KOINEU Logo
LLM Collusion

LLM Collusion

๋ณธ ๋…ผ๋ฌธ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ๊ฐ€๊ฒฉ ๊ฒฐ์ • ์ฒด๊ณ„์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋ถˆ๋ฒ•์ ์ธ ๋‹ดํ•ฉ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ์  ์œ„ํ—˜์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLM์˜ ๊ณต์œ ๋œ ์ง€์‹ ์ธํ”„๋ผ์™€ ๋ฐ์ดํ„ฐ ์ง‘์  ์ •์ฑ…์ด ์–ด๋–ป๊ฒŒ ์‹œ์žฅ ์ˆ˜์ค€์—์„œ ์กฐ์œจ๋˜์ง€ ์•Š์€ ํ˜‘๋ ฅ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์–ด๋–ป๊ฒŒ ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ ์œ„ํ—˜์„ฑ์„ ๋†’์ด๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ์€ LLM์ด ๊ฐ€๊ฒฉ ์ฑ…์ •์— ํ™œ์šฉ๋  ๋•Œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ฝœ๋ฃจ์…˜ ์œ„ํ—˜์„ ์ด๋ก ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ์—ฐ๊ตฌ๋Š” LLM์ด

Economics
Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation

Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋Œ€ํ™” ์‹œ์Šคํ…œ์—์„œ ๋ณด์—ฌ์ฃผ๋Š” ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์ด ๊ฐ–๋Š” ๋ฐฐํฌยท์šด์˜์ƒ์˜ ์žฅ์ ์„ ์‚ด๋ฆฌ๋ฉด์„œ๋„ ํ’ˆ์งˆ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํ”„๋กฌํ”„ํŠธ ์ฒด์ด๋‹(prompt chaining)โ€™์ด๋ผ๋Š” ๊ธฐ๋ฒ•์„ ๋‹ค์ฐจ์›์ ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ๊ฐ๊ฐ์˜ ๋Œ€ํ™” ํ’ˆ์งˆ ์š”์†Œ์ธ ์ž์—ฐ์Šค๋Ÿฌ์›€(Naturalness), ์ผ๊ด€์„ฑ(Coherence), ํฅ๋ฏธ์„ฑ(Engagingness)์„ ๋…๋ฆฝ์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๊ณ , ์ตœ์ข… ์‘๋‹ต์—์„œ ์ด๋“ค์„ ์กฐํ™”๋กญ๊ฒŒ ๊ฒฐํ•ฉํ•˜๋„๋ก ์„ค๊ณ„ํ•œ ๊ฒƒ์ด๋‹ค. 1. ํ”„๋ ˆ์ž„์›Œํฌ ์„ค๊ณ„ N

Computer Science NLP
RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev ์ฝ”๋“œ ๋ฆฌ๋ทฐ์–ด๋Š” LLM ๊ธฐ๋ฐ˜์˜ ์ฝ”๋“œ ๊ฒ€ํ†  ์ž๋™ํ™” ๋„๊ตฌ๋กœ์„œ, ํ˜„๋Œ€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ RovoDev์ด ์–ด๋–ป๊ฒŒ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ๋ณด์•ˆ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋ฆฌ๋ทฐ ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ฅธ ์ •ํ™•ํ•œ ์ฝ”๋“œ ๊ฒ€ํ† ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ํ”„๋กœ์ ํŠธ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: RovoDev์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์€ ์ œ๋กœ์ƒท ์ปจํ…์ŠคํŠธ ์ธ์‹ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ƒ์„ฑ, ์‚ฌ์‹ค์  ์ •ํ™•์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ, ๊ทธ๋ฆฌ๊ณ  ํ–‰๋™์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•œ ์œ ํšจํ•˜๊ณ  ํ–‰๋™ ๊ฐ€๋Šฅํ•œ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ถ”์ฒœ์ด๋‹ค. ์ด ์ค‘ ํŠนํžˆ ์ œ๋กœ์ƒท ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ณ ๊ฐ

Computer Science Software Engineering
No Image

A Comprehensive Dataset for Human vs. AI Generated Image Detection

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MS COCOAI ๋ฐ์ดํ„ฐ์…‹์€ ํ˜„์žฌ ์ด๋ฏธ์ง€ ์ง„์œ„ ํƒ์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜๊ทœ๋ชจโ€™๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์ƒ์„ฑ ๋ชจ๋ธ์ด๋‚˜ ์ œํ•œ๋œ ํ”„๋กฌํ”„ํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด ๋งŒ๋“  ์ด๋ฏธ์ง€์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ํ˜„์žฅ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ AI ํˆด๊ณผ์˜ ๊ฒฉ์ฐจ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ๋ฐ์ดํ„ฐ์…‹์€ Stable Diffusion 3ยท2.1ยทSDXL, DALLโ€‘E 3, MidJourney v6 ๋“ฑ ์ตœ์‹  ๋ชจ๋ธ์„ ๋ชจ๋‘ ํฌํ•จํ•จ์œผ๋กœ์จ, ํ˜„์žฌ ์‹œ์žฅ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ฃผ์š” ์ƒ์„ฑ

Computer Science Computer Vision Detection Data
No Image

CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge

CoCoโ€‘Fed๊ฐ€ ์ œ์‹œํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ˜์‹ ์€ โ€˜์ด์ค‘ ์ฐจ์› ๋‹ค์šดํ”„๋กœ์ ์…˜โ€™๊ณผ โ€˜์ง๊ต ๋ถ€๋ถ„๊ณต๊ฐ„ ์ดˆ์ค‘์ฒฉ ์ „์†กโ€™์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐ์กด ์—ฐํ•ฉ ํ•™์Šต์—์„œ ๊ฐ gNB๊ฐ€ ์ „์ฒด ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ €์žฅยท์ „์†กํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ €์ž๋“ค์€ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋จผ์ € ์ฑ„๋„ ์ฐจ์›(์˜ˆ: ์ž…๋ ฅ ํ”ผ์ฒ˜)๊ณผ ๋ชจ๋ธ ์ฐจ์›(์˜ˆ: ์ถœ๋ ฅ ํ”ผ์ฒ˜) ๋‘ ์ถ•์—์„œ ๊ฐ๊ฐ ์ €โ€‘๋žญํฌ ํ–‰๋ ฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋˜๋Š” ํˆฌ์‚ฌ ํ–‰๋ ฌ์€ ์‚ฌ์ „์— ํ•™์Šต๋œ ๊ณ ์ • ์ •๊ทœ ์ง๊ต ํ–‰๋ ฌ์ด๊ฑฐ๋‚˜, ๊ฐ ๋ผ์šด๋“œ๋งˆ๋‹ค ๋žœ๋คํ•˜๊ฒŒ ์ƒ์„ฑ๋œ ์Šค์ผ€์น˜ ํ–‰๋ ฌ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด O(rankยท

Computer Science Learning Information Theory Framework
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
No Image

LLM Agents for Combinatorial Efficient Frontiers: Investment Portfolio Optimization

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ์— ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ๊ฐ€์น˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ, ๋ฐฉ๋ฒ•๋ก , ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋ณธ ๋…ผ๋ฌธ์€ LLM์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ํ•™๋ฌธ์ ์ธ ์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์ƒํ™œ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, NPhardํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์žˆ์–ด LLM์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์€ ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐพ์•„๋ณด๊ธฐ ์–ด๋ ค์šด ํ˜์‹ ์ ์ธ ์‹œ๋„์ž…๋‹ˆ๋‹ค. MOCO

Computer Science Computational Engineering
LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ์˜จ๋ผ์ธ ์˜ํ–ฅ๋ ฅ ์ตœ๋Œ€ํ™”(Online Influence Maximization, OIM) ๋ฌธ์ œ๋Š” ์ „ํ†ต์ ์ธ ์ •์  IM๊ณผ ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์‹œ๋“œ ์ง‘ํ•ฉ์„ ๋™์ ์œผ๋กœ ์„ ํƒํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ „์ฒด ๋ฐด๋”ง(fullโ€‘bandit) ํ”ผ๋“œ๋ฐฑโ€™์ด๋ผ๋Š” ๊ฐ€์ •์€ ์—์ด์ „ํŠธ๊ฐ€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์„ ํƒํ•œ ์‹œ๋“œ ์ง‘ํ•ฉ์— ์˜ํ•ด ์‹ค์ œ๋กœ ๋ฐœ์ƒํ•œ ํ™•์‚ฐ ๊ทœ๋ชจ(์ฆ‰, ์ „์ฒด ํ™œ์„ฑํ™”๋œ ๋…ธ๋“œ ์ˆ˜)๋งŒ์„ ๊ด€์ฐฐํ•œ๋‹ค๋Š” ์˜๋ฏธ์ด๋ฉฐ, ์ด๋Š” ๊ฐ ๋…ธ๋“œ๋ณ„ ํ™œ์„ฑํ™” ์—ฌ๋ถ€๋‚˜ ๋„คํŠธ์›Œํฌ์˜ ์ธ์ ‘ ํ–‰๋ ฌ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์ „ํ˜€ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ํ™˜๊ฒฝ์—์„œ๋Š”

Machine Learning Computer Science
Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๊ฐ์„ฑ ๋ถ„์„์ด๋‚˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ถ„๋ฅ˜๊ธฐ ์ค‘์‹ฌ์˜ ์–‘๊ทนํ™” ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ํ…์ŠคํŠธ์—์„œ โ€˜์ž…์žฅ(stance)โ€™, โ€˜๊ฐ์ •์  ์–ด์กฐ(affective tone)โ€™, โ€˜๋™์˜ยท๋ฐ˜๋Œ€ ํŒจํ„ด(agreement dynamics)โ€™์„ ๋‹ค์ธต์ ์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ๋‹จ์ผ ์ฐจ์›์˜ ๊ฐ์„ฑ ์ ์ˆ˜(๊ธ์ •/๋ถ€์ •) ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ๋ ˆ์ด๋ธ”(์ฐฌ์„ฑ/๋ฐ˜๋Œ€)๋งŒ์„ ์ œ๊ณตํ–ˆ์ง€๋งŒ, LLM์€ ๋ฌธ๋งฅ์„ ๊ณ ๋ คํ•ด ๋ฏธ๋ฌ˜ํ•œ ์ž…์žฅ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ณ , ๊ฐ์ •์˜ ๊ฐ•๋„์™€ ์œ ํ˜•(๋ถ„๋…ธ, ์Šฌํ””, ํ˜์˜ค ๋“ฑ)๊นŒ์ง€ ์„ธ๋ถ„ํ™”ํ•œ๋‹ค.

Computer Science Social Networks Model
Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

์ด ๋…ผ๋ฌธ์€ ์†Œ๋งค ํŒ๋งค ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ LSTM ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ž์› ์ œ์•ฝ์„ ๊ฐ€์ง„ ์†Œ๊ทœ๋ชจ ๋ฐ ์ค‘์†Œ ๊ทœ๋ชจ ๋งค์žฅ์—์„œ๋„ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ์ด ๋…ผ๋ฌธ์€ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ํŠนํžˆ 64๊ฐœ ์€๋‹‰ ์œ ๋‹›์„ ๊ฐ€์ง„ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” ํ‘œ์ค€ LSTM(128๊ฐœ ์€๋‹‰ ์œ ๋‹›)๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์ถ”๋ก 

Computer Science Network Machine Learning Model
Scale-aware Adaptive Supervised Network with Limited Medical Annotations

Scale-aware Adaptive Supervised Network with Limited Medical Annotations

SASNet์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์˜ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ์„ค๊ณ„๋œ ๋ฐ˜์ง€๋„ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์ด๋‹ค. ๊ธฐ์กด์˜ ๋ฐ˜์ง€๋„ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์Šค์ผ€์ผ์˜ ํŠน์ง•์„ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ๋ผ๋ฒจ์ด ์—†๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋‹จ์ˆœํžˆ ์ผ๊ด€์„ฑ ์†์‹ค์„ ์ ์šฉํ•˜๋Š” ๋ฐ ๊ทธ์ณค๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ณต์žกํ•œ ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„์—์„œ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ค์›Œ, ํŠนํžˆ ์ž‘์€ ๋ณ‘๋ณ€์ด๋‚˜ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ฆฟํ•œ ์˜์—ญ์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋ณด์ธ๋‹ค. SASNet์€ ๋‘ ๊ฐœ์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ํ•˜๋‚˜๋Š” ๋ผ๋ฒจ์ด ์ถฉ๋ถ„ํžˆ ์ œ๊ณต๋œ ์†Œ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ „ํ†ต์ ์ธ ์ง€๋„ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๋‹ค๋ฅธ ํ•˜

Image Processing Network Electrical Engineering and Systems Science
No Image

The Illusion of Insight in Reasoning Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ AI ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”์ œ๊ฐ€ ๋œ โ€œ์ถ”๋ก  ์ค‘ โ€˜์•„ํ•˜!โ€™ ์ˆœ๊ฐ„โ€์ด๋ผ๋Š” ํ˜„์ƒ์„ ๊ณผํ•™์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ œ์‹œํ•œ ์‚ฌ๋ก€, ์ฆ‰ DeepSeekโ€‘R1โ€‘Zero๊ฐ€ ์ค‘๊ฐ„ ๋‹จ๊ณ„์—์„œ ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์ „๋žต ์ „ํ™˜์„ ๋ณด์ด๋ฉฐ ์ •๋‹ต์„ ๋„์ถœํ•œ๋‹ค๋Š” ์ฃผ์žฅ์„ ์žฌํ˜„ํ•˜๋ ค ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1๋ฐฑ๋งŒ ๊ฐœ๊ฐ€ ๋„˜๋Š” ์ถ”๋ก  ํŠธ๋ ˆ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ๊ฐ ํŠธ๋ ˆ์ด์Šค์—์„œ ํ† ํฐ ์ˆ˜์ค€์˜ ํ™•๋ฅ  ๋ณ€ํ™”, ๋‚ด๋ถ€ ํ‘œํ˜„์˜ ๋ณ€๋™, ๊ทธ๋ฆฌ๊ณ  ์ถœ๋ ฅ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๊ธฐ๋กํ–ˆ๋‹ค. ๋ถ„์„ ๋Œ€์ƒ์€ ์ž์—ฐ์–ด ์งˆ๋ฌธโ€‘๋‹ต๋ณ€, ์ˆ˜ํ•™ ๋ฌธ์ œ ํ’€์ด, ์ฝ”๋”ฉ ์ƒ์„ฑ์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ๋„๋ฉ”์ธ์œผ๋กœ, ๊ฐ๊ฐ์˜ ๋„๋ฉ”์ธ

Computer Science Artificial Intelligence Model
VEAT Quantifies Implicit Associations in Text-to-Video Generator Sora and Reveals Challenges in Bias Mitigation

VEAT Quantifies Implicit Associations in Text-to-Video Generator Sora and Reveals Challenges in Bias Mitigation

๋ณธ ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธํˆฌ๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธ์ด ์‚ฌํšŒ์  ํŽธํ–ฅ์„ ์–ด๋–ป๊ฒŒ ๋‚ด์žฌํ•˜๊ณ  ์žฌ์ƒ์‚ฐํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ฐํžˆ๋ ค๋Š” ์‹œ๋„๋กœ, ๊ธฐ์กด์˜ Implicit Association Test(IAT)์™€ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ์—ฐ๊ด€์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ๋น„๋””์˜ค ์ž„๋ฒ ๋”ฉ์— ์ ์šฉํ•œ ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. VEAT๋Š” ๋น„๋””์˜ค ํ”„๋ ˆ์ž„๋“ค์˜ ์‹œ๊ฐยท์Œํ–ฅ ํŠน์ง•์„ ๊ณ ์ฐจ์› ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์— ๋งคํ•‘ํ•œ ๋’ค, ๋ชฉํ‘œ ์ง‘๋‹จ(์˜ˆ: ์•„ํ”„๋ฆฌ์นด๊ณ„ ๋ฏธ๊ตญ์ธ, ์œ ๋Ÿฝ๊ณ„ ๋ฏธ๊ตญ์ธ)๊ณผ ์†์„ฑ(pleasant, unpleasant) ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ ์ฐจ์ด๋ฅผ ํšจ๊ณผํฌ๊ธฐ(d)๋กœ ์ธก์ •ํ•œ๋‹ค. SCโ€‘VEAT๋Š” ๋‹จ์ผ ์นดํ…Œ๊ณ ๋ฆฌ(์˜ˆ: ํŠน์ • ์ง์—…)์™€ ๋‘ ์ง‘

Computers and Society Computer Science
An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

๋ณธ ์—ฐ๊ตฌ๋Š” LLM์„ ํ™œ์šฉํ•œ ์ฝ”๋“œ ์ทจ์•ฝ์  ํƒ์ง€์˜ ์‹ค์šฉ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์ธ Retrievalโ€‘Augmented Generation(RAG)์€ ์‚ฌ์ „ ํ•™์Šต๋œ LLM์— ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค๋ฅผ ๋™์ ์œผ๋กœ ์—ฐ๊ฒฐํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, MITRE CWE ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ์ตœ์‹  ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ€์ ธ์™€ ํ”„๋กฌํ”„ํŠธ์— ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ฝ”๋“œ ์กฐ๊ฐ์„ ํ•ด์„ํ•  ๋•Œ ์ตœ์‹  ๋ณด์•ˆ ํŒจํ„ด๊ณผ CWE ์ •์˜๋ฅผ ์ฐธ์กฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ์—”์ง„(FAISS)๊ณผ ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์„ ํ™œ์šฉํ•ด ๊ด€๋ จ ๋ฌธ์„œ๋ฅผ

System Computer Science Software Engineering Detection
Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

๋ณธ ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์— ๋”ฐ๋ฅธ ๋ถ€์ž‘์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„์กฐ์˜ CT ์˜์ƒ๋งŒ์„ ์ด์šฉํ•ด ํ์ƒ‰์ „์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” 3D ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(3Dโ€‘CNN) ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๋‹จ๊ณ„์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์ด ๊ธˆ์ง€๋œ ํ™˜์ž๊ตฐ๊ณผ ๊ธฐ์กด CTPA ์˜์ƒ์—์„œ ๋ผ๋ฒจ๋ง๋œ ํ์ƒ‰์ „์ฆ ์‚ฌ๋ก€๋ฅผ ๋งค์นญ์‹œ์ผœ, ๋น„์กฐ์˜ CT์™€ ๋ผ๋ฒจ ์ •๋ณด๋ฅผ ์ผ์น˜์‹œ์ผฐ๋‹ค. ์ด๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋ฉด์„œ๋„ ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™•๋ณดํ•˜๋Š” ์ „๋žต์ด๋‹ค. ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์ž…๋ ฅ ๋ณผ๋ฅจ์„ 3์ฐจ์›์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ํํ˜ˆ๊ด€ ๋ฐ ์ฃผ๋ณ€ ์กฐ์ง์˜ ๋ฏธ์„ธํ•œ ๋ฐ€๋„ ์ฐจ์ด๋ฅผ

Computer Vision Computer Science Learning
Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์žํ™”๊ฐ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์˜ ์ž๊ธฐ์„ค๋ช…(selfโ€‘explanations, SE) ๋Šฅ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•œ ์ตœ์ดˆ์˜ ์—ฐ๊ตฌ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์–‘์žํ™”๊ฐ€ ๋ชจ๋ธ์˜ ์ถ”๋ก  ์†๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, SE์™€ ๊ฐ™์ด ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์ถ”๋ก  ๊ณผ์ •์„ ์™ธ๋ถ€์— ์„ค๋ช…ํ•˜๋„๋ก ์š”๊ตฌ๋˜๋Š” ๊ณ ์ฐจ์› ์ž‘์—…์— ๋Œ€ํ•œ ์˜ํ–ฅ์€ ๊ฐ„๊ณผ๋˜์–ด ์™”๋‹ค. ์ด ์ ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ SE ์œ ํ˜•, ์ฆ‰ ์ž์—ฐ์–ด ์„ค๋ช…(NLE)๊ณผ ๋ฐ˜์‚ฌ์‹ค ์˜ˆ์‹œ(counterfactual exa

Computer Science NLP Model
Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications

Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications

์ด ๋…ผ๋ฌธ์€ ์˜๋ฏธ๋ก ์  ๋ฒกํ„ฐ ๊ณต๊ฐ„์„ ํŒ€ ์Šคํฌ์ธ  ์ „์ˆ ์— ์ ์šฉํ•œ๋‹ค๋Š” ๋…์ฐฝ์ ์ธ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ์ „์ˆ  ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ํ•™์ˆ ์  ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ์งธ, ์„ ์ˆ˜ ๊ฐœ๊ฐœ์ธ์„ ๋‹ค์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ํ‰๊ฐ€๋ฅผ ๋„˜์–ด, ๊ธฐ์ˆ ยท์‹ ์ฒดยท์‹ฌ๋ฆฌ์  ํŠน์„ฑ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ณตํ•ฉ์ ์ธ ํŠน์„ฑ ํ‘œํ˜„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฆฌ์  ๋ณ€์ˆ˜(์˜ˆ: ๊ฒฝ๊ธฐ ์ง‘์ค‘๋„, ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€)๋ฅผ ์ˆ˜์น˜ํ™”ํ•˜์—ฌ ๋ฒกํ„ฐ์— ํฌํ•จ์‹œํ‚ค๋Š” ์‹œ๋„๋Š” ํ˜„์žฌ ์Šคํฌ์ธ  ๊ณผํ•™์—์„œ ์•„์ง ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์–ด์ง€์ง€ ์•Š์€ ์˜์—ญ์ด๋ฉฐ, ์ „์ˆ ์  ์˜์‚ฌ๊ฒฐ์ •์— ์ธ๊ฐ„์ ์ธ ์š”์†Œ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€

Computer Science Artificial Intelligence
Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

์ด ๋…ผ๋ฌธ์€ ์ปจํฌ๋ฉ€ ์˜ˆ์ธก์ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ถ„ํฌ ๋ณ€๋™(distribution shift)โ€™์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ์ง€๋ฅผ ์ฝ”๋กœ๋‚˜19๋ผ๋Š” ์ „ ์„ธ๊ณ„์  ์ถฉ๊ฒฉ์„ ์ด์šฉํ•ด ์‹ค์ฆ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์—ฐ๊ตฌ์ž๋Š” 8๊ฐœ์˜ ๊ณต๊ธ‰๋ง ๊ด€๋ จ ํƒœ์Šคํฌ๋ฅผ ์„ ์ •ํ•˜๊ณ , ํŒฌ๋ฐ๋ฏน ์ด์ „๊ณผ ์ดํ›„์˜ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ Jaccard ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, Jaccard ์ง€์ˆ˜๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์›Œ ํŠน์ง• ์ž์ฒด๋Š” ๊ฑฐ์˜ ๋ณ€ํ•˜์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์˜ˆ์ธก ๊ตฌ๊ฐ„์˜ ์‹ค์ œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” 0 %์—์„œ 86.7 %๊นŒ์ง€ ๊ทน๋‹จ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ปจํฌ๋ฉ€ ๋ฐฉ๋ฒ•์ด ๋‹จ์ˆœํžˆ ํŠน์ง• ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ๊ฐ

Machine Learning Computer Science
Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S๋Š” ๊ธฐ์กด ๊ฐ€๋“œ๋ ˆ์ผ ๋ชจ๋ธ์ด ์ „์ฒด ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋‹ค์ค‘ํ„ด ๋Œ€ํ™”๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํ† ํฐ ์ˆ˜๊ฐ€ O(nยฒ) ์ˆ˜์ค€์œผ๋กœ ๊ธ‰์ฆํ•˜๋Š”๋ฐ, ์ด๋Š” ํŠนํžˆ 10ํ„ด ์ด์ƒ์œผ๋กœ ๊ธธ์–ด์ง€๋Š” ์‹ค์ œ ์„œ๋น„์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ GPU ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ์‹œ๊ฐ„์˜ ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Multiโ€‘turn to Singleโ€‘turn (M2S)โ€™ ์••์ถ•์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ๋ณ€ํ™˜ ๊ทœ์น™์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ํ„ด์˜ ํ•ต์‹ฌ ๋ฐœํ™”๋งŒ์„ ๋‚จ๊ธฐ๊ณ , ๋Œ€ํ™” ํ๋ฆ„์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ดํ”ˆ(โ€“),

Computer Science NLP Model
Device-Native Autonomous Agents for Privacy-Preserving Negotiations

Device-Native Autonomous Agents for Privacy-Preserving Negotiations

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด ํด๋ผ์šฐ๋“œโ€‘์ค‘์‹ฌ ํ˜‘์ƒ ํ”Œ๋žซํผ์ด ๊ฐ–๋Š” โ€œ๋ฐ์ดํ„ฐ ์ค‘์•™์ง‘์ค‘ โ†’ ๋ณด์•ˆ ์œ„ํ˜‘ โ†’ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ ์ €ํ•˜โ€๋ผ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ฐ”์ด์Šคโ€‘๋„ค์ดํ‹ฐ๋ธŒ( deviceโ€‘native ) ์•„ํ‚คํ…์ฒ˜๋Š” ๋ชจ๋“  ํ˜‘์ƒ ๋กœ์ง๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ์‚ฌ์šฉ์ž์˜ ๋กœ์ปฌ ํ™˜๊ฒฝ์— ๊ฒฉ๋ฆฌํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ํƒˆ์ทจ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ GDPRยทCCPA ๋“ฑ ๋ฐ์ดํ„ฐ ์ฃผ๊ถŒ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ํ˜„์žฌ ์ƒํ™ฉ์—์„œ ๋ฒ•์ ยท๊ทœ์ œ์  ์ปดํ”Œ๋ผ์ด์–ธ์Šค๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ถฉ์กฑํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ๋กœ ์ง€์‹ ์ฆ๋ช…(zeroโ€‘knowl

Computer Science Cryptography and Security
Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

judgeWEL ๋…ผ๋ฌธ์€ ์ €์ž์› ์–ธ์–ด์ธ ๋ฃฉ์…ˆ๋ถ€๋ฅดํฌ์–ด์— ๋Œ€ํ•œ NER ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด๋ผ๋Š” ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ๋‘ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์•ฝํ•œ ๊ฐ๋…์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฒซ์งธ, ์œ„ํ‚คํ”ผ๋””์•„ ๋‚ด๋ถ€ ๋งํฌ์™€ ์œ„ํ‚ค๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™”๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ์—”ํ„ฐํ‹ฐ ์œ ํ˜•์„ ์ž๋™์œผ๋กœ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์‚ฌ์ „ ๋งคํ•‘ ๋ฐฉ์‹๋ณด๋‹ค ํ™•์žฅ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„๋Š” ์ง€์†์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๋ฏ€๋กœ, ์ด ์ ‘๊ทผ๋ฒ•์€ ์ƒˆ๋กœ์šด ์—”ํ„ฐํ‹ฐ๊ฐ€ ๋“ฑ์žฅํ•ด๋„ ๋น„๊ต์  ์‰ฝ๊ฒŒ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ์ž๋™ ๋ผ๋ฒจ๋ง ๋‹จ

Computer Science NLP Data
No Image

FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems

FlashInferโ€‘Bench ๋…ผ๋ฌธ์€ โ€œAIโ€‘generated GPU kernelโ€์ด๋ผ๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ํ๋ฆ„์„ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜ ์„ค๊ณ„๋ผ๋Š” ๊ด€์ ์—์„œ ๋งค์šฐ ์˜๋ฏธ ์žˆ๋Š” ๊ธฐ์—ฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ FlashInfer Trace ๋ผ๋Š” ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์Šคํ‚ค๋งˆ์ด๋‹ค. ๊ธฐ์กด์— LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ๋กœ ์ €์žฅํ•˜๊ณ  ์ธ๊ฐ„์ด ์ˆ˜๋™์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ์‹์€ ํ™•์žฅ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. Trace๋Š” ์ปค๋„ ์ธํ„ฐํŽ˜์ด์Šค(์ž…์ถœ๋ ฅ ํ…์„œ ํ˜•ํƒœ, ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰), ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ(๋ฐฐ์น˜ ํฌ๊ธฐ, ์‹œํ€€์Šค ๊ธธ์ด), ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ(์–ธ์–ด, ์ปดํŒŒ์ผ ์˜ต์…˜)

Computer Science Artificial Intelligence System
No Image

Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations

Mixtureโ€‘ofโ€‘Experts(MoE) ๊ตฌ์กฐ๋Š” ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์ฒœ ๊ฐœ์˜ ์ „๋ฌธ๊ฐ€ ์ค‘ ์ผ๋ถ€๋งŒ์„ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๋ฌธ๊ฐ€๋“ค์ด ์‹ค์ œ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€œ์ „๋ฌธ๊ฐ€ ๋‹ค์–‘์„ฑโ€์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ์ด๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์–ด ์™”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์žฅ ์ง๊ด€์ ์ธ ์ ‘๊ทผ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ๊ฐ€์ค‘์น˜ ์ง๊ต ์†์‹ค์„ ์ ์šฉํ•˜์—ฌ ์ „๋ฌธ๊ฐ€ ๊ฐ„์˜ ๊ธฐํ•˜ํ•™์  ์ฐจ์ด๋ฅผ ๊ฐ•์ œํ•˜๊ณ , ๊ทธ ํšจ๊ณผ๋ฅผ ๋‹ค๊ฐ๋„๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์—์„œ๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„ ์ค‘๋ณต๋„(MSO, Mean Subspace

Machine Learning Computer Science
No Image

Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLM)์˜ ๊ธ‰๊ฒฉํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ์˜๋ฏธ๋ก  ์—ฐ๊ตฌ์— ๋ฏธ์น˜๋Š” ํ•จ์˜๋ฅผ ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋ˆ„์–ด ๊ณ ์ฐฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์€ ๋ฃจํŠธ๋น„ํžˆ ๋น„ํŠธ๊ฒ์Šˆํƒ€์ธ์˜ ํ›„๊ธฐ ์ฒ ํ•™์— ๊ธฐ๋ฐ˜ํ•œ ์‚ฌํšŒ๊ตฌ์„ฑ์ฃผ์˜์  โ€˜์–ธ์–ด๊ฒŒ์ž„โ€™ ์ ‘๊ทผ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ํ™”์ž ๊ฐ„์˜ ๊ด€์Šต์  ์ƒํ˜ธ์ž‘์šฉ๊ณผ ์‚ฌ์šฉ ์ƒํ™ฉ์— ์˜ํ•ด ํ˜•์„ฑ๋œ๋‹ค๊ณ  ๋ณด๋ฉฐ, ์–ด๋– ํ•œ ํ˜•์‹์  ๊ทœ์น™๋„ ์˜๋ฏธ๋ฅผ ์™„์ „ํžˆ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ถ•์€ ์ €์ž๊ฐ€ ์ œ์•ˆํ•œ โ€˜์˜๋ฏธ์žฅ ์ด๋ก (Semantic Field Theory)โ€™์œผ๋กœ, ์–ธ์–ด๋ฅผ ์—ฐ์†์ ์ธ ์˜๋ฏธ ๊ณต๊ฐ„ ์•ˆ์—์„œ ์„œ๋กœ ์–ฝํžŒ

Computer Science NLP
No Image

Latent Flow Matching for Expressive Singing Voice Synthesis

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ฐ€์ฐฝ ์Œ์„ฑ ํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์กฐ๊ฑด๋ถ€ ๋ณ€๋ถ„ ์˜คํ† ์ธ์ฝ”๋”(cVAE) ๊ตฌ์กฐ์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ์žˆ๋‹ค. cVAE๋Š” ํ•™์Šต ์‹œ์— ์‹ค์ œ ๋…น์Œ์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ •๋œ ํ›„๋ฐฉ(latent posterior) ๋ถ„ํฌ์™€, ํ•ฉ์„ฑ ์‹œ์— ์‚ฌ์ „(latent prior) ๋ถ„ํฌ๋ฅผ ๊ฐ๊ฐ ์ด์šฉํ•œ๋‹ค. ์ด ๋‘ ๋ถ„ํฌ๋Š” ์ด๋ก ์ ์œผ๋กœ๋Š” KL ๋ฐœ์‚ฐ์„ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•™์Šต๋˜์ง€๋งŒ, ์‹ค์ œ ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ, ํŠนํžˆ ๊ฐ€์ฐฝ ์Œ์„ฑ์˜ ๋ฏธ์„ธํ•œ ์ง„๋™(๋น„๋ธŒ๋ผํ† )์ด๋‚˜ ์–ต์–‘ ๋ณ€๋™(๋งˆ์ดํฌ๋กœ ํ”„๋กœ์†Œ๋””) ๊ฐ™์€ ๊ณ ์ฃผํŒŒ ๋ณ€๋™์„ ์™„์ „ํžˆ ํฌ์ฐฉํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์‚ฌ์ „ ์ƒ˜ํ”Œ์„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋ฉด ํ›„๋ฐฉ

No Image

Sparse Probabilistic Coalition Structure Generation: Bayesian Greedy Pursuit and $ell_1$ Relaxations

์ด ๋…ผ๋ฌธ์€ ์—ฐํ•ฉ ๊ตฌ์กฐ ์ƒ์„ฑ(CSG) ๋ฌธ์ œ์— โ€˜๊ฐ€์น˜๊ฐ€ ๊ด€์ธก์„ ํ†ตํ•ด ํ•™์Šต๋ผ์•ผ ํ•œ๋‹คโ€™๋Š” ์ƒˆ๋กœ์šด ์ „์ œ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ CSG๋Š” ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ์—ฐํ•ฉ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๊ฐ€์น˜ ํ•จ์ˆ˜๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , ๊ทธ ์œ„์—์„œ ์ตœ์ ์˜ ์—ฐํ•ฉ ๋ถ„ํ• ์„ ์ฐพ๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฌํšŒยท๊ฒฝ์ œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ฐœ๋ณ„ ์—ฐํ•ฉ์˜ ๊ฐ€์น˜๋ฅผ ์ง์ ‘ ์ธก์ •ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๋Œ€์‹  ์—ฌ๋Ÿฌ ์—ํ”ผ์†Œ๋“œ(์˜ˆ: ํ˜‘์ƒ ๋ผ์šด๋“œ, ํ”„๋กœ์ ํŠธ ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ)์—์„œ ์–ป์€ ์ด ๋ณด์ƒ๋งŒ ๊ด€์ฐฐ๋œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ โ€˜ํฌ์†Œ ์„ ํ˜• ํšŒ๊ท€โ€™ ๋ชจ๋ธ๋กœ ์ •ํ˜•ํ™”ํ•œ๋‹ค. ์ฆ‰, ํ•œ ์—ํ”ผ์†Œ๋“œ์˜ ์ด ๋ณด์ƒ Yโ‚œ๋Š” ์†Œ์ˆ˜(K)๊ฐœ

Computer Science Game Theory
VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet์€ ํ˜„์žฌ ์‚ฌ๋žŒ ์žฌ์‹๋ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ์ •ํ™•๋„์™€ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ResNetโ€‘50์˜ ๋„ค ๋‹จ๊ณ„(feature map)๋“ค์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋ฉด์„œ๋„ ๋ณ„๋„์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๋„์ž…ํ•˜์ง€ ์•Š์€ ์ ์ด๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ์ ‘๊ทผ๋ฒ•์ด ํ”ํžˆ ๊ฒช๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํญ์ฆ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ฆ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ์™„ํ™”ํ•œ๋‹ค. ์ž๋™ ์ฃผ์˜(attention) ๋ชจ๋“ˆ์ด ๊ฐ ์Šค์ผ€์ผ๋ณ„ ํŠน์ง•์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์ €ํ•ด์ƒ๋„์—์„œ ์ถ”์ถœ๋œ ์ „์—ญ์ ์ธ ํ˜•ํƒœ ์ •๋ณด์™€ ๊ณ ํ•ด์ƒ๋„์—์„œ ์–ป์–ด์ง€๋Š” ์„ธ

Computer Vision Computer Science Learning

< Category Statistics (Total: 2829) >

Electrical Engineering and Systems Science
100
General
731
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut