์Šค๋ฏธ์–ด๋ง์„ ์ •๊ทœ๋ถ„ํฌ ๊ฐ€์ •ํ•˜์— ํ์‡„ํ˜•(analytic) ํ˜•ํƒœ ๋กœ ์ „๊ฐœํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹คํ•ญ๋ถ„ํฌ ๊ธฐ๋ฐ˜ ๊ฐ€๋Šฅ๋„ ๋ฅผ ์ •์˜. ์ž๋™ ๋ฏธ๋ถ„์„ ์ด์šฉํ•ด ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๊ธฐ์šธ๊ธฐ ๊ณ„์‚ฐ. | ๊ธฐ์กด์˜ Monteโ€‘Carlo ์ƒ˜ํ”Œ๋ง ๋ฐฉ์‹์€ ํ†ต๊ณ„์  ๋…ธ์ด์ฆˆ์™€ ๋†’์€ ์—ฐ์‚ฐ ๋น„์šฉ์ด ๋ฌธ์ œ์˜€์Œ. ๋ถ„์„์  ์ „๊ฐœ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด์†Œํ•˜๊ณ , ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ด. | | ์ˆ˜์‹์  ๊ตฌํ˜„ | ๋ ™ํ†ค ์Šค์ผ€์ผ $r ell(vec X)$, ํ•ด์ƒ๋„ $sigma

HEP-EX
No Image

Lessons Learned from the Use of Generative AI in Engineering and Quality Assurance of a WEB System for Healthcare

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ƒ์„ฑํ˜• AI์˜ ๊ธ‰๋ถ€์ƒ : ChatGPT, Claude, Gemini ๋“ฑ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋“ฑ์žฅ์œผ๋กœ ์ฝ”๋“œ ์ž๋™ ์ƒ์„ฑยท๋ฆฌํŒฉํ„ฐ๋งยทํ…Œ์ŠคํŠธ ์ผ€์ด์Šค ์ž‘์„ฑ ๋“ฑ ์ „ํ†ต์ ์ธ ๊ฐœ๋ฐœ ์ž‘์—…์ด ์ž๋™ํ™”๋  ๊ฐ€๋Šฅ์„ฑ์ด ์ปค์กŒ๋‹ค. SE ๋ถ„์•ผ์˜ ์ดˆ๊ธฐ ์ ์šฉ : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ฝ”๋“œ ๋ณด์กฐยท๋ฒ„๊ทธ ํƒ์ง€ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์ „์ฒด ๊ฐœ๋ฐœ ๋ผ์ดํ”„์‚ฌ์ดํด์— ๊ฑธ์นœ ์ ์šฉ ์‚ฌ๋ก€๋Š” ๋“œ๋ฌผ๋‹ค. ์˜๋ฃŒ ๋ถ„์•ผ ํŠน์ˆ˜์„ฑ : ์ž„์ƒ์‹œํ—˜์šฉ ์‹œ์Šคํ…œ์€ ๊ทœ์ œยท๋ณด์•ˆยท๋ฐ์ดํ„ฐ ๋ฌด๊ฒฐ์„ฑ ์š”๊ตฌ๊ฐ€ ๋†’์•„ AI ๋„์ž… ์‹œ ์œ„ํ—˜ ๊ด€๋ฆฌ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. 2. ์—ฐ๊ตฌ ๋ชฉ์  ์ƒ์„ฑํ˜• AI๋ฅผ ์ „ ๊ณผ์ •(ํ”„๋กœ์ ํŠธ

System
No Image

LexiSafe: Offline Safe Reinforcement Learning with Lexicographic Safety-Reward Hierarchy

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ CPS์—์„œ์˜ ์•ˆ์ „ ์š”๊ตฌ : ์ž์œจ์ฃผํ–‰, ์Šค๋งˆํŠธ ๊ทธ๋ฆฌ๋“œ, ๊ฑด๋ฌผ ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ๋“ฑ ๋ฌผ๋ฆฌ์  ์‹œ์Šคํ…œ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ถ„์•ผ์—์„œ๋Š” ํ•™์Šต ๊ณผ์ • ์ž์ฒด๊ฐ€ ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์˜คํ”„๋ผ์ธ ํ•™์Šต์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ๋ฐ์ดํ„ฐ์—๋Š” ์•ˆ์ „ยท๋น„์•ˆ์ „ ๊ถค์ ์ด ํ˜ผ์žฌํ•œ๋‹ค. ๊ธฐ์กด ์˜คํ”„๋ผ์ธ ์•ˆ์ „ RL์˜ ํ•œ๊ณ„ ์ œ์•ฝ ์™„ํ™”/๊ณต๋™ ์ตœ์ ํ™” ๋ฐฉ์‹์€ ์•ˆ์ „์„ โ€˜์†Œํ”„ํŠธโ€™ํ•˜๊ฒŒ ๋‹ค๋ฃจ์–ด, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์•ˆ์ „ ๊ฒฝ๊ณ„๊ฐ€ ์ ์ง„์ ์œผ๋กœ ํ๋ ค์ง€๋Š” โ€˜driftโ€™ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ƒ˜ํ”Œ ๋ณต์žก๋„ ์— ๋Œ€ํ•œ ์ด๋ก ์  ๋ณด์žฅ์ด ๋ถ€์กฑํ•˜๊ณ , ๋‹ค์ค‘ยท๊ณ„์ธต์  ์•ˆ์ „ ์ œ์•ฝ์„ ๋‹ค๋ฃจ๋Š” ๋ฐฉ๋ฒ•์ด ๊ฑฐ์˜

Machine Learning Computer Science Learning
No Image

LieSolver: A PDE-constrained solver for IBVPs using Lie symmetries

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ PDEโ€‘๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง ์€ ๋ฌผ๋ฆฌยท๊ณตํ•™ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ด์ง€๋งŒ, ์ „ํ†ต์ ์ธ ์ˆ˜์น˜ ํ•ด๋ฒ•(์˜ˆ: ์œ ํ•œ์š”์†Œ, ์œ ํ•œ์ฐจ๋ถ„)์€ ๊ฒฉ์ž ์ƒ์„ฑยทํ•ด์ƒ๋„ ์„ ํƒ์— ํฐ ๋น„์šฉ์ด ๋“ ๋‹ค. Physicsโ€‘Informed Neural Networks (PINNs) ๋Š” ์†์‹ค์— PDE ์ž”์ฐจ๋ฅผ ํฌํ•จํ•ด ๋ฌผ๋ฆฌ๋ฒ•์น™์„ ๊ฐ•์ œํ•˜์ง€๋งŒ, ์ž”์ฐจ ๊ณ„์‚ฐ์ด ๋น„ํšจ์œจ์ ์ด๋ฉฐ, ์†์‹ค ์Šค์ผ€์ผ๋ง ๋ฌธ์ œ๋กœ ์ˆ˜๋ ด์ด ๋А๋ ค์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. Lie ๋Œ€์นญ ์€ PDE๊ฐ€ ๋ณด์กดํ•˜๋Š” ๋ณ€ํ™˜๊ตฐ์„ ์ œ๊ณตํ•œ๋‹ค. ๋Œ€์นญ์„ ์ด์šฉํ•˜๋ฉด ํ•ด ๊ณต๊ฐ„์„ ํฌ๊ฒŒ ์ถ•์†Œํ•˜๊ณ , ํ•ด๊ฐ€ ๋ฐ˜๋“œ์‹œ PDE๋ฅผ ๋งŒ์กฑํ•˜๋„๋ก ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ

No Image

Limiting Behavior of Degree-Degree Metrics under Local Convergence in Probability

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋„คํŠธ์›Œํฌ assortativity (๋™์งˆ์„ฑ)๋Š” ์‹œ์Šคํ…œ์˜ ๋ณต์›๋ ฅ, ์ „์—ผ ํ™•์‚ฐ, ๊ธˆ์œต ์‹œ์Šคํ…œ์˜ ์‹œ์Šคํ…œ ์œ„ํ—˜ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํŠน์ • ๋ชจ๋ธ์— ๋Œ€ํ•œ ๊ฐœ๋ณ„์ ์ธ ์ƒ๊ด€ ์ง€ํ‘œ์˜ ๊ทนํ•œ๊ฐ’์„ ๊ตฌํ•˜๊ฑฐ๋‚˜, ์ œํ•œ๋œ ๊ฐ€์ • ํ•˜์— ์ผ๋ฐ˜์ ์ธ ์ˆ˜๋ ด ์ •๋ฆฌ๋ฅผ ์ œ์‹œํ–ˆ์ง€๋งŒ, ์ง€์—ญ ์ˆ˜๋ ด ์ด๋ผ๋Š” ํ˜„๋Œ€์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ํฌ๊ด„์ ์ธ ์ ‘๊ทผ์€ ๋ถ€์กฑํ–ˆ๋‹ค. ์ฐจ์ˆ˜โ€‘์ฐจ์ˆ˜ ์ƒ๊ด€ ์ง€ํ‘œ๋Š” ๋Œ€๋ถ€๋ถ„ ๊ตญ์†Œ์ (local) ํŠน์„ฑ์„ ๊ฐ–์ง€๋งŒ, ์ด๋ฅผ ์ผ๋ฐ˜์ ์ธ ๋ฌด์ž‘์œ„ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ์ด๋ก ์ด ํ•„์š”ํ–ˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ

Mathematics
No Image

LinkedNN: a neural model of linkage disequilibrium decay for recent effective population size inference

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LD์™€ Nโ‚‘ ๊ด€๊ณ„ : LD๋Š” ์žฌ์กฐํ•ฉ๊ณผ ์œ ์ „์  ๋ถ€๋™์— ์˜ํ•ด ํ˜•์„ฑ๋˜๋ฉฐ, ํฐ Nโ‚‘๋ฅผ ๊ฐ€์ง„ ์ง‘๋‹จ์€ ๋‚ฎ์€ LD๋ฅผ ๋ณด์ธ๋‹ค(Hill & Robertson, 1968). ๋”ฐ๋ผ์„œ LD ๋ถ•๊ดด ๊ณก์„ ์„ ์ด์šฉํ•˜๋ฉด ์ตœ๊ทผ(์ˆ˜์‹ญ~์ˆ˜๋ฐฑ ์„ธ๋Œ€) ์ธ๊ตฌ ๊ทœ๋ชจ ๋ณ€ํ™”๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ : GONE ๋“ฑ์€ ๊ฑฐ๋ฆฌ๋ณ„ LD๋ฅผ ์ง์ ‘ ๋ชจ๋ธ๋งํ•˜์ง€๋งŒ, SNP ์Œ์„ ์ž„์˜์˜ ๊ตฌ๊ฐ„์œผ๋กœ binningํ•ด์•ผ ํ•˜๋Š” ์ˆ˜์ž‘์—…์ด ํ•„์š”ํ•˜๊ณ , ๋น„์œ„์ƒยทํฌ์†Œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. CNN ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋ฏธ์ง€โ€‘ํ˜•์‹ ์ž…๋ ฅ์— ์ตœ์ ํ™”๋ผ SNP ๊ฐ„ ๊ฑฐ๋ฆฌ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ

Model Quantitative Biology
No Image

LIR: The First Workshop on Late Interaction and Multi Vector Retrieval @ ECIR 2026

| ๊ตฌ๋ถ„ | ์ฃผ์š” ๋‚ด์šฉ | ์˜์˜ยท์‹œ์‚ฌ์  | | | | | | 1. ๋ผ์ดํŠธ ์ธํ„ฐ๋ž™์…˜์˜ ํ•ต์‹ฌ | ํ† ํฐโ€‘๋ ˆ๋ฒจ ์ž„๋ฒ ๋”ฉ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ํšจ์œจ์ ์ธ ๋งค์นญ ์ˆ˜ํ–‰ <br> ColBERT์ด ๋Œ€ํ‘œ์ ์ธ ๊ตฌํ˜„ | โ€ข ๋‹จ์ผ ๋ฒกํ„ฐ ๋ฐฉ์‹๋ณด๋‹ค ์ •๋ฐ€๋„ยท์žฌํ˜„์œจ์—์„œ ์šฐ์ˆ˜ <br> โ€ข ํŠนํžˆ ๋„๋ฉ”์ธ ์ „์ด ์ƒํ™ฉ์—์„œ ๊ฐ•๊ฑดํ•จ | | 2. ์ตœ์‹  ํ™œ์šฉ ์‚ฌ๋ก€ | ์ถ”๋ก  ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ : ์งˆ์˜์— ๋Œ€ํ•œ ๋…ผ๋ฆฌ์  ์ถ”๋ก ์„ ํฌํ•จํ•œ ๊ฒ€์ƒ‰ <br> ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๊ฒ€์ƒ‰ : ํ…์ŠคํŠธยท์ด๋ฏธ์ง€ยท์˜ค๋””์˜ค ๋“ฑ ๋ณตํ•ฉ ์ž…๋ ฅ ์ฒ˜๋ฆฌ | โ€ข ํ† ํฐโ€‘๋ ˆ๋ฒจ ์ •๋ณด๊ฐ€ ๋‹ค์–‘ํ•œ ๋ชจ๋‹ฌ ๊ฐ„ ์ •๋ ฌ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ <br> โ€ข ์ƒˆ๋กœ์šด ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์˜์—ญ

No Image

LLMs Process Lists With General Filter Heads

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฆฌ์ŠคํŠธ ์ฒ˜๋ฆฌ์™€ ํ•จ์ˆ˜ํ˜• ํ”„๋กœ๊ทธ๋ž˜๋ฐ : `filter`๋Š” ํ•จ์ˆ˜ํ˜• ์–ธ์–ด์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๊ณ ์ฐจ ํ•จ์ˆ˜ ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ, ์กฐ๊ฑด์— ๋งž๋Š” ์›์†Œ๋งŒ์„ ์„ ํƒํ•œ๋‹ค. LLM์ด ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์„ ๋‚ด๋ถ€์ ์œผ๋กœ ๊ตฌํ˜„ํ•œ๋‹ค๋ฉด, ๋ชจ๋ธ์˜ ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ณด๋‹ค ํˆฌ๋ช…ํ•˜๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ณผ ๋งค๊ฐœ ๋ถ„์„(CMA) : ๊ธฐ์กด ํ•ด์„ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ attention weight๋‚˜ probing์„ ์ด์šฉํ–ˆ์ง€๋งŒ, ์ธ๊ณผ์  ๊ด€์ ์—์„œ ํŠน์ • ์—ฐ์‚ฐ์ด ์–ด๋А ํ—ค๋“œ์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜๋Š”์ง€๋ฅผ ๋ฐํžˆ๋Š” ์‹œ๋„๋Š” ๋“œ๋ฌผ๋‹ค. 2. ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ์„ค๋ช… | ์ฃผ์š” ๊ธฐ๋ฒ• | | | | | | ๊ณผ

No Image

Localised Operator Valued Kernels Invariant under Actions of $*$-Semigroupoids

| ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํ‰๊ฐ€ยท์˜์˜ | | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ | 20์„ธ๊ธฐ ์ดˆ๋ถ€ํ„ฐ ์ „๊ฐœ๋œ ์–‘์˜ ๋ฐ˜์ • ์Šค์นผ๋ผ ์ปค๋„ ์ด๋ก ์„ ์—ฐ์‚ฐ์ž๊ฐ’ยทKrein ๊ณต๊ฐ„๊นŒ์ง€ ํ™•์žฅํ•ด ์˜จ ์ „ํ†ต์ ์ธ ํ๋ฆ„์„ ์ •๋ฆฌํ•˜๊ณ , ์ตœ๊ทผ โ€‘์„ธ๋ฏธ๊ทธ๋ฃนoid ์™€ ๊ตญ์†Œํ™” ๋ฒˆ๋“ค ์ด ๊ฒฐํ•ฉ๋œ ๋ฌธ์ œ์˜ ํ•„์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. | ๊ธฐ์กด ๋ฌธํ—Œ(Aronszajn, Schwartz, Kreinโ€‘Langer ๋“ฑ)๊ณผ ์ตœ์‹  ์‘์šฉ(๋จธ์‹ ๋Ÿฌ๋‹, ์–‘์ž์—ญํ•™) ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ๋ฅผ ๋ช…ํ™•ํžˆ ์ œ์‹œ, ์—ฐ๊ตฌ ๋™๊ธฐ๋ฅผ ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์ œ์‹œ. | | ํ•ต์‹ฌ ์ •์˜ | Hilbert ๋ฒˆ๋“ค (X mathcal H) <br> ์—ฐ์‚ฐ์ž๊ฐ’ ์ปค๋„

Mathematics
No Image

Magnitude-Modulated Equivariant Adapter for Parameter-Efficient Fine-Tuning of Equivariant Graph Neural Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Equivariant GNN ์€ ๋ฌผ๋ฆฌยทํ™”ํ•™ ๋ฒ•์น™(ํšŒ์ „ยท๋ฐ˜์‚ฌ ๋Œ€์นญ)์„ ๋‚ด์žฌํ™”ํ•ด ๋†’์€ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ณด์ธ๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์ƒˆ๋กœ์šด ๋ฌผ์งˆยท๋ฐ˜์‘์— ๋ฐ”๋กœ ์ ์šฉํ•˜๊ธฐ์—” ํŒŒ์ธํŠœ๋‹ ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด PEFT ๊ธฐ๋ฒ•์€ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ด๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋Œ€์นญ ํŒŒ๊ดด(symmetry breaking) ๋ผ๋Š” ์น˜๋ช…์  ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด EGNN์— ์ง์ ‘ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. 2. ELoRA์™€ ๊ทธ ํ•œ๊ณ„ ELoRA ๋Š” ๋Œ€์นญ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ LoRA์™€ ์œ ์‚ฌํ•œ ์ €์ฐจ์› ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ณต๊ฐ„์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ ํ…์„œ ์ฐจ์ˆ˜(ord

Network
No Image

MammoClean: Toward Reproducible and Bias-Aware AI in Mammography through Dataset Harmonization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜„์žฌ ๊ณต๊ฐœ๋œ ์œ ๋ฐฉ์ดฌ์˜์ˆ  ๋ฐ์ดํ„ฐ์…‹์€ ์ดฌ์˜ ์žฅ๋น„, ํ”„๋กœํ† ์ฝœ, ๋ผ๋ฒจ๋ง ๊ธฐ์ค€ ๋“ฑ์ด ์„œ๋กœ ๋‹ฌ๋ผ ๋ฐ์ดํ„ฐ ์ด์งˆ์„ฑ ์ด ์‹ฌ๊ฐํ•จ. ์ด๋Ÿฌํ•œ ์ด์งˆ์„ฑ์€ ๋ฐ์ดํ„ฐ์…‹โ€‘ํŠน์ด์  ํŽธํ–ฅ(datasetโ€‘specific bias) ์„ ๋งŒ๋“ค๊ณ , ๋ชจ๋ธ์ด ํŠน์ • ๋ฐ์ดํ„ฐ์…‹์— ๊ณผ์ ํ•ฉ(overfit)๋˜๋Š” ์›์ธ์ด ๋œ๋‹ค. ์ž„์ƒ ํ˜„์žฅ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ํŠน์„ฑ๊ณผ ์žฅ๋น„ ํ™˜๊ฒฝ์ด ์กด์žฌํ•˜๋ฏ€๋กœ, ํŽธํ–ฅ์„ ์ตœ์†Œํ™”ํ•œ ๋ฒ”์šฉ ๋ชจ๋ธ ์ด ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. 2. MammoClean ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ ์š”์†Œ Case Selection Standardization : ๋™์ผํ•œ ํฌํ•จยท

Data
No Image

MDMLP-EIA: Multi-domain Dynamic MLPs with Energy Invariant Attention for Time Series Forecasting

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ MLP ๊ธฐ๋ฐ˜ ์‹œ๊ณ„์—ด ๋ชจ๋ธ์˜ ๋ถ€์ƒ : Transformer ๋Œ€๋น„ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ ๊ณ  ํ•™์Šตยท์ถ”๋ก  ์†๋„๊ฐ€ ๋น ๋ฅธ ์ ์ด ์‹ค์šฉ์„ฑ์„ ๋†’์ธ๋‹ค. ๊ธฐ์กด ํ•œ๊ณ„ : ์•ฝํ•œ ๊ณ„์ ˆ์„ฑ ์‹ ํ˜ธ ์†Œ์‹ค โ€“ ์ผ๋ฐ˜ MLP๋Š” ๊ฐ•ํ•œ ํŒจํ„ด์—๋งŒ ์ง‘์ค‘ํ•ด ๋ฏธ์„ธํ•œ ์ฃผ๊ธฐ์„ฑ์„ ๋†“์น˜๊ธฐ ์‰ฝ๋‹ค. ๊ฐ€์ค‘์น˜ ๊ณต์œ ์— ์˜ํ•œ ์šฉ๋Ÿ‰ ์ œํ•œ โ€“ ๋™์ผ ๊ฐ€์ค‘์น˜๋ฅผ ์—ฌ๋Ÿฌ ์ฑ„๋„์— ์ ์šฉํ•˜๋ฉด ๋ณต์žกํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ถฉ๋ถ„ํžˆ ํ‘œํ˜„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ฑ„๋„ ๋…๋ฆฝ ์ „๋žต์˜ ์œตํ•ฉ ๋ถ€์กฑ โ€“ ์ฑ„๋„์„ ์™„์ „ํžˆ ๋ถ„๋ฆฌํ•˜๋ฉด ์„œ๋กœ ๋‹ค๋ฅธ ํ”ผ์ฒ˜ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ธฐ๋Œ€

No Image

Measurement of ionization yield of low energy ions in low pressure $mathrm{CF}_{4}$ gas for dark matter searches

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐฉํ–ฅ ๊ฐ์ง€ํ˜• ๋‹คํฌ ๋งคํ„ฐ ํƒ์ƒ‰ ์€ ํ•ต๋ฐ˜๋™ ํŠธ๋ž™์„ ์žฌ๊ตฌ์„ฑํ•ด WIMP ์ž…์ž์˜ ๋ฐฉํ–ฅ์„ฑ์„ ํŒŒ์•…ํ•˜๋ ค๋Š” ์‹œ๋„์ด๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ์ „๋ฐฉํ–ฅ ํƒ์ƒ‰๋ณด๋‹ค ๋ฐฐ๊ฒฝ ์–ต์ œ์— ์œ ๋ฆฌํ•˜๋‹ค. CFโ‚„, CHFโ‚ƒ, SFโ‚† ๋“ฑ ํ”Œ๋ฃจ์˜ค๋ฆฐ ํ•จ์œ  ๊ฐ€์Šค๋Š” ์Šคํ•€โ€‘์˜์กด์„ฑ ์ƒํ˜ธ์ž‘์šฉ ํƒ์ƒ‰์— ์ตœ์ ์ด๋ฉฐ, ํŠนํžˆ NEWAGEยทDRIFTยทMIMACยทCYGNO ๋“ฑ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์—๋„ˆ์ง€(โ‰ค tens keV) ํ•ต๋ฐ˜๋™ ์€ ์ „๋ฆฌ, ์—ฌ๊ธฐ, ํ•ต์ •์ง€ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์—๋„ˆ์ง€ ์†์‹ค ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฒช์–ด, Lindhard ์ด๋ก ์ด๋‚˜ SRIM ๊ฐ™์€ ๊ธฐ์กด ๋ชจ๋ธ๊ณผ ์‹คํ—˜๊ฐ’ ์‚ฌ์ด์— ์ฐจ์ด๊ฐ€ ์กด์žฌํ•œ

Physics
No Image

Method to Compute Pointing Displacement, Smear, and Jitter Covariances for Optical Payloads

| ํ•ญ๋ชฉ | ๋‚ด์šฉ ๋ฐ ํ‰๊ฐ€ | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ | ๊ด‘ํ•™ ์‹œ์Šคํ…œ์˜ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์€ ๋…ธ์ถœ ์‹œ๊ฐ„ ๋™์•ˆ ๋ฐœ์ƒํ•˜๋Š” ๋ฏธ์„ธํ•œ ์›€์ง์ž„์— ํฌ๊ฒŒ ์ขŒ์šฐ๋œ๋‹ค. ๊ธฐ์กด์—๋Š” ๋ณ€์œ„์™€ ์ง€ํ„ฐ๋ฅผ ๋ณ„๋„๋กœ ํ˜น์€ ์Šค๋ฏธ์–ด๋ฅผ ๋ณ€์œ„์— ํฌํ•จ์‹œ์ผœ ๊ทผ์‚ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ–ˆ์œผ๋ฉฐ, ์—ฐ์† ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๊ฐ–๋Š” ์žก์Œ์— ๋Œ€ํ•ด์„œ๋Š” ์ˆ˜์น˜ ์ ๋ถ„์ด ๋น„ํšจ์œจ์ ์ด์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณ€์œ„ยท์Šค๋ฏธ์–ดยท์ง€ํ„ฐ๋ฅผ ๋™์‹œ์— ์ •ํ™•ํžˆ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. | | ํ•ต์‹ฌ ๊ธฐ์—ฌ | 1. Lyapunov ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹(LDE) ๊ธฐ๋ฐ˜ ๊ณต๋ถ„์‚ฐ ๊ณ„์‚ฐ โ€“ ๋ณ€์œ„ยท์Šค๋ฏธ์–ดยท์ง€ํ„ฐ ๊ณต๋ถ„์‚ฐ์„ ํ•˜๋‚˜์˜ LDE ํ•ด๋กœ ํ†ตํ•ฉ.<br>2.

Electrical Engineering and Systems Science
No Image

ML-driven detection and reduction of ballast information in multi-modal datasets

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐ์ดํ„ฐ ํญ์ฆ : 2025๋…„๊นŒ์ง€ ์ „ ์„ธ๊ณ„ ๋””์ง€ํ„ธ ๋ฐ์ดํ„ฐ๊ฐ€ 175 ZB์— ๋‹ฌํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ธก๋˜๋Š” ์ƒํ™ฉ์—์„œ, ์ €์žฅยท์ฒ˜๋ฆฌ ๋น„์šฉ ์ ˆ๊ฐ์€ ํ•„์ˆ˜ ๊ณผ์ œ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„์  : ๋ฐ์ดํ„ฐ ์ •์ œยท์ค‘๋ณต ์ œ๊ฑฐ๋Š” ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋์ง€๋งŒ, ๋ถ„์„์ ์œผ๋กœ๋Š” ์œ ํšจํ•˜์ง€๋งŒ ์‹ค์งˆ์  ๊ฐ€์น˜๋Š” ๋‚ฎ์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ •์˜ยท์ •๋Ÿ‰ํ™”ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์—†๋‹ค. 2. ํ•ต์‹ฌ ๊ฐœ๋… ์ •์˜ Ballast Information : ๋ณ€๋™์„ฑ์ด ๊ฑฐ์˜ ์—†๊ฑฐ๋‚˜, ์˜๋ฏธ๊ฐ€ ์ค‘๋ณต๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ, ๋นˆ๋ฒˆํžˆ ๋ฐ˜๋ณต๋˜๋Š” ํ…์ŠคํŠธ ํ† ํฐ ๋“ฑ ์ €์žฅยท์—ฐ์‚ฐ ๋น„์šฉ๋งŒ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. Ballast

Machine Learning Computer Science Data Detection
Multi-domain performance analysis with scores tailored to user preferences

Multi-domain performance analysis with scores tailored to user preferences

๋ณธ ๋…ผ๋ฌธ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์—์„œ ํ”ํžˆ ๊ฐ„๊ณผ๋˜๋Š” โ€œ๊ฐ€์ค‘ ํ‰๊ท โ€์˜ ๋‚ด์žฌ์  ์˜๋ฏธ๋ฅผ ํ™•๋ฅ ๋ก ์  ๊ด€์ ์—์„œ ์žฌ์กฐ๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” ๊ฐ ๋„๋ฉ”์ธ(๋˜๋Š” ๋ฐ์ดํ„ฐ ๋ถ„ํฌ)๋ณ„๋กœ ๋ณ„๋„ ๊ณ„์‚ฐ๋œ ๋’ค, ๋‹จ์ˆœํžˆ ๊ฐ€์ค‘ ํ‰๊ท ์„ ์ทจํ•ด ์ „์ฒด์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด๊ณ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ€์ค‘์น˜ ์„ ํƒ์ด ์ž„์˜์ ์ผ ๊ฒฝ์šฐ, ์‹ค์ œ ์„ฑ๋Šฅ ํŠน์„ฑ์„ ์™œ๊ณกํ•  ์œ„ํ—˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ ์„ฑ๋Šฅ์„ ํ™•๋ฅ  ์ธก๋„๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ, ๊ฐ ๋„๋ฉ”์ธ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ์„ ์ •๊ทœํ™”๋œ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ํ•ด์„ํ•˜๊ณ , ์ด๋ฅผ โ€œ์š”์•ฝ(summarization)โ€์ด๋ผ๋Š” ์ˆ˜ํ•™์  ์—ฐ์‚ฐ์— ๋งคํ•‘ํ•ฉ๋‹ˆ๋‹ค. ์š”์•ฝ ์—ฐ์‚ฐ์€ ์—ฌ๋Ÿฌ ํ™•๋ฅ  ์ธก

Computer Science Analysis Performance
No Image

Multi-Modal Fact-Verification Framework for Reducing Hallucinations in Large Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM์€ ๋ฐฉ๋Œ€ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ ๋•๋ถ„์— ์ž์—ฐ์Šค๋Ÿฌ์šด ์–ธ์–ด ์ƒ์„ฑ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ์กด์žฌํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๋ชจ์ˆœ๋˜๋Š” ์ •๋ณด๋ฅผ โ€œํ™˜๊ฐโ€ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๋ฌธ์ œ๊ฐ€ ์ง€์†์ ์œผ๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์‚ฌ์‹ค ๊ฒ€์ฆ ์ ‘๊ทผ๋ฒ•์€ ์ฃผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์ด๋ฉฐ, ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ž…๋ ฅ(์˜ˆ: ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ)์—์„œ๋Š” ๊ฒ€์ฆ ์ •ํ™•๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ๋™์‹œ์— ํ™œ์šฉํ•˜๋Š” ๊ฒ€์ฆ ์ฒด๊ณ„๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. 2. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์กฐ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ธ์ฝ”๋” : CLIPยทViLTยทFlamingo ๋“ฑ ์ตœ์‹  ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์‚ฌ์ „ํ•™์Šต ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ํ…์Šค

Framework Model
No Image

Multi-Region Matrix Interpolation for Dynamic Analysis of Aperiodic Structures under Large Model Parameter Perturbations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋™์  ๋ฉ”ํƒ€๋ฌผ์งˆ ์„ค๊ณ„ ์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ(๋‘๊ป˜, ์žฌ๋ฃŒ, ๊ธฐํ•˜ํ•™ ๋“ฑ)์˜ ๋Œ€๊ทœ๋ชจ ๋ณ€๋™์ด ์„ค๊ณ„ ๊ณต๊ฐ„์„ ํฌ๊ฒŒ ํ™•์žฅํ•œ๋‹ค. ์ „ํ†ต์ ์ธ FE ํ•ด์„์€ ๋งค๋ฒˆ ๋ฉ”์‰ฌ ์žฌ์ƒ์„ฑยท์žฌ์กฐ๋ฆฝ์ด ํ•„์š”ํ•ด ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. Craigโ€‘Bampton ๋ชจ๋‹ฌ ์ถ•์†Œ ๋Š” ๊ตฌ์กฐ์˜ ์ €์ฐจ ๋™์  ๊ฑฐ๋™์„ ํšจ์œจ์ ์œผ๋กœ ํฌ์ฐฉํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ•˜๋ฉด ๋™์ผํ•œ ๋ชจ๋“œ ์ง‘ํ•ฉ์„ ๊ณต์œ ํ•˜๊ธฐ ์–ด๋ ค์›Œ ๋ณด๊ฐ„ ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง„๋‹ค. 2. ๊ธฐ์กด ๋งคํŠธ๋ฆญ์Šค ๋ณด๊ฐ„ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ ๊ณตํ†ต ๋ชจ๋‹ฌ ํˆฌ์˜ ์„ ์ „์ œ๋กœ ํ•˜๋ฏ€๋กœ, ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€๋™์ด ํด์ˆ˜๋ก ์›๋ž˜ ๋ชจ๋“œ์™€ ์ƒˆ๋กœ์šด ๋ชจ๋“œ ์‚ฌ์ด์˜ ์ •ํ•ฉ์„ฑ์ด ๊ฐ์†Œํ•œ๋‹ค. ์ด๋Š”

Analysis Model
No Image

Multispecies inhomogeneous $t$-PushTASEP with general capacity

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ PushTASEP ์€ ์—ฌ๋Ÿฌ ์ž…์ž๊ฐ€ ์„œ๋กœ๋ฅผ ๋ฐ€์–ด๋‚ด๋ฉฐ ์žฅ๊ฑฐ๋ฆฌ ์ด๋™์„ ํ—ˆ์šฉํ•˜๋Š” TASEP์˜ ํ™•์žฅ์œผ๋กœ, ์ตœ๊ทผ ์–‘์ž๊ตฐ๋ก ๊ณผ ํ†ตํ•ฉ ํ™•๋ฅ (integrable probability) ๋ถ„์•ผ์—์„œ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ(

MATH-PH
No Image

MxDiffusion: A Physics-Aware Maxwells Law-Guided Diffusion Model Strategy for Inverse Photonic Metasurface Design

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ด‘ํ•™ ์—ญ์„ค๊ณ„ ๋Š” ์›ํ•˜๋Š” ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋งŒ์กฑํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ์ฐพ๋Š” ๋น„์„ ํ˜•ยท๋‹ค์ค‘ํ•ด ๋ฌธ์ œ์ด๋ฉฐ, ์ „ํ†ต์ ์ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์ด ํฌ๊ฒŒ ์†Œ์š”๋œ๋‹ค. ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•(VAE, GAN)์€ ์กฐ๊ฑด๋ถ€ ์ƒ์„ฑ ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๊ฑฐ๋‚˜ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ ์ด ๋ถ€์กฑํ•ด ๋ถˆ์•ˆ์ •ํ•œ ํ•™์Šตยท๋ชจ๋“œ ๋ถ•๊ดด ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ตœ๊ทผ ํ™•์‚ฐ ๋ชจ๋ธ(Diffusion Model) ์ด ์ด๋ฏธ์ง€ยท์‹ ํ˜ธ ์ƒ์„ฑ์—์„œ ๋›ฐ์–ด๋‚œ ํ’ˆ์งˆ๊ณผ ์•ˆ์ •์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ์ง€๋งŒ, ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•œ ์ง์ ‘์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋ถ€์กฑํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋ชฉ์  | ํ•ต์‹ฌ

Model Physics
No Image

Natural Building Blocks for Structured World Models: Theory, Evidence, and Scaling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ถ„์ ˆ๋œ ์—ฐ๊ตฌ ํ™˜๊ฒฝ : ํ˜„์žฌ ์„ธ๊ณ„ ๋ชจ๋ธ๋ง์€ ๊ฐ ์—ฐ๊ตฌํŒ€์ด ๋…์ž์ ์ธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์„ค๊ณ„ํ•ด ์„œ๋กœ ํ˜ธํ™˜์„ฑ์ด ๋‚ฎ๋‹ค. ์ด๋Š” ์žฌํ˜„์„ฑยท๋ˆ„์  ์ง€์‹ ๊ตฌ์ถ•์„ ์ €ํ•ดํ•œ๋‹ค. ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ ํ•„์š”์„ฑ : ๋”ฅ๋Ÿฌ๋‹์ด ํ‘œ์ค€ ๋ ˆ์ด์–ด์™€ ๋ชจ๋“ˆํ™”๋ฅผ ํ†ตํ•ด ๊ธ‰์†ํžˆ ๋ฐœ์ „ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, ์„ธ๊ณ„ ๋ชจ๋ธ๋ง์—๋„ โ€œ์ž์—ฐ์Šค๋Ÿฌ์šดโ€ ๊ธฐ๋ณธ ๊ตฌ์„ฑ ์š”์†Œ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋‘ ์ข…๋ฅ˜์˜ ๊ธฐ๋ณธ ํ™•๋ฅ  ๊ณผ์ • ์ด์‚ฐ ๊ณผ์ • โ†’ ๋…ผ๋ฆฌยท๊ธฐํ˜ธ, ์˜์‚ฌ๊ฒฐ์ • ํŠธ๋ฆฌ ๋“ฑ โ†’ HMM ์œผ๋กœ ๋ชจ๋ธ๋ง ์—ฐ์† ๊ณผ์ • โ†’ ๋ฌผ๋ฆฌยท๋™์—ญํ•™, ์—ฐ์† ์ƒํƒœ ์ „์ด โ†’ sLDS ๋กœ ๋ชจ๋ธ๋ง ๊ณ„์ธต์  ์กฐํ•ฉ : ์ด ๋‘

Model
No Image

Nested Sampling with Slice-within-Gibbs: Efficient Evidence Calculation for Hierarchical Bayesian Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Nested Sampling ์€ ๋ฒ ์ด์ง€์•ˆ ์ฆ๊ฑฐ๋ฅผ ์ง์ ‘ ์ถ”์ •ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ๋น„๊ต์— ๊ฐ•์ ์„ ๊ฐ€์ง€์ง€๋งŒ, ๊ณ ์ฐจ์›์—์„œ ์ œํ•œ๋œ ์‚ฌ์ „ ์ƒ˜ํ”Œ๋ง ์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๊ตฌํ˜„์€ ๋ธ”๋ž™๋ฐ•์Šค MCMC (ellipsoidal, slice ๋“ฑ) ๋ฅผ ์‚ฌ์šฉํ•ด ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. Gradientโ€‘๊ธฐ๋ฐ˜ ์ƒ˜ํ”Œ๋Ÿฌ(HMC, NUTS) ๊ฐ€ ๊ณ ์ฐจ์›์—์„œ ํšจ์œจ์ ์ด์ง€๋งŒ, ๊ฐ€๋Šฅ๋„ ์ œ์•ฝ ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ณ€ํ˜•์€ ์•„์ง ๋ฏธ์„ฑ์ˆ™ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ€๋Šฅ๋„ ๊ตฌ์กฐ๊ฐ€ ๋ธ”๋กโ€‘๋ถ„ํ•ด ๊ฐ€๋Šฅํ•œ ๊ณ„์ธต ๋ชจ๋ธ ์— ํŠนํ™”๋œ ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์ด ์ ˆ์‹คํžˆ ํ•„์š”ํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ์š”์†Œ

Statistics Model
No Image

Neural Implicit Representations for 3D Synthetic Aperture Radar Imaging

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ SAR 3D ์žฌ๊ตฌ์„ฑ์˜ ํ•œ๊ณ„ : ๊ณ ํ•ด์ƒ๋„ 3D SAR ์ด๋ฏธ์ง€๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐฉ์œ„(azimuth)์™€ ๊ณ ๋„(elevation) ๊ฐ๋„๊ฐ€ ๋ชจ๋‘ ์ด˜์ด˜ํžˆ ์ƒ˜ํ”Œ๋ง๋˜์–ด์•ผ ํ•œ๋‹ค. ์‹ค์ œ ๋ฐ์ดํ„ฐ์…‹(GOTCHA ๋“ฑ)์€ ๊ณ ๋„ ์ƒ˜ํ”Œ๋ง์ด ํฌ์†Œํ•˜๊ณ  ๋น„๊ท ์ผํ•ด, ์ „ํ†ต์ ์ธ 3D ์—ญํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ ๋ฐฉ์‹์€ ์‹ฌ๊ฐํ•œ ๋ณ„๋„(aliased)์™€ ์žก์Œ ์•„ํ‹ฐํŒฉํŠธ๋ฅผ ๋งŒ๋“ ๋‹ค. ์ „ํ†ต์  ์ •๊ทœํ™” ๊ธฐ๋ฒ• : ํฌ์†Œ์„ฑ, ๊ฐ๋„ ์ง€์†์„ฑ(persistence), ์ˆ˜์ง ๊ตฌ์กฐ ๊ฐ€์ • ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋„์ž…ํ–ˆ์ง€๋งŒ, ๋ณต์žกํ•œ ๋ฌผ์ฒด์˜ ๋‚ด๋ถ€ ๋ฐ˜์‚ฌยท๋‹ค์ค‘ ์‚ฐ๋ž€์„ ์ถฉ๋ถ„ํžˆ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2.

Electrical Engineering and Systems Science

< Category Statistics (Total: 5056) >

Electrical Engineering and Systems Science
102
General
4147
General Relativity
3
HEP-EX
4
HEP-PH
3
HEP-TH
4
MATH-PH
6
Nonlinear Sciences
2
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut