KOINEU Logo
HN-MVTS: HyperNetwork-based Multivariate Time Series Forecasting

HN-MVTS: HyperNetwork-based Multivariate Time Series Forecasting

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹ค๋ณ€๋Ÿ‰ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ์€ ๊ฐ ์ฑ„๋„(๋ณ€์ˆ˜) ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์–ด๋–ป๊ฒŒ ๋ชจ๋ธ๋งํ•˜๋А๋ƒ๊ฐ€ ํ•ต์‹ฌ์ด๋‹ค. ์ฑ„๋„โ€‘๋…๋ฆฝ ๋ชจ๋ธ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ์ ์–ด ๊ณผ์ ํ•ฉ ์œ„ํ—˜์ด ๋‚ฎ์ง€๋งŒ, ๋ณ€์ˆ˜ ๊ฐ„ ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ๋†“์นœ๋‹ค. ์ฑ„๋„โ€‘์ข…์† ๋ชจ๋ธ ์€ ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌ์ฐฉํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ ํญ์ฆ์œผ๋กœ ์ผ๋ฐ˜ํ™”๊ฐ€ ์–ด๋ ค์›Œ์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋”œ๋ ˆ๋งˆ๋ฅผ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ดํผ๋„คํŠธ์›Œํฌ ๋ฅผ ํ™œ์šฉํ•ด ๋ฐ์ดํ„ฐโ€‘ํŠนํ™” ๊ฐ€์ค‘์น˜๋ฅผ ๋™์ ์œผ๋กœ ์ƒ์„ฑํ•จ์œผ๋กœ์จ, ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์ฑ„๋„ ๊ฐ„ ๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•˜๊ณ ์ž ํ•จ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด 1. ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์ž„๋ฒ ๋”ฉ ํ–‰๋ ฌ ๊ฐ ์‹œ๊ณ„์—ด ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ณ ์ •

Network
How Similar Are Grokipedia and Wikipedia? A Multi-Dimensional Textual and Structural Comparison

How Similar Are Grokipedia and Wikipedia? A Multi-Dimensional Textual and Structural Comparison

1. ์—ฐ๊ตฌ ์„ค๊ณ„ ๋ฐ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | | | | | ํ‘œ๋ณธ | ์˜์–ด ์œ„ํ‚ค๋ฐฑ๊ณผ ์ƒ์œ„ 20,000 ํŽธ์ง‘๋œ ํŽ˜์ด์ง€ ์ค‘ 17,790๊ฐœ๋ฅผ Grokipedia์™€ 1:1 ๋งค์นญ | | ๋งค์นญ ๊ธฐ์ค€ | ๋™์ผํ•œ ์ œ๋ชฉยท์ฃผ์ œ, URL ๊ตฌ์กฐ, ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ(ํŽ˜์ด์ง€ ID) ๊ธฐ๋ฐ˜ ์ž๋™ ๋งคํ•‘ ํ›„ ์ˆ˜๋™ ๊ฒ€์ฆ | | ์‹œ์  | 2024๋…„ 11์›” ๊ธฐ์ค€ ์ตœ์‹  ์Šค๋ƒ…์ƒท ์‚ฌ์šฉ(์œ„ํ‚ค๋ฐฑ๊ณผ) ๋ฐ Grokipedia ๊ณต๊ฐœ API(2024๋…„ 10์›”) | 2. ์ธก์ • ์ง€ํ‘œ | ์ฐจ์› | ์ง€ํ‘œ | ์„ค๋ช… | | | | | | ์–ดํœ˜ยท๋ฌธ์ฒด | Lexical Richness (Typeโ€‘T

No Image

HyperD: Hybrid Periodicity Decoupling Framework for Traffic Forecasting

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ณตํ•ฉ ๊ณต๊ฐ„โ€‘์‹œ๊ฐ„ ์˜์กด์„ฑ : ๋„๋กœ ๋„คํŠธ์›Œํฌ๋Š” ๋น„์ •ํ˜• ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์ด๋ฉฐ, ๊ตํ†ต ํ๋ฆ„์€ ์ธ์ ‘ ๋„๋กœ์™€ ์›๊ฑฐ๋ฆฌ ๋„๋กœ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ํฌ๊ฒŒ ์ขŒ์šฐ๋œ๋‹ค. ๊ธฐ์กด GNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์ด ๋ณต์žก์„ฑ์„ ์–ด๋А ์ •๋„ ํฌ์ฐฉํ•˜์ง€๋งŒ, ์ฃผ๊ธฐ์„ฑ(์ผยท์ฃผ๊ธฐ)๊ณผ ๋น„์ฃผ๊ธฐ์„ฑ(์‚ฌ๊ณ ยท๋‚ ์”จ) ํ˜ผ์žฌ ์ƒํ™ฉ์—์„œ๋Š” ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋œ๋‹ค. ๋‹ค์ค‘ ์Šค์ผ€์ผ ์ฃผ๊ธฐ vs. ๋น„์ฃผ๊ธฐ ๋ณ€๋™ : ์ธ๊ฐ„ ํ™œ๋™์— ๊ธฐ๋ฐ˜ํ•œ ์ฃผ๊ธฐ ํŒจํ„ด์€ ์ €์ฃผํŒŒ ์„ฑ๋ถ„์— ํ•ด๋‹นํ•˜๊ณ , ๊ธ‰์ž‘์Šค๋Ÿฌ์šด ์‚ฌ๊ฑด์€ ๊ณ ์ฃผํŒŒ ์„ฑ๋ถ„์— ํ•ด๋‹นํ•œ๋‹ค. ์ด๋ฅผ ๋™์ผํ•œ ๋ชจ๋ธ์— ํ˜ผํ•ฉํ•ด ํ•™์Šตํ•˜๋ฉด ๋‘ ํŒจํ„ด์ด ์„œ๋กœ ๊ฐ„์„ญํ•ด ํ‘œํ˜„๋ ฅ์ด ์ œํ•œ๋œ๋‹ค. 2. ํ•ต์‹ฌ

Framework
No Image

Instability of two-pulse periodic waves with long wavelength in some Hamiltonian PDEs

** ๋ณธ ์—ฐ๊ตฌ๋Š” Kortewegโ€‘deโ€ฏVries(KdV) ๋ฐฉ์ •์‹์˜ ์ค€์„ ํ˜• ์ผ๋ฐ˜ํ™”์™€ ์••์ถ•์„ฑ ์œ ์ฒด์˜ Eulerโ€‘Korteweg ์‹œ์Šคํ…œ(๋ผ๊ทธ๋ž‘์ฃผยท์˜ค์ผ๋Ÿฌ ์ขŒํ‘œ ๋ชจ๋‘ ํฌํ•จ)์„ ํฌํ•จํ•˜๋Š” ํ•ด๋ฐ€ํ† ๋‹ˆ์•ˆ PDE๋“ค์˜ ๋‘ ํŽ„์Šค ์ฃผ๊ธฐํŒŒ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๊ฐ ์ฃผ๊ธฐ ๊ตฌ๊ฐ„์— ๋ฐ์€ ์†”๋ฆฌํ†ค(๋ฐ์€ ํŒŒ๋™)๊ณผ ์–ด๋‘์šด ์†”๋ฆฌํ†ค(์Œ์˜ ํŒŒ๋™)์ด ๊ฐ๊ฐ ์ˆ˜๋ ดํ•˜๋Š” ํ˜•ํƒœ์˜ ํŒŒ๋™์„ โ€˜๋‘ ํŽ„์Šค ์ฃผ๊ธฐํŒŒโ€™๋ผ ์ •์˜ํ•˜๊ณ , ํŒŒ์žฅ(์ฃผ๊ธฐ)์ด ์ถฉ๋ถ„ํžˆ ํด ๋•Œ ์ด ํŒŒ๋™์ด **์ŠคํŽ™ํŠธ๋Ÿผ์ ์œผ๋กœ ๋ถˆ์•ˆ์ •**ํ•จ์„ ์ฆ๋ช…ํ•œ๋‹ค. ๋ถˆ์•ˆ์ •์„ฑ ์ฆ๋ช…์€ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ๋‹ค. 1. **์•ก์…˜ ์ ๋ถ„์˜ ํ—ค์‹œ์•ˆ ํ–‰๋ ฌ**์— ๋Œ€

Mathematics
Integrating Temporal and Structural Context in Graph Transformers for Relational Deep Learning

Integrating Temporal and Structural Context in Graph Transformers for Relational Deep Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ทธ๋ž˜ํ”„ ๋ฐ์ดํ„ฐ์˜ ์ด์ค‘์„ฑ : ํ˜„์‹ค ์„ธ๊ณ„์˜ ๊ทธ๋ž˜ํ”„๋Š” ์ •์ ์ธ ์—ฐ๊ฒฐ ๊ตฌ์กฐ์™€ ๋™์‹œ์— ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ์†์„ฑ์„ ๊ฐ€์ง„๋‹ค(์˜ˆ: ์‚ฌ์šฉ์ž ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ, ๊ตํ†ต ๋„คํŠธ์›Œํฌ์˜ ํ๋ฆ„). ๊ธฐ์กด GNN์€ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์ž˜ ํฌ์ฐฉํ•˜์ง€๋งŒ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ์‹œ๊ณ„์—ด ๋ชจ๋ธ์€ ๊ทธ๋ž˜ํ”„ ํ† ํด๋กœ์ง€๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠธ๋žœ์Šคํฌ๋จธ์˜ ์žฅ์  : ์ „์—ญ์ ์ธ Selfโ€‘Attention ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๊ฐ•์ ์ด ์žˆ๋‹ค. ์ด๋ฅผ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๋ฉด ๋…ธ๋“œ ๊ฐ„ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ๊ตฌ์„ฑ ์š”

Learning
No Image

Inter-Agent Trust Models: A Comparative Study of Brief, Claim, Proof, Stake, Reputation and Constraint in Agentic Web Protocol Design-A2A, AP2, ERC-8004, and Beyond

1. ์‹ ๋ขฐ ๋ชจ๋ธ 6๊ฐ€์ง€์˜ ํ•ต์‹ฌ ํŠน์ง• ๋ฐ ํ•œ๊ณ„ | ๋ชจ๋ธ | ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜ | ์ฃผ์š” ๊ฐ€์ • | ๋Œ€ํ‘œ ํ”„๋กœํ† ์ฝœ ์ ์šฉ | ์ฃผ์š” ์ทจ์•ฝ์  (LLM ํŠน์ˆ˜) | | | | | | | | Brief | ์ž์ฒดยท์ œ3์ž ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์ฃผ์žฅ(์˜ˆ: DID, ์ธ์ฆ์„œ) | ์ฃผ์žฅ ์ž์ฒด๊ฐ€ ๋ณ€์กฐ๋˜์ง€ ์•Š์Œ | A2A ยท ERCโ€‘8004 (Identity Layer) | LLM์ด ์ฃผ์žฅ์— ๊ธฐ๋ฐ˜ํ•œ ํ™˜๊ฐ ์„ ์ƒ์„ฑ โ†’ ๊ฑฐ์ง“ ์ฃผ์žฅ ์ „ํŒŒ | | Claim | ์—์ด์ „ํŠธ๊ฐ€ ์Šค์Šค๋กœ ์„ ์–ธํ•˜๋Š” ๋Šฅ๋ ฅยท์ •์ฒด์„ฑ (AgentCard) | ์„ ์–ธ์„ ์‹ ๋ขฐํ•œ๋‹ค๋Š” ์ „์ œ | AP2 (AgentCard) | ํ”„

Model
No Image

Interaction as Intelligence Part II: Asynchronous Human-Agent Rollout for Long-Horizon Task Training

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์žฅ๊ธฐ ๊ณผ์ œ ํ•™์Šต์˜ ๋‚œ์ œ : LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ๋‹จ๊ธฐ ๋ชฉํ‘œ์—์„œ๋Š” ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ๋ฉฐ์น ยท๋ช‡ ์ฃผ์— ๊ฑธ์นœ ๋ณตํ•ฉ ์ž‘์—…์—์„œ๋Š” โ€œ๋“œ๋ฆฌํ”„ํŠธโ€์™€ โ€œ์˜ค๋ฅ˜ ์ „ํŒŒโ€๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ ํ–‰๋™ ๋ณต์ œ : ์ธ๊ฐ„์ด ๋ชจ๋“  ํ–‰๋™์„ ๋ผ๋ฒจ๋งํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๋น„์šฉยท์‹œ๊ฐ„์ด ํญ์ฆํ•œ๋‹ค. ๊ฒฐ๊ณผโ€‘์ค‘์‹ฌ ์ƒ˜ํ”Œ๋ง : ์„ฑ๊ณต ๊ถค์ ์ด ํฌ๊ท€ํ•ด ํ•™์Šต ์‹ ํ˜ธ๊ฐ€ ๋ถ€์กฑํ•˜๊ณ , ํƒ์ƒ‰ ๊ณผ์ •์—์„œ ์‰ฝ๊ฒŒ ๋ถ•๊ดดํ•œ๋‹ค. 2. Apollo ํ”„๋ ˆ์ž„์›Œํฌ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์žฅ์  | | | | | | ๋น„๋™๊ธฐ ์ธ๊ฐ„ ๊ฐ€์ด๋“œ | ์—์ด์ „ํŠธ๊ฐ€ โ€œ์ž˜๋ชป๋œ ๋ฐฉํ–ฅโ€์œผ๋กœ ํ๋ฅผ

No Image

Introducing the b-value: combining unbiased and biased estimators from a sensitivity analysis perspective

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ํŽธํ–ฅยท๋ฌดํŽธํ–ฅ ์ถ”์ •๊ธฐ์˜ ๊ณต์กด : RCT์™€ ๊ด€์ฐฐ์—ฐ๊ตฌ, OLS์™€ IV ๋“ฑ์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ์ƒํ™ฉ์„ ๊ตฌ์ฒด์ ์ธ ์˜ˆ์‹œ(์˜ˆ 1.1, 1.2)๋กœ ์ œ์‹œํ•œ๋‹ค. ์ ์ถ”์ • vs. ์ถ”๋ก  : ๊ธฐ์กด ๋ฌธํ—Œ์€ ํŽธํ–ฅ์ด ์ž‘์„ ๋•Œ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•˜๋Š” ์ ์ถ”์ •์— ์ง‘์ค‘ํ–ˆ์ง€๋งŒ, ํŽธํ–ฅ์ด ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๊ฒฝ์šฐ ์‹ ๋ขฐ๊ตฌ๊ฐ„ยท๊ฐ€์„ค๊ฒ€์ • ์„ ์–ด๋–ป๊ฒŒ ์ˆ˜ํ–‰ํ• ์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ๋ฏผ๊ฐ๋„ ๋ถ„์„ ํ”„๋ ˆ์ž„์›Œํฌ ํŽธํ–ฅ์„ ํŒŒ๋ผ๋ฏธํ„ฐํ™” : (|Delta|/sigma 0 le b) ๋กœ ์ƒ๋Œ€ ํŽธํ–ฅ์„ ์ œํ•œํ•˜๊ณ , (b) ๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์‹ ๋ขฐ๊ตฌ๊ฐ„์„ ์žฌ๊ณ„

Statistics Analysis
Investigating Intra-Abstraction Policies For Non-exact Abstraction Algorithms

Investigating Intra-Abstraction Policies For Non-exact Abstraction Algorithms

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ MCTS์˜ ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ ๋ฌธ์ œ : MCTS๋Š” ํƒ์ƒ‰ ๋‹จ๊ณ„์—์„œ ๋งŽ์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ํŠนํžˆ ๋ณต์žกํ•œ ๊ฒŒ์ž„์ด๋‚˜ ์—ฐ์†์ ์ธ ์ƒํƒœ๊ณต๊ฐ„์—์„œ๋Š” ๋น„ํšจ์œจ์ ์ด๋‹ค. ์ถ”์ƒํ™”์˜ ์—ญํ•  : ์ƒํƒœยทํ–‰๋™์„ ์ถ”์ƒํ™”ํ•˜๋ฉด ์—ฌ๋Ÿฌ ๊ตฌ์ฒด์ ์ธ ๋…ธ๋“œ๊ฐ€ ํ•˜๋‚˜์˜ ์ถ”์ƒ ๋…ธ๋“œ์— ๋งคํ•‘๋˜์–ด ๋ฐฉ๋ฌธ ํšŸ์ˆ˜์™€ ๋ณด์ƒ์ด ๊ณต์œ ๋œ๋‹ค. ์ด๋Š” UCB ๊ณ„์‚ฐ ์‹œ โ€œ๊ฐ€์ƒโ€ ๋ฐฉ๋ฌธ ์ˆ˜๋ฅผ ๋Š˜๋ ค ํƒ์ƒ‰์„ ๊ฐ€์†ํ™”ํ•œ๋‹ค. ๋ฏธํ•ด๊ฒฐ ๋ฌธ์ œ : ๋™์ผ ๋ถ€๋ชจ๋ฅผ ๊ฐ€์ง„ ์—ฌ๋Ÿฌ ํ–‰๋™์ด ๊ฐ™์€ ์ถ”์ƒ ๋…ธ๋“œ์— ํฌํ•จ๋  ๊ฒฝ์šฐ, ์ด๋“ค ํ–‰๋™์€ ๋™์ผํ•œ UCB ๊ฐ’์„ ๊ฐ–๊ฒŒ ๋œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ๋ฌด์‹œํ•˜๊ณ  ๋ฌด์ž‘์œ„๋กœ ์„ ํƒํ–ˆ์œผ๋ฉฐ,

Invisible Triggers, Visible Threats! Road-Style Adversarial Creation Attack for Visual 3D Detection in Autonomous Driving

Invisible Triggers, Visible Threats! Road-Style Adversarial Creation Attack for Visual 3D Detection in Autonomous Driving

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์‹œ๊ฐ 3D ํƒ์ง€์˜ ์ค‘์š”์„ฑ : ๋ผ์ด๋‹ค ๋Œ€๋น„ ์ €๋น„์šฉยท๊ณ ํ•ด์ƒ๋„ RGB ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ ํƒ์ง€๋Š” ์ƒ์šฉ AD ์‹œ์Šคํ…œ์— ๋„๋ฆฌ ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋‹ค. ์ ๋Œ€์  ์ทจ์•ฝ์„ฑ : ๊ธฐ์กด DNN ๊ธฐ๋ฐ˜ ํƒ์ง€๋Š” ์ž‘์€ ํ”ฝ์…€ ๋ณ€ํ˜•์—๋„ ํฌ๊ฒŒ ์˜ค์ž‘๋™ํ•œ๋‹ค๋Š” ์ ์ด ์•ˆ์ „์„ฑ ์œ„ํ˜‘์œผ๋กœ ๋Œ€๋‘๋จ. ์‹ค์ œ ๊ณต๊ฒฉ ์‹œ๋‚˜๋ฆฌ์˜ค ํ•„์š”์„ฑ : ์‹คํ—˜์‹ค ์ˆ˜์ค€์ด ์•„๋‹Œ, ์‹ค์ œ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ ๋ˆˆ์— ๋„์ง€ ์•Š๋Š” ๊ณต๊ฒฉ์ด ์š”๊ตฌ๋œ๋‹ค. 2. ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„์  | ๊ตฌ๋ถ„ | ๊ธฐ์กด ํฌ์Šคํ„ฐ ๊ณต๊ฒฉ | AdvRoad (๋ณธ ๋…ผ๋ฌธ) | | | | | | ์™ธ๊ด€ | ์ธ์œ„์ , ๋ˆˆ์— ๋” | ๋„๋กœ์™€ ์œ ์‚ฌํ•œ ์ž์—ฐ์Šค๋Ÿฌ์šด ํ…์Šค์ฒ˜

Detection
No Image

Is there a relationship between Mean Opinion Score (MOS) and Just Noticeable Difference (JND)?

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ MOS์˜ ํ•œ๊ณ„ : ์ „ํ†ต์ ์ธ ACR/DCR ๋ฐฉ์‹์€ โ€œBadโ€๋ถ€ํ„ฐ โ€œExcellentโ€๊นŒ์ง€ ์ „ ๊ตฌ๊ฐ„์„ ํ‰๊ฐ€ํ•˜์ง€๋งŒ, ๊ณ ํ’ˆ์งˆ ๊ตฌ๊ฐ„(4.5 ~ 5.0)์—์„œ๋Š” ์ ์ˆ˜ ์ฐจ์ด๊ฐ€ ๋ฏธ๋ฏธํ•ด ์ธ์ฝ”๋”ฉ ์ตœ์ ํ™”์— ์ถฉ๋ถ„ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. JND์˜ ๋“ฑ์žฅ : JND๋Š” โ€œ์ธ์‹ ๊ฐ€๋Šฅํ•œ ์ตœ์†Œ ์ฐจ์ดโ€๋ฅผ ์ •์˜ํ•จ์œผ๋กœ์จ, ํŠนํžˆ ํ”„๋ฆฌ๋ฏธ์—„ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ค‘์š”ํ•œ ํผ์…‰์ถ”์–ผ ํˆฌ๋ช…์„ฑ ์„ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. ์ด๋Š” ๋น„ํŠธ๋ ˆ์ดํŠธ ์‚ฌ๋‹ค๋ฆฌ ์„ค๊ณ„ ์‹œ โ€œ๋” ๋†’์€ ๋น„ํŠธ๋ ˆ์ดํŠธ๊ฐ€ ์‹ค์ œ๋กœ ๊ฐ€์‹œ์  ์ด๋“์„ ์ฃผ๋Š”๊ฐ€?โ€๋ฅผ ํŒ๋‹จํ•˜๋Š” ๊ธฐ์ค€์ด ๋œ๋‹ค. 2. ์‹คํ—˜ ์„ค๊ณ„ | ์š”์†Œ | ๋‚ด์šฉ | | | |

Image Processing Electrical Engineering and Systems Science
No Image

Iterated mutations of symmetric periodic algebras

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋Œ€์นญ ๋Œ€์ˆ˜์™€ ์ฃผ๊ธฐ์„ฑ : ๋Œ€์นญ ๋Œ€์ˆ˜๋Š” ๋น„ํ‡ดํ™”๋œ ๋Œ€์นญ ์ด์ค‘์„ ํ˜•ํ˜•์‹์„ ๊ฐ–๋Š” ์œ ํ•œ ์ฐจ์› ๋Œ€์ˆ˜์ด๋ฉฐ, ์ฃผ๊ธฐ์  ๋Œ€์ˆ˜๋Š” ์ž์ฒด ์ด์ค‘๋Œ€์ˆ˜(ฮ›โ€‘bimodule)๋กœ์„œ ์œ ํ•œ ์ฃผ๊ธฐ๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ๋‘ ์„ฑ์งˆ์„ ๋™์‹œ์— ๋งŒ์กฑํ•˜๋Š” ๋Œ€์ˆ˜๋Š” ๊ตฌ์กฐ๊ฐ€ ๋งค์šฐ ์ œํ•œ์ ์ด๋ฉด์„œ๋„ ํ’๋ถ€ํ•œ ์˜ˆ์‹œ(์˜ˆ: preprojective algebra, weighted surface algebra)๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์‹ค๋ง ๋ณ€์ด์™€ ํŒŒ์ƒ๋™ํ˜• : ์‹ค๋ง ๋ณ€์ด๋Š” ์‚ผ๊ฐ๋ฒ”์ฃผ(Kแต‡(ฮ›)) ์•ˆ์—์„œ tiltingโ€‘complex๋ฅผ ์ƒ์„ฑยท๋ณ€ํ˜•ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด๋ฉฐ, Rickard์˜ ์ด๋ก ์— ์˜ํ•ด ๋ณ€

Mathematics
No Image

Joint beamforming and mode optimization for multi-functional STAR-RIS-aided integrated sensing and communication networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ STARโ€‘RIS ๋Š” ๊ธฐ์กด ๋ฐ˜์‚ฌโ€‘์ „์šฉ RIS๊ฐ€ ๊ฐ–๋Š” ๋ฐ˜๊ตฌ ์ œํ•œ์„ ๋„˜์–ด ์ „๊ณต๊ฐ„(์ „์†ก + ๋ฐ˜์‚ฌ) ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•ด, ์‹ค๋‚ดยท์™ธ ์‚ฌ์šฉ์ž ๋™์‹œ ์„œ๋น„์Šค์— ์ตœ์ ์ด๋‹ค. ISAC ์€ 6G ํ•ต์‹ฌ ํŒจ๋Ÿฌ๋‹ค์ž„์œผ๋กœ, ํ•˜๋‚˜์˜ ํ•˜๋“œ์›จ์–ดยท์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ ํ†ต์‹ ๊ณผ ํ™˜๊ฒฝ ๊ฐ์ง€๋ฅผ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์™„์ „ํ•œ ์œ„์น˜/๋ฐฉํ–ฅ ์ •๋ณด ๋ฅผ ์ „์ œํ•˜๊ฑฐ๋‚˜, ๋‹จ์ผ ์ „์†ก ๋‹จ๊ณ„์—์„œ๋งŒ RIS ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋ฐฉํ–ฅ ์ถ”์ • ์˜ค์ฐจ ๊ฐ€ ๋ถˆ๊ฐ€ํ”ผํ•˜๊ณ , ํ”„๋กœํ† ์ฝœ ๋ ˆ๋ฒจ (์ค€๋น„โ€‘ํ†ต์‹  ๋‹จ๊ณ„) ์„ค๊ณ„๊ฐ€ ๋ฏธ๋น„ํ•˜๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์ฐจ

Network Electrical Engineering and Systems Science
No Image

LacaDM: A Latent Causal Diffusion Model for Multiobjective Reinforcement Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค๋ชฉํ‘œ ๊ฐ•ํ™”ํ•™์Šต(MORL) ์€ ์—ฌ๋Ÿฌ ๋ชฉํ‘œ๋ฅผ ๋™์‹œ์— ์ตœ์ ํ™”ํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๋ชฉํ‘œ ๊ฐ„ ์ƒ์ถฉ์ด ํ•„์—ฐ์ ์ด๋ฉฐ, ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์ตœ์  ์ •์ฑ…์ด ๋‹ฌ๋ผ์ง€๋Š” ๋™์  ์ ์‘ ๋ฌธ์ œ๊ฐ€ ํ•ต์‹ฌ์ด๋‹ค. ๊ธฐ์กด MORL ๋ฐฉ๋ฒ•๋“ค์€ Pareto ์ตœ์ ํ™” ํ˜น์€ ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฐ˜ ์Šค์นผ๋ผํ™” ์— ์˜์กดํ•˜์ง€๋งŒ, ๋Œ€๊ทœ๋ชจ ์—ฐ์†/์ด์‚ฐ ์ƒํƒœโ€‘ํ–‰๋™ ๊ณต๊ฐ„ ์—์„œ ์ผ๋ฐ˜ํ™”๊ฐ€ ์–ด๋ ค์›Œ ์‹ค์ œ ๋กœ๋ด‡ยท์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ ์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ์ž ์žฌ ์ธ๊ณผ ๊ตฌ์กฐ(Latent Causal Structure) ๋ฅผ ํ•™์Šตํ•ด ์‹œ๊ฐ„์  ์ธ๊ณผ๊ด€๊ณ„ ๋ฅผ ํŒŒ์•…ํ•จ์œผ๋กœ์จ, ์ •์ฑ…์ด ํ™˜๊ฒฝ ๋ณ€ํ™”์— ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•ด์•ผ

Model Learning
No Image

Learning Geometry: A Framework for Building Adaptive Manifold Models through Metric Optimization

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ฐฐ๊ฒฝ ์ „ํ†ต์  ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ๋”ฅ๋Ÿฌ๋‹ยท๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๊ณ ์ •๋œ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ(์˜ˆ: ์ธต ์ˆ˜, ์—ฐ๊ฒฐ ๋ฐฉ์‹)์™€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์„ ์ „์ œ๋กœ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์˜ ํ‘œํ˜„๋ ฅ์ด ๊ตฌ์กฐ์  ์ œ์•ฝ์— ์˜ํ•ด ์ œํ•œ๋  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐํ•˜ํ•™์  ๊ด€์  : ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ๋‚ด์žฌํ•˜๋Š” ๊ธฐํ•˜ํ•™(๊ฑฐ๋ฆฌ, ๊ณก๋ฅ  ๋“ฑ)์„ ์ง์ ‘ ํ•™์Šตํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์ด ๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๋ณด๋‹ค ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ์ตœ๊ทผ โ€˜๋ฉ”ํƒ€โ€‘๋Ÿฌ๋‹โ€™ยทโ€˜์‹ ๊ฒฝ ์•„ํ‚คํ…์ฒ˜ ํƒ์ƒ‰(NAS)โ€™ ๋ถ„์•ผ์™€ ์—ฐ๊ณ„๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฉ”ํŠธ๋ฆญ ํ…์„œ ์ตœ์ ํ™” : ๋งค๋‹ˆํด๋“œ ์œ„์— ์ •์˜๋œ ๋ฉ”ํŠธ๋ฆญ

Framework Model Learning
Learning Reconfigurable Representations for Multimodal Federated Learning with Missing Data

Learning Reconfigurable Representations for Multimodal Federated Learning with Missing Data

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์—ฐํ•ฉ ํ•™์Šต ์€ ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ์™€ ๋ถ„์‚ฐ ํ•™์Šต์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค์ง€๋งŒ, ์‹ค์ œ ์„œ๋น„์Šค์—์„œ๋Š” ํด๋ผ์ด์–ธํŠธ๋งˆ๋‹ค ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์™€ ํ”ผ์ฒ˜๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋ˆ„๋ฝ ๋˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ (โ‘  ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๊ฐ€ ๋‹ค๋ฅด์ง€๋งŒ ํ”ผ์ฒ˜๋Š” ์™„์ „, โ‘ก ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋Š” ๋™์ผํ•˜์ง€๋งŒ ํ”ผ์ฒ˜๊ฐ€ ๋ˆ„๋ฝ) ์ค‘ ํ•˜๋‚˜๋งŒ์„ ๊ฐ€์ •ํ•ด, ํ‘œํ˜„ ์ •๋ ฌ(Alignment) ๋ฌธ์ œ๋ฅผ ์ถฉ๋ถ„ํžˆ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ํด๋ผ์ด์–ธํŠธโ€‘์‚ฌ์ด๋“œ ์ž„๋ฒ ๋”ฉ(Embedding Controls) : ๊ฐ ํด๋ผ์ด์–ธํŠธ์˜ ๋ˆ„๋ฝ ํŒจํ„ด์„ ์ €์ฐจ์› ๋ฒกํ„ฐ๋กœ ํ•™์Šตํ•œ๋‹ค. ์ด ๋ฒกํ„ฐ๋Š” ๋กœ์ปฌ ๋„คํŠธ์›Œํฌ์˜

Learning Data
Learning with Locally Private Examples by Inverse Weierstrass Private Stochastic Gradient Descent

Learning with Locally Private Examples by Inverse Weierstrass Private Stochastic Gradient Descent

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ LDP์˜ ์žฅ์  : ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์•™ ๊ด€๋ฆฌ์ž ์—†์ด๋„ ๊ฐ ์‚ฌ์šฉ์ž๊ฐ€ ์ž์‹ ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋กœ์ปฌ์—์„œ ๋ฐ”๋กœ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ณดํ˜ธ ํ›„ ๊ณต๊ฐœ ๊ฐ€๋Šฅ. ๋น„๋Œ€ํ™”ํ˜•ยทํƒœ์Šคํฌโ€‘์•„๊ทธ๋…ธ์Šคํ‹ฑ ์š”๊ตฌ : ํ•œ ๋ฒˆ์˜ ๊ณต๊ฐœ๋งŒ์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ฏธ๋ž˜ ๋ถ„์„์— ์žฌ์‚ฌ์šฉํ•ด์•ผ ํ•จ. ํ•ต์‹ฌ ๋ฌธ์ œ : ๋น„๋Œ€ํ™”ํ˜• LDP๋Š” ๋…ธ์ด์ฆˆ(๊ฐ€์šฐ์‹œ์•ˆ, Randomized Response) ๋•Œ๋ฌธ์— ํ•™์Šต ๊ณผ์ •์— ํŽธํ–ฅ(bias) ๋ฅผ ๋„์ž…ํ•œ๋‹ค. ๊ธฐ์กด ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ LDP๋Š” ๋ฐ˜๋ณต ์งˆ์˜๋กœ ํŽธํ–ฅ์„ ์ค„์ผ ์ˆ˜ ์žˆ์ง€๋งŒ ์žฌ์‚ฌ์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. 2. ์ฃผ์š” ์•„์ด๋””์–ด โ€“ ๋ณ€ํ™˜ ์—ฐ์‚ฐ์ž ์‹œ๊ฐํ™” | ๋ฉ”์ปค๋‹ˆ์ฆ˜ | ํ”„๋ผ์ด๋ฒ„์‹œ ๋…ธ

Machine Learning Computer Science Learning
No Image

Localized kernel gradient correction for SPH simulations of water wave propagation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ SPH๋Š” ์ž…์ž ๊ธฐ๋ฐ˜ ๋ผ๊ทธ๋ž‘์ง€์•ˆ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ณต์žกํ•œ ์ž์œ ํ‘œ๋ฉด ํ๋ฆ„์„ ๋‹ค๋ฃจ๊ธฐ์— ์œ ๋ฆฌํ•˜์ง€๋งŒ, ๊ธฐ๋ณธ ์ปค๋„ ๋ฏธ๋ถ„์‹์ด ๋‚ฎ์€ ์ •ํ™•๋„์™€ ๋†’์€ ์ธ๊ณต ์ ์„ฑ(์ˆ˜์น˜ ์†Œ์‚ฐ)์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด์˜ ๊ณ ์ฐจ์› ์ปค๋„ ๋ณด์ •(์˜ˆ: Moving Least Squares, Reproducing Kernel Particle Method)์€ ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค์ง€๋งŒ, ๋ชจ๋“  ์ž…์ž์— ์ ์šฉํ•˜๋ฉด ์—ฐ์‚ฐ๋Ÿ‰์ด O(Nยฒ) ์ˆ˜์ค€์œผ๋กœ ๊ธ‰์ฆํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด: ๊ตญ๋ถ€์  ๋ณด์ • ์ ์šฉ ๋ฌผํŒŒ ์—ญํ•™์—์„œ ์—๋„ˆ์ง€ ์ „๋‹ฌ๊ณผ ํŒŒํ˜• ๋ณ€ํ˜•์ด ์ฃผ๋กœ ํŒŒ๋™ ์ „ํŒŒ ๋ฐฉํ–ฅ ๊ณผ ์ž์œ ํ‘œ๋ฉด ๊ทผ์ฒ˜ ์—์„œ

No Image

LongCat-Flash-Omni Technical Report

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ AI๋Š” ํ…์ŠคํŠธ, ์ด๋ฏธ์ง€, ๋น„๋””์˜ค, ์˜ค๋””์˜ค ๋“ฑ ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•ด ์ธ๊ฐ„ ์ˆ˜์ค€์˜ ์ธ์ง€๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ๊ธฐ์กด ๋Œ€ํ˜• ๋ชจ๋ธ๋“ค์€ ์ฃผ๋กœ ํ…์ŠคํŠธโ€‘์ค‘์‹ฌ(์˜ˆ: GPTโ€‘4, LLaMA) ํ˜น์€ ํŠน์ • ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ(์ด๋ฏธ์ง€โ€‘์ „์šฉ ๋น„์ „ ํŠธ๋žœ์Šคํฌ๋จธ)๋กœ ์ œํ•œ๋ผ, ์‹ค์‹œ๊ฐ„ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ƒํ˜ธ์ž‘์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ ์˜ค๋””์˜คโ€‘๋น„์ฃผ์–ผ ๋™์‹œ ์ฒ˜๋ฆฌ์™€ ์ €์ง€์—ฐ ์š”๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ํšŒ์˜, AR/VR, ๋กœ๋ด‡ ์ œ์–ด ๋“ฑ ํ˜„์žฅ ์‘์šฉ์— ํ•„์ˆ˜์ ์ด๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ์˜์˜ | | | | | | ์•„ํ‚คํ…์ฒ˜ | Shortcutโ€‘connected

No Image

Lyapunov Function-guided Reinforcement Learning for Flight Control

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ฐ•ํ™”ํ•™์Šต(RL)๊ณผ ์ „ํ†ต ์ œ์–ด์˜ ๊ฒฐํ•ฉ : ๊ธฐ์กด RL ๊ธฐ๋ฐ˜ ๋น„ํ–‰ ์ œ์–ด๋Š” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ํ–‰๋™์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๊ฑฐ๋‚˜ ์•ˆ์ „์„ฑ ๋ณด์žฅ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. Lyapunov ์•ˆ์ •์„ฑ ์ด๋ก  : ์ œ์–ด ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ณด์ฆํ•˜๊ธฐ ์œ„ํ•ด Lyapunov ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•๊ณผ RL์„ ๊ฒฐํ•ฉํ•˜๋ฉด, ํ•™์Šต ๊ณผ์ •์—์„œ๋„ ์•ˆ์ •์„ฑ์„ ์ง€์†์ ์œผ๋กœ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Lyapunov ํ•จ์ˆ˜ ์ฆ๊ฐ€๋Ÿ‰์„ ํ•™์Šต ๋ชฉํ‘œ์— ํฌํ•จ | ์ œ์–ด ์ž…๋ ฅ์ด Lyapunov ํ•จ์ˆ˜ ๊ฐ’์„

Learning
Machine-Learning Accelerated Calculations of Reduced Density Matrices

Machine-Learning Accelerated Calculations of Reduced Density Matrices

| ๊ตฌ๋ถ„ | ํ•ต์‹ฌ ๋‚ด์šฉ | ์˜์˜ ๋ฐ ํ•œ๊ณ„ | | | | | | ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ | $n$โ€‘RDM์€ ๋‹ค์ฒด ์–‘์ž ์‹œ์Šคํ…œ์˜ ์ƒ๊ด€ ์ •๋ณด๋ฅผ ์••์ถ•ํ•˜์ง€๋งŒ, ์ „ํ†ต์ ์ธ ๊ณ„์‚ฐ(์˜ˆ: ์ •ํ™•ํ•œ ํŒŒ๋™ํ•จ์ˆ˜, DMFT, QMC ๋“ฑ)์€ ์‹œ์Šคํ…œ ๊ทœ๋ชจ๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ง€์ˆ˜์ ์œผ๋กœ ๋ณต์žกํ•ด์ง„๋‹ค. | ๊ฐ•์ƒ๊ด€ ๋ฌผ์งˆ(๊ณ ์˜จ ์ดˆ์ „๋„, Mott ์ ˆ์—ฐ์ฒด ๋“ฑ)์˜ ์‹ค์šฉ์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | $n$โ€‘RDM์ด BZ ์ „์—ญ์—์„œ ๋ถ€๋“œ๋Ÿฌ์šด(์—ฐ์†์ ์ธ) ํ•จ์ˆ˜๋ผ๋Š” ๋ฌผ๋ฆฌ์  ์‚ฌ์‹ค์„ ์ด์šฉํ•ด ๋ณด๊ฐ„ ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ž‘์€ ๊ฒฉ์ž(6ร—6, 8ร—8)์—์„œ ํ•™์Šตํ•œ NN์„ ํฐ ๊ฒฉ์ž(30ร—30~50ร—50)

Learning
No Image

MathSE: Improving Multimodal Mathematical Reasoning via Self-Evolving Iterative Reflection and Reward-Guided Fine-Tuning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ˆ˜ํ•™ ์ถ”๋ก ์˜ ๋‚œ์  : ์ด๋ฏธ์ง€์™€ ํ…์ŠคํŠธ๊ฐ€ ๊ฒฐํ•ฉ๋œ ๋ฌธ์ œ์—์„œ ์ˆ˜์‹ ์ธ์‹, ๋…ผ๋ฆฌ์  ๋‹จ๊ณ„ ๊ตฌ๋ถ„, ๊ทธ๋ฆฌ๊ณ  ์ตœ์ข… ํ•ด๋‹ต ๋„์ถœ๊นŒ์ง€ ์ผ๊ด€๋œ ํ๋ฆ„์„ ์œ ์ง€ํ•˜๊ธฐ ์–ด๋ ค์›€. ๊ธฐ์กด ํŒŒ์ธํŠœ๋‹์˜ ํ•œ๊ณ„ : ๊ต์‚ฌ ๋ชจ๋ธ์ด ๋งŒ๋“  ์ •์  ๋ฐ์ดํ„ฐ์…‹์€ โ€œ์ •๋‹ตโ€๊ณผ โ€œ์ •๋‹ต ์ถ”๋ก  ๊ฒฝ๋กœโ€๋งŒ์„ ์ œ๊ณต, ๋ชจ๋ธ์ด ์Šค์Šค๋กœ ์˜ค๋ฅ˜๋ฅผ ํƒ์ƒ‰ยท์ˆ˜์ •ํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ถ€์žฌ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Selfโ€‘Evolving Iterative Reflection | ๋‹จ๊ณ„ | ์„ค๋ช… | ์—ญํ•  | | | | | | Inference | ํ˜„์žฌ ๋ชจ๋ธ์ด ์ฃผ์–ด์ง„ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ž…๋ ฅ์— ๋Œ€ํ•ด

Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity

Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์—ฐ์‡„ ์‚ฌ๊ณ (CoT)์˜ ์—ญํ•  : CoT๋Š” LLM์ด ๋ณต์žกํ•œ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•  ๋•Œ โ€œ์ƒ๊ฐ ๊ณผ์ •์„ ๊ธ€๋กœ ์ ๋Š”โ€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ, ์•ˆ์ „์„ฑยท์ •๋ ฌ์„ฑ ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋‚ด๋ถ€ ์ƒํƒœ๋ฅผ ์™ธ๋ถ€์—์„œ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์ผํ•œ ์ฐฝ๊ตฌ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์ถฉ์‹ค๋„(Faithfulness)์˜ ๊ธฐ์กด ์ธก์ • ํ•œ๊ณ„ : ํ˜„์žฌ๋Š” โ€œํžŒํŠธ์— ๋Œ€ํ•œ ๋‹ต๋ณ€ ๋ณ€ํ™”โ€๋ผ๋Š” ์‚ฌ๊ฑด ๊ธฐ๋ฐ˜ ํ”„๋ก์‹œ๋งŒ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ๋ณ€ํ™”๊ฐ€ ์—†์„ ๋•Œ (์ฆ‰, ๋ชจ๋ธ์ด ๋™์ผํ•œ ๋‹ต์„ ์œ ์ง€) ์ •๋ณด๋ฅผ ๋†“์น˜๋ฉฐ, ํžŒํŠธ์™€ ๋ฌด๊ด€ํ•œ ์˜ค๋ฅ˜(์˜ˆ: ๋ถˆํ•„์š”ํ•œ ๋…ผ๋ฆฌ ์ „๊ฐœ, ๋ˆ„๋ฝ๋œ ์ „์ œ)๋„ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ์ƒ์„ธ์„ฑ(Verbosity)

No Image

MedRECT: A Medical Reasoning Benchmark for Error Correction in Clinical Texts

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM์˜ ์˜๋ฃŒ ์ ์šฉ ์€ ์ง„๋‹จ ๋ณด์กฐ, ์ž„์ƒ ๊ธฐ๋ก ์š”์•ฝ, ํ™˜์ž ์ƒ๋‹ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ์ง€๋งŒ, ์˜ค๋ฅ˜ ๊ฒ€์ฆยท์ˆ˜์ • ๋Šฅ๋ ฅ ์ด ๋ถ€์กฑํ•˜๋ฉด ํ™˜์ž ์•ˆ์ „์— ์ง์ ‘์ ์ธ ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์˜์–ด ๋ฐ์ดํ„ฐ ์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ๋น„์˜์–ด๊ถŒ(ํŠนํžˆ ์ผ๋ณธ์–ด)์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ํ‰๊ฐ€ ๊ธฐ์ค€ ๋ถ€์žฌ๊ฐ€ ํฐ ์žฅ์• ๋ฌผ์ด์—ˆ๋‹ค. 2. MedRECT ๋ฒค์น˜๋งˆํฌ ์„ค๊ณ„ | ์š”์†Œ | ์„ค๋ช… | | | | | ๋ฐ์ดํ„ฐ ์ถœ์ฒ˜ | ์ผ๋ณธ ์˜์‚ฌ ๊ตญ๊ฐ€์‹œํ—˜(JMLE) โ†’ ์ž๋™ํ™”๋œ ์˜ค๋ฅ˜ ์‚ฝ์ž…ยท๋ผ๋ฒจ๋ง ํŒŒ์ดํ”„๋ผ์ธ<br>์˜์–ด ๋ฒ„์ „: JMLE์™€ ๋™์ผํ•œ ๋‚œ์ด๋„ยท์ฃผ์ œ

No Image

MemeArena: Automating Context-Aware Unbiased Evaluation of Harmfulness Understanding for Multimodal Large Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ•ด๋กœ์›€ ์€ ํ…์ŠคํŠธยท์ด๋ฏธ์ง€ยท๋ฌธํ™”์  ๋ฐฐ๊ฒฝ์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•ด ํŒ๋‹จ์ด ์–ด๋ ค์šด ์˜์—ญ์ด๋‹ค. ๊ธฐ์กด ํ‰๊ฐ€ ์ง€ํ‘œ(์ •ํ™•๋„, F1 ๋“ฑ)๋Š” ๋งฅ๋ฝ ์˜์กด์„ฑ ์„ ๋ฌด์‹œํ•˜๊ณ , โ€œํ˜์˜คยทํญ๋ ฅโ€ ๋“ฑ ๋‹จ์ˆœ ๋ผ๋ฒจ๋ง์— ๋จธ๋ฌผ๋Ÿฌ ์‹ค์ œ ์„œ๋น„์Šค ์ƒํ™ฉ์—์„œ์˜ ์œ„ํ—˜์„ฑ์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋งฅ๋ฝโ€‘์ธ์‹ ๊ณผ ํŽธํ–ฅโ€‘์ œ๊ฑฐ ๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. 2. MemeArena ์„ค๊ณ„ ํ•ต์‹ฌ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ํŠน์ง• | | | | | | ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์—์ด์ „ํŠธ | ๋‹ค์–‘ํ•œ ๋ฌธํ™”ยท์‚ฌํšŒ์  ๊ด€์ ์„ ๋ชจ๋ธ๋ง | ์‚ฌ์ „ ์ •์˜๋œ โ€œ๊ด€์  ํ”„

Model
No Image

MENTOR: A Metacognition-Driven Self-Evolution Framework for Uncovering and Mitigating Implicit Domain Risks in LLMs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋„๋ฉ”์ธโ€‘ํŠนํ™” ์œ„ํ—˜์˜ ์€ํ์„ฑ : ๊ธฐ์กด ์•ˆ์ „ ํ…Œ์ŠคํŠธ๋Š” ์ฃผ๋กœ ์ผ๋ฐ˜์ ์ธ ํ”„๋กฌํ”„ํŠธ ๊ณต๊ฒฉ(์˜ˆ: โ€œjailbreakโ€)์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉฐ, ํŠน์ • ์‚ฐ์—…ยท๊ต์œก ํ˜„์žฅ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋ฏธ๋ฌ˜ํ•œ ์œ„ํ—˜(์˜ˆ: ๊ธˆ์œต ์กฐ์–ธ ์˜ค๋ฅ˜, ๊ต์œก์šฉ ์˜ค๋‹ต ์ œ๊ณต)์„ ๊ฐ„๊ณผํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ๊ตฌ์ถ• : 3,000๊ฐœ์˜ ์ฃผ์„ ์งˆ์˜๋Š” ๊ต์œกยท๊ธˆ์œตยท๊ฒฝ์˜์ด๋ผ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๊ทœ์ œยท์œค๋ฆฌ ๊ธฐ์ค€์„ ๋ฐ˜์˜ํ•ด, ์‹ค์ œ ํ˜„์—…์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์œ„ํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํฌ๊ด„ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ๋„๋ฉ”์ธ ์œ„ํ—˜ ๋ฐ์ดํ„ฐ์…‹ (3

Framework
No Image

Modeling and Topology Estimation of Low Rank Dynamical Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋™์  ๋„คํŠธ์›Œํฌ ํ† ํด๋กœ์ง€ ํ•™์Šต ์€ ์‹œ์Šคํ…œ ์‹๋ณ„, ์‹ ํ˜ธ ์ฒ˜๋ฆฌ, ๋ณต์žก๊ณ„ ๋ถ„์„ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ ๊ณผ์ œ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ „์—ญ์ ์ธ ์ €์ฐจ์› ๊ตฌ์กฐ(์˜ˆ: ์ €๋žญํฌ ํ–‰๋ ฌ) ๋ฅผ ๊ฐ€์ •ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณ ์ฐจ์›์ด๋ฉด์„œ๋„ ์ €๋žญํฌ์ธ ๊ฒฝ์šฐ(์˜ˆ: ๊ณต๋™ ๋ณ€๋™์ด ํฐ ์„ผ์„œ ๋„คํŠธ์›Œํฌ)์—๋Š” ์‹๋ณ„ ๋ถˆ๊ฐ€๋Šฅ์„ฑ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์ €์ฐจ์› ํŠน์„ฑ์„ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜์ง€ ์•Š์œผ๋ฉด ํฌ์†Œ์„ฑ ๊ฐ€์ •๊ณผ ์ €๋žญํฌ ๊ฐ€์ •์ด ์ถฉ๋Œ ํ•ด ์ž˜๋ชป๋œ ์ธ๊ณผ๊ด€๊ณ„๊ฐ€ ๋„์ถœ๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Low Rank Dy

Network Model
No Image

Multi-Channel Replay Speech Detection using Acoustic Maps

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฆฌํ”Œ๋ ˆ์ด ๊ณต๊ฒฉ ์€ ๋ฌผ๋ฆฌ์  ์ ‘๊ทผ(PA) ๊ณต๊ฒฉ ์ค‘ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ด๋ฉฐ, ์Šค๋งˆํŠธํฐยท์Šค๋งˆํŠธ ์Šคํ”ผ์ปค ๋“ฑ ์ผ์ƒ ๊ธฐ๊ธฐ์—์„œ ์‰ฝ๊ฒŒ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ๋‹จ์ผ์ฑ„๋„ ๊ธฐ๋ฐ˜ ํƒ์ง€ ๋ฐฉ๋ฒ•์€ ์ŠคํŽ™ํŠธ๋Ÿผยท์‹œ๊ฐ„์  ํŠน์ง•์— ์˜์กดํ•˜์ง€๋งŒ, ๊ณต๊ฐ„์  ์ฐจ์ด(๋ฐฉ์‚ฌ ํŒจํ„ด, ์ง์ ‘ ๊ฒฝ๋กœยท๋ฐ˜ํ–ฅ) ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋งˆ์ดํฌ ๋ฐฐ์—ด์„ ์ด์šฉํ•œ ๋‹ค์ค‘์ฑ„๋„ ์ ‘๊ทผ์€ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•  ํŠน์ˆ˜ํ•œ ํ”ผ์ฒ˜์™€ ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ์ด ๋ถ€์กฑํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ โ€œ์Œํ–ฅ ์ง€๋„(Acoustic Maps)โ€ ์Œํ–ฅ ์ง€๋„ ๋Š” ๋ฐฉ์œ„ยท๊ณ ๋„ ๊ฒฉ์ž (Az 91, El

Audio Processing Electrical Engineering and Systems Science Detection
Multitask Multimodal Self-Supervised Learning for Medical Images

Multitask Multimodal Self-Supervised Learning for Medical Images

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ : ์˜๋ฃŒ ์˜์ƒ์€ ๊ณ ๊ฐ€์˜ ์žฅ๋น„์™€ ์ „๋ฌธ ์˜์‚ฌ์˜ ํ•ด์„์ด ํ•„์š”ํ•ด ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง์ด ์–ด๋ ค์›€. ํ”„๋ผ์ด๋ฒ„์‹œยท๋ฒ•์  ์ œ์•ฝ : ํ™˜์ž ๋ฐ์ดํ„ฐ๋Š” GDPRยทHIPAA ๋“ฑ ์—„๊ฒฉํ•œ ๊ทœ์ œ ํ•˜์— ์žˆ์–ด ๋ฐ์ดํ„ฐ ๊ณต์œ ๊ฐ€ ์ œํ•œ์ . ์…€ํ”„โ€‘์Šˆํผ๋ฐ”์ด์ฆˆ๋“œ ๋Ÿฌ๋‹์˜ ๋ถ€์ƒ : ์ž์—ฐ์–ดยท์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๋น„์ง€๋„ ์‚ฌ์ „ ํ•™์Šต์ด ์„ฑ๊ณต์„ ๊ฑฐ๋‘๋ฉฐ, ์˜๋ฃŒ ์˜์ƒ์—๋„ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ๋Œ€๋‘๋จ. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ธฐ์—ฌ | ์„ค๋ช… | | | | | Medformer ์•„ํ‚คํ…์ฒ˜ | Transformer ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ์— ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ์–ด๋Œ‘ํ„ฐ๋ฅผ ์‚ฝ์ž…, ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„

Learning
No Image

NeuroFlex: Column-Exact ANN-SNN Co-Execution Accelerator with Cost-Guided Scheduling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์—๋„ˆ์ง€ยท์ง€์—ฐ ํšจ์œจ์„ฑ : ๋ชจ๋ฐ”์ผยทIoT ๋””๋ฐ”์ด์Šค์—์„œ ANN์€ ๋†’์€ ์—ฐ์‚ฐ๋Ÿ‰ ๋•Œ๋ฌธ์— ์—๋„ˆ์ง€ ์†Œ๋ชจ๊ฐ€ ํฌ๊ณ , SNN์€ ์ŠคํŒŒ์ดํฌ ๊ธฐ๋ฐ˜์œผ๋กœ ์ €์ „๋ ฅ์„ ๊ธฐ๋Œ€ํ•˜์ง€๋งŒ ์ •ํ™•๋„์™€ ๊ตฌํ˜„ ๋ณต์žก์„ฑ์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ ‘๊ทผ : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ ˆ์ด์–ด ๋‹จ์œ„ ํ˜น์€ ์ „์ฒด ๋ชจ๋ธ์„ ANN ํ˜น์€ SNN ์ค‘ ํ•˜๋‚˜๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐฉ์‹์„ ์ฃผ๋กœ ์‚ฌ์šฉํ–ˆ์œผ๋ฉฐ, ์ •๋ฐ€๋„(์ •์ˆ˜โ€‘์ •ํ™•๋„) ๋ณด์žฅ์€ ๋ถ€์กฑํ–ˆ๋‹ค. ์ปฌ๋Ÿผโ€‘๋ ˆ๋ฒจ ์„ธ๋ถ„ํ™” ํ•„์š”์„ฑ : ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์—ฐ์‚ฐ ํ๋ฆ„์„ ๋” ๋ฏธ์„ธํ•˜๊ฒŒ ๋‚˜๋ˆ„์–ด ๊ฐ๊ฐ ์ตœ์ ์˜ ํ•˜๋“œ์›จ์–ด ์ฝ”์–ด์— ๋งคํ•‘ํ•˜๋ฉด, ์›Œํฌ๋กœ๋“œ ๋ถˆ๊ท ํ˜•์„ ํ•ด์†Œํ•˜๊ณ  ์ž์› ํ™œ์šฉ๋„๋ฅผ ๋†’์ผ

No Image

Nonlinear Predictive Control of the Continuum and Hybrid Dynamics of a Suspended Deformable Cable for Aerial Pick and Place

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์œ ์—ฐ ์ผ€์ด๋ธ”์˜ ์žฅ์  : ์œ„ํ—˜ ๋ฌผ์ฒด์™€์˜ ์•ˆ์ „๊ฑฐ๋ฆฌ ํ™•๋ณด, ๋ณต์žกํ•œ ์‹ค๋‚ดยท์‹ค์™ธ ํ™˜๊ฒฝ์—์„œ์˜ ์ ‘๊ทผ์„ฑ, ์ˆ˜๋™ ๋™์—ญํ•™์„ ํ™œ์šฉํ•œ ์—๋„ˆ์ง€ ์ ˆ๊ฐ ๊ฐ€๋Šฅ์„ฑ. ๊ธฐ์กด ๋ชจ๋ธ์˜ ํ•œ๊ณ„ ๊ฐ•์ฒด ํŽœ๋“ˆ๋Ÿผ ๋ชจ๋ธ : ํ…์…˜์ด ์œ ์ง€๋˜๋Š” ๊ฒฝ์šฐ์—๋งŒ ์œ ํšจ, ์Šฌ๋ž™ยท๋ณ€ํ˜• ๋ฌด์‹œ. ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์Šฌ๋ž™/ํ…์…˜ ๋ชจ๋ธ : ์ „์ด ์ด๋ฒคํŠธ๋Š” ๋‹ค๋ฃจ์ง€๋งŒ, ์—ฐ์†์ ์ธ ๋ณ€ํ˜•์„ ์ถฉ๋ถ„ํžˆ ํ‘œํ˜„ํ•˜์ง€ ๋ชปํ•จ. ๊ธฐ์กด ROM : POD๋ฅผ ์ด์šฉํ•ด ๋ณ€ํ˜•์„ ํฌ์ฐฉํ–ˆ์œผ๋‚˜ ํŽ˜์ด๋กœ๋“œ์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์Œ. ๋”ฐ๋ผ์„œ ์—ฐ์†์ ์ธ PDE ๊ธฐ๋ฐ˜ ๋ชจ๋ธ + ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ „์ด + ์‹ค์‹œ๊ฐ„ ์ œ์–ด ๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์ด ์š”๊ตฌ

Computer Science Robotics
Nonparametric Kernel Regression for Coordinated Energy Storage Peak Shaving with Stacked Services

Nonparametric Kernel Regression for Coordinated Energy Storage Peak Shaving with Stacked Services

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ „๋ ฅ ํ”ผํฌ ๋น„์šฉ ์ด ์›”๋ณ„ ์ฒญ๊ตฌ์„œ์—์„œ ์ฐจ์ง€ํ•˜๋Š” ๋น„์ค‘์ด ์ปค์ง์— ๋”ฐ๋ผ, BESS๋ฅผ ์ด์šฉํ•œ ํ”ผํฌ ์ ˆ๊ฐ์ด ๋น„์šฉ ์ ˆ๊ฐ์˜ ํ•ต์‹ฌ ์ˆ˜๋‹จ์œผ๋กœ ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์›”๊ฐ„ ์ˆ˜์ค€์˜ ์ˆ˜์š”ยท๊ฐ€๊ฒฉ ์˜ˆ์ธก ์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ฑฐ๋‚˜, ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐยทํฌํŠธํด๋ฆฌ์˜ค ์ตœ์ ํ™”์™€ ๊ฐ™์€ ๊ณ ๋ณต์žก๋„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ํŠนํžˆ ํ”ผํฌ ์ ˆ๊ฐ๊ณผ ์Šคํƒํ˜• ์„œ๋น„์Šค(์•„๋น„ํŠธ๋ผ์ง€, ์ฃผํŒŒ์ˆ˜ ์กฐ์ • ๋“ฑ) ๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋ฉด ๋ฌธ์ œ ์ฐจ์›์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ๋ถ„๋ฆฌํ˜• ์ œ์–ด ๊ตฌ์กฐ : ํ”ผํฌ ์ ˆ๊ฐ

Mathematics
No Image

OKBench: Democratizing LLM Evaluation with Fully Automated, On-Demand, Open Knowledge Benchmarking

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ •์  ๋ฒค์น˜๋งˆํฌ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด QA ๋ฒค์น˜๋งˆํฌ๋Š” ๊ณ ์ •๋œ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ์‹  ์‚ฌ๊ฑดยท์ง€์‹์ด ๋ฐ˜์˜๋˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Š” ํŠนํžˆ ์‹œ์‹œ๊ฐ๊ฐ ๋ณ€ํ•˜๋Š” ๋‰ด์Šค์™€ ๊ฐ™์€ ๋„๋ฉ”์ธ์—์„œ ๋ชจ๋ธ์˜ ์‹ค์ œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๊ณผ๋Œ€ํ‰๊ฐ€ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ค‘์•™์ง‘์ค‘์‹ ํ๋ ˆ์ด์…˜์˜ ๋ณ‘๋ชฉ : ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ง์ ‘ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ยท๋ผ๋ฒจ๋งํ•˜๋Š” ๊ณผ์ •์€ ๋น„์šฉยท์‹œ๊ฐ„์ด ๋งŽ์ด ๋“ค๋ฉฐ, LLM์ด ๊ธ‰์†ํžˆ ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์‹ ์†ํžˆ ์ œ๊ณตํ•˜๊ธฐ ์–ด๋ ต๋‹ค. 2. OKBench ์„ค๊ณ„ ํ•ต์‹ฌ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ž๋™ํ™” ์ˆ˜์ค€ | | | | | | Knowledge S

On Sharpened Convergence Rate of Generalized Sliced Inverse Regression for Nonlinear Sufficient Dimension Reduction

On Sharpened Convergence Rate of Generalized Sliced Inverse Regression for Nonlinear Sufficient Dimension Reduction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ถฉ๋ถ„ ์ฐจ์› ์ถ•์†Œ(SDR) ๋Š” ๊ณ ์ฐจ์› ์˜ˆ์ธก๋ณ€์ˆ˜ $Xinmathbb{R}^p$ ๋ฅผ ์ €์ฐจ์› ํ‘œํ˜„ $B^top X$ (๋˜๋Š” ๋น„์„ ํ˜• ๋ณ€ํ™˜ $f 1(X),dots,f d(X)$) ๋กœ ์••์ถ•ํ•˜๋ฉด์„œ ๋ฐ˜์‘ $Y$ ์™€์˜ ๋ชจ๋“  ์ •๋ณด๋ฅผ ๋ณด์กด ํ•œ๋‹ค. ๊ธฐ์กด ์„ ํ˜• SDR (SIR, SAVE ๋“ฑ)์€ $p$ ๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ฐจ์›์˜ ์ €์ฃผ ์— ์ทจ์•ฝํ–ˆ๋‹ค. GSIR ์€ RKHS ๊ธฐ๋ฐ˜ ๋น„์„ ํ˜• ๋ณ€ํ™˜์„ ์ด์šฉํ•ด ์ฐจ์›์˜ ์ €์ฃผ๋ฅผ ํšŒํ”ผํ•˜๊ณ , Li & Song (2017) ์—์„œ $n^{ 1/4}$ ์˜ ์ฐจ์›โ€‘๋…๋ฆฝ ์ˆ˜๋ ด ์†๋„๋ฅผ ์ œ์‹œํ–ˆ์ง€๋งŒ, ๋ฐ˜์ •๊ทœ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ $

Mathematics
No Image

On the classical Reinforcement problem and Optimisation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌผ๋ฆฌ์  ๋™๊ธฐ ๋‹ค์ƒ ๋งค์งˆ ๋ชจ๋ธ : ํƒ„์„ฑ, ์ „๊ธฐยท์—ด ์ „๋„ ๋“ฑ์—์„œ ๋‘ ๋ฌผ์งˆ์ด ๋งค๋„๋Ÿฌ์šด ๊ณ„๋ฉด S ์„ ํ†ตํ•ด ์™„์ „ ์ ‘์ด‰ํ•œ๋‹ค๋Š” ๊ฐ€์ •์€ ์—ฐ์†์„ฑ u| ฮฉ u| ฮฃ ์™€ ํ”Œ๋Ÿญ์Šค ์—ฐ์†์„ฑ k ฮฉโˆ‚ ฮฝu| ฮฉ k ฮฃโˆ‚ ฮฝu| ฮฃ (์ „์†ก ์กฐ๊ฑด)์œผ๋กœ ์ˆ˜ํ•™ํ™”๋œ๋‹ค. ๊ทนํ•œ ์Šค์ผ€์ผ : ฮฃ์˜ ๋‘๊ป˜ ฮต ์ด ๋งค์šฐ ์ž‘๊ณ , ๋ฌผ์„ฑ๋น„ k ฮต/k ์ด 0, โˆž ํ˜น์€ ์œ ํ•œ ์–‘์ˆ˜๋กœ ๋ฐœ์‚ฐยท์ˆ˜๋ ดํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ์ด๋Š” โ€œ๊ทนํ•œ ๊ฐ•ํ™”โ€์™€ โ€œ๊ทนํ•œ ์ ˆ์—ฐโ€ ๋‘ ๊ฐ€์ง€ ๋ฌผ๋ฆฌ์  ์ƒํ™ฉ์„ ํฌ๊ด„ํ•œ๋‹ค. 2. ์ฃผ์š” ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | ํ•ต์‹ฌ ๊ธฐ๋ฒ• | | | | | | ๊ธฐ๋ณธ

Mathematics
No Image

On the Value of Base Station Motion Knowledge for Goal-Oriented Remote Monitoring with Energy-Harvesting Sensors

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ IoT์™€ ์—๋„ˆ์ง€ ์ˆ˜ํ™• : ์›๊ฒฉยท์ „๋ ฅ ๊ณต๊ธ‰์ด ์–ด๋ ค์šด ์ง€์—ญ์—์„œ ์—๋„ˆ์ง€ ์ˆ˜ํ™• ๊ธฐ๋ฐ˜ ์„ผ์„œ๋Š” ๋ฐฐํ„ฐ๋ฆฌ ์ˆ˜๋ช… ์—ฐ์žฅ๊ณผ ์ง€์† ๊ฐ€๋Šฅํ•œ ์šด์˜์— ํ•ต์‹ฌ์ด๋‹ค. ์ด๋™ํ˜• ๊ธฐ์ง€๊ตญ : LEO ์œ„์„ฑ, UAV, ํ•ด์ƒ ์„ ๋ฐ• ๋“ฑ ์ด๋™ํ˜• ํ”Œ๋žซํผ์€ ๋„“์€ ์ปค๋ฒ„๋ฆฌ์ง€๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ˆ˜์‹ ๊ธฐ์™€์˜ ์ƒ๋Œ€ ์œ„์น˜ ๋ณ€ํ™”๊ฐ€ ์ฑ„๋„ ํ’ˆ์งˆ์„ ํฌ๊ฒŒ ๋ณ€๋™์‹œํ‚จ๋‹ค. ๊ธฐ์กด ์ •์  ์ฑ„๋„ ๊ฐ€์ •์€ ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์„ ๊ณผ์†Œํ‰๊ฐ€ํ•œ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์ด๋™ํ˜• ์ˆ˜์‹ ๊ธฐ์˜ ์ฑ„๋„ ๋ณ€๋™์„ Kโ€‘state ๋งˆ์ฝ”ํ”„ ์ฒด์ธ ์œผ๋กœ ๋ชจ๋ธ๋ง | ์‹ค์ œ ์œ„์„ฑยทUAV ๊ถค๋„์—

Electrical Engineering and Systems Science
Open diffusion MRI and connectivity data for epilepsy and surgery: The IDEAS II release

Open diffusion MRI and connectivity data for epilepsy and surgery: The IDEAS II release

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ฐ„์งˆ ๋„คํŠธ์›Œํฌ ๊ฐ€์„ค : ๋ฐœ์ž‘์€ ๋‡Œ ์ „์—ญ ๋„คํŠธ์›Œํฌ์—์„œ ๋ฐœ์ƒยท์ „ํŒŒ๋˜๋ฉฐ, ๋ฐฑ์งˆ ์—ฐ๊ฒฐ์„ฑ ๋ณ€ํ™”๊ฐ€ ์ž„์ƒ ํ‘œํ˜„ํ˜• ๋ฐ ์ˆ˜์ˆ  ์„ฑ๊ณต๋ฅ ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ฐ์ดํ„ฐ ๊ฒฉ์ฐจ : ๊ธฐ์กด ๋Œ€๊ทœ๋ชจ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค(Human Connectome, ADNI, ABIDE)๋Š” ํ’๋ถ€ํ•˜์ง€๋งŒ, ๊ฐ„์งˆ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ DWI ๋ฐ์ดํ„ฐ๋Š” ๊ทนํžˆ ์ œํ•œ์ ์ด๋‹ค. IDEAS I ํ•œ๊ณ„ : ๊ตฌ์กฐ์  T1ยทFLAIR๊ณผ ์ˆ˜์ˆ  ๋งˆ์Šคํฌ๋Š” ์ œ๊ณตํ–ˆ์ง€๋งŒ, ๋ฐฑ์งˆ ๋ฏธ์„ธ๊ตฌ์กฐ์™€ ์—ฐ๊ฒฐ์„ฑ์„ ์ถ”์ •ํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ ๋ฐ ๊ทœ๋ชจ | ๊ทธ๋ฃน | ์ธ์› | ์—ฐ๋ นยท์„ฑ๋ณ„ ์ •๋ณด | ์Šค์บ” ํ”„๋กœํ† 

Data Quantitative Biology
No Image

Optimal control of stochastic Volterra integral equations with completely monotone kernels and stochastic differential equations on Hilbert spaces with unbounded control and diffusion operators

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ SVIE์™€ ๋น„๋งˆ๋ฅด์ฝ”ํ”„์„ฑ : ์ปค๋„ K ๊ฐ€ ์™„์ „ ๋‹จ์กฐ(monotone)์ผ ๊ฒฝ์šฐ, y(t) ๋Š” ๊ณผ๊ฑฐ ์ „์ฒด์— ์˜์กดํ•˜๋Š” ๋น„๋งˆ๋ฅด์ฝ”ํ”„ ํ”„๋กœ์„ธ์Šค๊ฐ€ ๋œ๋‹ค. ์ „ํ†ต์ ์ธ DP(๋™์  ๊ณ„ํš๋ฒ•)๋Š” ๋งˆ๋ฅด์ฝ”ํ”„์„ฑ์— ์˜์กดํ•˜๋ฏ€๋กœ ์ง์ ‘ ์ ์šฉ์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. Markovian lift : ์ตœ๊ทผ

Mathematics
Orthogonal parametrisations of Extreme-Value distributions

Orthogonal parametrisations of Extreme-Value distributions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ทน๊ฐ’ ๋ถ„์„์˜ ์‹ค๋ฌด์  ์–ด๋ ค์›€ ํ™˜๊ฒฝยท๊ธฐํ›„ยท์žฌ๋ฌด ๋“ฑ์—์„œ ๊ทน๋‹จ ์‚ฌ๊ฑด์„ ๋ชจ๋ธ๋งํ•  ๋•Œ ํ‘œ๋ณธ์ด ์ž‘์•„(์˜ˆ: ์—ฐ๊ฐ„ ์ตœ๋Œ€ ๊ฐ•์ˆ˜๋Ÿ‰, 100๋…„ ์žฌํ•ด ๊ทœ๋ชจ) ์ถ”์ •์ด ๋ถˆ์•ˆ์ •ํ•˜๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„ ๊ฐ•ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ MLE ํ˜น์€ ๋ฒ ์ด์ง€์•ˆ ์ถ”์ •์˜ ์ˆ˜๋ ด์„ ๋ฐฉํ•ดํ•œ๋‹ค. ์ง๊ต ํŒŒ๋ผ๋ฏธํ„ฐํ™”์˜ ์ด๋ก ์  ์žฅ์  Cox & Reid(1987)์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ”ผ์…” ์ •๋ณด ํ–‰๋ ฌ์„ ๋Œ€๊ฐํ™”(๋˜๋Š” ๋ถ€๋ถ„ ๋Œ€๊ฐํ™”)ํ•จ์œผ๋กœ์จ ํ†ต๊ณ„์  ํšจ์œจ์„ฑ ๊ณผ ์ˆ˜์น˜์  ์•ˆ์ •์„ฑ ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค. ํŠนํžˆ MCMC์™€ ๊ฐ™์€ ๋ฒ ์ด์ง€์•ˆ ์ƒ˜ํ”Œ๋ง์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„ ์ƒ๊ด€์ด ๋‚ฎ์•„์ง€๋ฉด ํ˜ผํ•ฉ ์†๋„ ๊ฐ€ ๋นจ๋ผ์ง€๊ณ , ์‚ฌํ›„

Mathematics
No Image

PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ฆ‰์„ ํŒ€์›Œํฌ(AHT) : ์‚ฌ์ „ ํ˜‘์—… ๊ฒฝํ—˜์ด ์—†๋Š” ์—์ด์ „ํŠธ๋“ค์ด ๊ณต๋™ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋น ๋ฅด๊ฒŒ ํ˜‘๋ ฅ ์ „๋žต์„ ํ˜•์„ฑํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ. ๊ธฐ์กด RL ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ : ๊ธฐ๋Œ€ ๋ณด์ƒ ํ•˜๋‚˜์— ์ตœ์ ํ™”๋˜๋ฉด์„œ ์ •์ฑ…์ด ๋‹จ์ผ ํ–‰๋™ ๋ชจ๋“œ ์— ์ˆ˜๋ ด, ๋‹ค์ค‘์–‘์ƒ ํ˜‘๋ ฅ(์˜ˆ: ์—ญํ•  ๊ตํ™˜, ์ƒํ™ฉ์— ๋”ฐ๋ฅธ ์ „๋žต ์ „ํ™˜)์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•จ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ํ™•์‚ฐ ๊ธฐ๋ฐ˜ ์ •์ฑ…(PADiff) | ์š”์†Œ | ๊ธฐ์กด ํ™•์‚ฐ ๋ชจ๋ธ | PADiff์—์„œ์˜ ๋ณ€ํ˜• | | | | | | ๋ชฉํ‘œ | ๋ฐ์ดํ„ฐ ์ƒ์„ฑ(์ด๋ฏธ์ง€, ํ…์ŠคํŠธ ๋“ฑ) | ํ–‰๋™ ์ •์ฑ… ์ƒ์„ฑ(๋‹ค์ค‘ ํ–‰๋™ ๋ชจ๋“œ)

No Image

Parameter Interpolation Adversarial Training for Robust Image Classification

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ ๋Œ€์  ๊ณต๊ฒฉ ์€ ์ž‘์€ ์ž…๋ ฅ ๋ณ€ํ˜•๋งŒ์œผ๋กœ๋„ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์˜ค๋ถ„๋ฅ˜ํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์—์„œ ํฐ ์œ„ํ—˜ ์š”์†Œ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ์ ๋Œ€์  ํ›ˆ๋ จ ์€ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ฐฉ์–ด ์ „๋žต์ด์ง€๋งŒ, ํ›ˆ๋ จ ์ค‘ ๊ฐ•์ธ์„ฑ ์ง„๋™(robustness oscillation) ๊ณผ ๊ณผ์ ํ•ฉ(overfitting) ๋ฌธ์ œ๊ฐ€ ์ž์ฃผ ๋ณด๊ณ ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์ ๋Œ€์  ์ƒ˜ํ”Œ์— ๊ณผ๋„ํ•˜๊ฒŒ ๋งž์ถฐ์ง€๋ฉด์„œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ํ˜„์ƒ์ž…๋‹ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Parameter Interpolation ๋ณด๊ฐ„(interpolation) : ๋งค epoch ์ข…๋ฃŒ ์‹œ์ ์— ์ด์ „ epoc

Parameter-free representations outperform single-cell foundation models on downstream benchmarks

Parameter-free representations outperform single-cell foundation models on downstream benchmarks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์‹ฑ๊ธ€โ€‘์…€ ์ „์‚ฌ์ฒดํ•™ ์€ ์ˆ˜์–ต ๊ฐœ ์„ธํฌ์— ๋Œ€ํ•œ ๊ณ ํ•ด์ƒ๋„ ์œ ์ „์ž ๋ฐœํ˜„ ์ง€๋„๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, โ€œ์…€ ์•„ํ‹€๋ผ์Šคโ€ ๊ตฌ์ถ•์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์กฐ์งยท์ข…์˜ ์„ธํฌ ์ •์ฒด์„ฑ์„ ํƒ๊ตฌํ•œ๋‹ค. ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ (์˜ˆ: TranscriptFormer)์€ ๋Œ€๊ทœ๋ชจ ์…€ ์•„ํ‹€๋ผ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ์ž๊ธฐ์ง€๋„ํ•™์Šต(selfโ€‘supervised)์œผ๋กœ ํ•™์Šตํ•ด, ์œ ์ „์ž ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๊ณ  ์ด๋ฅผ ๋‹ค์–‘ํ•œ ๋‹ค์šด์ŠคํŠธ๋ฆผ ์ž‘์—…์— ํ™œ์šฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ scRNAโ€‘seq ๋Š” ํฌ์†Œ์„ฑ, ๋“œ๋กญ์•„์›ƒ, ๋ฐฐ์น˜ ํšจ๊ณผ ๋“ฑ ๊ธฐ์ˆ ์  ์žก์Œ์ด ์‹ฌํ•˜๊ณ , ๋‹จ๋ฐฑ์งˆ ์„œ์—ด๊ณผ ๋‹ฌ๋ฆฌ ์—ฐ์†์ ์ธ ์นด์šดํŠธ ๋ฐ์ดํ„ฐ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ณต์žกํ•œ ๋ชจ

Model Quantitative Biology
No Image

PECL: A Heterogeneous Parallel Multi-Domain Network for Radar-Based Human Activity Recognition

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ ˆ์ด๋” ๊ธฐ๋ฐ˜ HAR(Human Activity Recognition) ์€ ์นด๋ฉ”๋ผ์™€ ๋‹ฌ๋ฆฌ ๊ฐœ์ธ ์ •๋ณด๋ฅผ ์นจํ•ดํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์–ด๋‘์šด ํ™˜๊ฒฝ์ด๋‚˜ ์•…์ฒœํ›„์—์„œ๋„ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋‹จ์ผ ๋„๋ฉ”์ธ(Rangeโ€‘Time ํ˜น์€ Dopplerโ€‘Time ๋“ฑ) ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ ๋ฐ ๋‹ค์ค‘ ์ŠคํŽ™ํŠธ๋Ÿผ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋™์ž‘์ด ์œ ์‚ฌํ•œ ํด๋ž˜์Šค(์˜ˆ: ๊ฑท๊ธฐ vs. ๋‹ฌ๋ฆฌ๊ธฐ) ๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ๋œ๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ (PECL)์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ํŠน์ง•

Network
Probing the Probes: Methods and Metrics for Concept Alignment

Probing the Probes: Methods and Metrics for Concept Alignment

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ํ”„๋กœ๋ธŒ์™€ CAV์˜ ๊ธฐ์กด ๊ฐ€์ • : ์„ ํ˜• ํ”„๋กœ๋ธŒ๊ฐ€ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉด ํ•ด๋‹น ๋ฐฉํ–ฅ์ด ์ธ๊ฐ„์ด ์ •์˜ํ•œ ๊ฐœ๋…์„ ์ž˜ ๋‚˜ํƒ€๋‚ธ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ์™”์Œ. ํ•ต์‹ฌ ๋ฌธ์ œ : ์ •ํ™•๋„๋Š” โ€œ๋ถ„๋ฅ˜โ€ ์„ฑ๋Šฅ๋งŒ์„ ์ธก์ •ํ•˜๋ฏ€๋กœ, ๋ชจ๋ธ์ด ํ•™์Šตํ•œ ์Šคํ‘ธ๋ฆฌ์–ด์Šค ํŒจํ„ด(์˜ˆ: ๋ฐฐ๊ฒฝ ์ƒ‰, ์œ„์น˜, ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ํŽธํ–ฅ ๋“ฑ)์„ ์ด์šฉํ•ด๋„ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ •ํ™•๋„๋Š” ๊ฐœ๋… ์ •๋ ฌ(concept alignment) ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ถฉ๋ถ„ํ•œ ์ง€ํ‘œ๊ฐ€ ์•„๋‹ˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์ •๋ ฌ๋˜์ง€ ์•Š์€ ํ”„๋กœ๋ธŒ๊ฐ€ ๋†’์€ ์ •ํ™•๋„

No Image

Proof of Concept: Local TX Real-Time Phase Calibration in MIMO Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์œ„์ƒ ์žก์Œ(Phase Noise) ์€ MIMO ์‹œ์Šคํ…œ์˜ ๋ฐ์ดํ„ฐ ์ „์†ก๋Ÿ‰์„ ์ €ํ•˜์‹œํ‚ค๊ณ , ํŠนํžˆ Joint Communication and Sensing (JCnS) ํ™˜๊ฒฝ์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚จ๋‹ค

System Electrical Engineering and Systems Science
No Image

QiMeng-NeuComBack: Self-Evolving Translation from IR to Assembly Code

| ๊ตฌ๋ถ„ | ์ฃผ์š” ๋‚ด์šฉ | ์˜์˜ยท์‹œ์‚ฌ์  | | | | | | ๋ฌธ์ œ ์ •์˜ | ๊ธฐ์กด ์ปดํŒŒ์ผ๋Ÿฌ ๊ฐœ๋ฐœ ๋น„์šฉยท์ „๋ฌธ์„ฑ ๋ฌธ์ œ์™€ LLM ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ ์ปดํŒŒ์ผ์˜ ํ‰๊ฐ€ยท์‹ ๋ขฐ์„ฑ ๋ถ€์กฑ์„ ๋ช…์‹œ | ์‹ค์ œ ์‚ฐ์—…ยทํ•™๊ณ„์—์„œ ์‹ ๊ฒฝ ์ปดํŒŒ์ผ์„ ๋„์ž…ํ•˜๋ ค๋ฉด ๊ฐ๊ด€์  ๋ฒค์น˜๋งˆํฌ์™€ ์„ฑ๋Šฅ ๋ณด์žฅ์ด ํ•„์ˆ˜์ž„์„ ๊ฐ•์กฐ | | ๋ฐ์ดํ„ฐ์…‹ (NeuComBack) | IR(Intermediate Representation) โ†’ ์–ด์…ˆ๋ธ”๋ฆฌ( x86 64, aarch64) ์Œ์„ ํฌํ•จํ•œ ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ ์ œ๊ณต | ๋‹ค์–‘ํ•œ ์—ฐ์‚ฐยท์ œ์–ด ํ๋ฆ„์„ ํฌํ•จํ•ด ์ผ๋ฐ˜์ ์ธ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™” ๊ณผ์ œ๋ฅผ ์žฌํ˜„<br> ํ–ฅํ›„ ์—ฐ๊ตฌยท๋น„๊ต์—

No Image

Quantifying and Mitigating Socially Desirable Responding in LLMs: A Desirability-Matched Graded Forced-Choice Psychometric Study

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM ํ‰๊ฐ€์˜ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„ : ๊ธฐ์กด์—๋Š” ์ž‘์—… ์ •ํ™•๋„ยทํšจ์œจ์„ฑ์— ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, ์ตœ๊ทผ๋Š” โ€˜์„ฑ๊ฒฉยท์•ˆ์ „ยทํŽธํ–ฅโ€™ ๋“ฑ ๊ณ ์ฐจ์› ํ–‰๋™ ํŠน์„ฑ์„ ์ธก์ •ํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜๊ณ  ์žˆ๋‹ค. ์‚ฌํšŒ์  ๋ฐ”๋žŒ์ง์„ฑ ์‘๋‹ต(SDR) : ์ธ๊ฐ„ ์‹ฌ๋ฆฌํ•™์—์„œ ์ž˜ ์•Œ๋ ค์ง„ ํ˜„์ƒ์œผ๋กœ, ์„ค๋ฌธ ์ƒํ™ฉ์—์„œ ์‚ฌํšŒ์ ์œผ๋กœ ๊ธ์ •์ ์ธ ๋‹ต๋ณ€์„ ๊ณผ๋„ํ•˜๊ฒŒ ์„ ํƒํ•˜๋Š” ๊ฒฝํ–ฅ์ด๋‹ค. LLM๋„ โ€˜์ข‹๊ฒŒ ๋ณด์ด๋ ค๋Š”โ€™(sycophancy) ๊ฒฝํ–ฅ์„ ๋ณด์ด๋ฉฐ, ์ด๋Š” ์„ค๋ฌธ ๊ธฐ๋ฐ˜ ์ ์ˆ˜์— ์ฒด๊ณ„์  ํŽธํ–ฅ์„ ์ผ์œผํ‚จ๋‹ค. ๋ฌธ์ œ์  : ๊ธฐ์กด LLM ์—ฐ๊ตฌ๋Š” SDR์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ฑฐ๋‚˜ ์ธ๊ฐ„ ์ˆ˜์ค€์˜ โ€˜๊ฐ€์งœ ์ข‹์€โ€™(FAKEโ€‘GOO

NLP Computer Science
No Image

Random Wavelet Features for Graph Kernel Machines

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ทธ๋ž˜ํ”„ ์ปค๋„ ์€ ๋…ธ๋“œ ๊ฐ„ ์œ ์‚ฌ๋„๋ฅผ ์ •์˜ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด์ง€๋งŒ, ์ „์ฒด ์ปค๋„ ํ–‰๋ ฌ์„ ์ง์ ‘ ๊ณ„์‚ฐํ•˜๋ฉด O(Nยณ) ์˜ ๋ณต์žก๋„๊ฐ€ ๋ฐœ์ƒํ•ด ๋Œ€๊ทœ๋ชจ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์—์„œ Random Fourier Features (RFF) ๊ฐ€ ์ปค๋„ ๊ทผ์‚ฌ๋ฅผ ํšจ์œจํ™”ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, ๊ทธ๋ž˜ํ”„์—์„œ๋„ ๋ฌด์ž‘์œ„ ํ”ผ์ฒ˜ ๋ฅผ ์ด์šฉํ•ด ์ปค๋„์„ ์Šค์ผ€์ผ๋งํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๊ฐ€ ๊ธฐ์กด์— ์žˆ์—ˆ๋‹ค(gโ€‘GRFs, randomโ€‘walk ๊ธฐ๋ฐ˜). ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๋„“์€ ์ปค๋„ ์—์„  ์ž˜ ๋™์ž‘ํ•˜์ง€๋งŒ, ์ŠคํŽ™ํŠธ๋Ÿผ์ด ์ข๊ณ (๋ฐด๋“œ๋ฆฌ๋ฏธํ‹ฐ๋“œ) ๊ณต๊ฐ„์ ์œผ๋กœ ๋„“๊ฒŒ ํผ์ง„ ์ปค๋„

Machine Learning Computer Science

< Category Statistics (Total: 5073) >

Electrical Engineering and Systems Science
102
General
4147
General Relativity
3
HEP-EX
3
HEP-PH
1
HEP-TH
4
MATH-PH
10
Quantitative Finance
1
Quantum Physics
19

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut