KOINEU Logo
AI/ML in 3GPP 5G Advanced -- Services and Architecture

AI/ML in 3GPP 5G Advanced -- Services and Architecture

3GPP๋Š” ์ „ ์„ธ๊ณ„ ์ด๋™ํ†ต์‹  ํ‘œ์ค€์„ ์ •์˜ํ•˜๋Š” ํ•ต์‹ฌ ์กฐ์ง์œผ๋กœ, Release 19์€ โ€˜5G Advancedโ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ๋‹จ๊ณ„์— ์ง„์ž…ํ•˜๋Š” ์ค‘์š”ํ•œ ์ „ํ™˜์ ์ด๋‹ค. ์ด๋ฒˆ ๋ฆด๋ฆฌ์ฆˆ์—์„œ ๋ˆˆ์— ๋„๋Š” ์ ์€ AIยทML ๊ธฐ์ˆ ์„ ๋‹จ์ˆœํžˆ ๋ถ€๊ฐ€ ๊ธฐ๋Šฅ์œผ๋กœ ๋ผ์›Œ๋„ฃ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋„คํŠธ์›Œํฌ ์ž์ฒด์™€ ์„œ๋น„์Šค ์ œ๊ณต ์–‘์ชฝ์„ ๋™์‹œ์— ํ˜์‹ ํ•˜๋Š” ๊ตฌ์กฐ์  ์ ‘๊ทผ์„ ์ฑ„ํƒํ–ˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํŒจ๋Ÿฌ๋‹ค์ž„, ์ฆ‰ โ€˜๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ AI( AI for network )โ€™๋Š” ๊ธฐ์กด 5G ์ธํ”„๋ผ๊ฐ€ ์ง๋ฉดํ•œ ๋ณต์žกํ•œ ์ž์› ๊ด€๋ฆฌ, ํŠธ๋ž˜ํ”ฝ ์˜ˆ์ธก, ์…€ ๊ฐ„ ๊ฐ„์„ญ ์ตœ์†Œํ™” ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ AI ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š”

BEACON: A Unified Behavioral-Tactical Framework for Explainable Cybercrime Analysis with Large Language Models

BEACON: A Unified Behavioral-Tactical Framework for Explainable Cybercrime Analysis with Large Language Models

๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฌ์ด๋ฒ„๋ฒ”์ฃ„ ๋ถ„์„์— ์‹ฌ๋ฆฌํ•™์  ์š”์†Œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋„์ž…ํ•œ ์ตœ์ดˆ์˜ ์‹œ๋„ ์ค‘ ํ•˜๋‚˜๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ์ธํ…”๋ฆฌ์ „์Šค ๋ชจ๋ธ์€ ์ฃผ๋กœ ์•…์„ฑ ์ฝ”๋“œ, ๋„คํŠธ์›Œํฌ ํŠธ๋ž˜ํ”ฝ, ์ทจ์•ฝ์  ์Šค์บ๋‹ ๋“ฑ ๊ธฐ์ˆ ์  ์ง€ํ‘œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”์œผ๋ฉฐ, ๊ณต๊ฒฉ์ž์˜ ์ „์ˆ ยท๊ธฐ์ˆ ยท์ ˆ์ฐจ(TTP)๋ฅผ ๋งคํ•‘ํ•˜๋Š” ๋ฐ๋Š” ์„ฑ๊ณตํ–ˆ์ง€๋งŒ, ํ”ผํ•ด์ž๋ฅผ ์†์ด๋Š” ์ธ๊ฐ„์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ฑฐ๋‚˜ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. BEACON์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ๋‘ ์ถ•์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์€ โ€˜์‹ฌ๋ฆฌ์  ์กฐ์ž‘ ์นดํ…Œ๊ณ ๋ฆฌโ€™๋กœ, Prospect Theory๊ฐ€ ์ œ์‹œํ•˜๋Š” ์†์‹ค ํšŒํ”ผยท

Model Analysis Framework
rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced Strategy Injection

rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced Strategy Injection

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ๋‹จ์ˆœํžˆ ๋Œ€๊ทœ๋ชจ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํŒจํ„ด์„ ํ•™์Šตํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ์‹ค์ œ ์ธ๊ฐ„๊ณผ ์œ ์‚ฌํ•œ โ€œ์ถ”๋ก โ€ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”๋„๋ก ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์ „๋žต ์ฃผ์ž…โ€™์ด๋‹ค. ๊ธฐ์กด์˜ RLHF(Reinforcement Learning from Human Feedback) ๋ฐฉ์‹์€ ๋ณดํ†ต ์ „์ฒด ๋ชจ๋ธ์„ ์ง์ ‘ ๊ฐ•ํ™” ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐ˜๋ฉด, rSIM์€ ์ž‘์€ ํ”Œ๋ž˜๋„ˆ๋ฅผ ๋ณ„๋„ ์—์ด์ „ํŠธ๋กœ ๋‘๊ณ , ์ด ํ”Œ๋ž˜๋„ˆ๊ฐ€ LLM์˜ CoT ๊ณผ์ •์— ์ „๋žต์„ ์‚ฝ์ž…ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. 1. ๋ฆฌ๋”โ€‘ํŒ”๋กœ์›Œ ๊ตฌ์กฐ์™€ MARL ๋ฆฌ๋”(ํ”Œ๋ž˜๋„ˆ)๋Š” ํ˜„์žฌ ์ƒํ™ฉ

Schoenfeld's Anatomy of Mathematical Reasoning by Language Models

Schoenfeld's Anatomy of Mathematical Reasoning by Language Models

ThinkARM์€ ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ํ† ํฐโ€‘๋ ˆ๋ฒจ์˜ ํ™•๋ฅ  ๋ถ„ํฌ๋‚˜ ์†์‹ค ๊ณก์„ ์— ๋จธ๋ฌด๋Š” ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜์–ด, ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ •์„ ๋ชจ๋ธ๋งํ•œ Schoenfeld์˜ ์—ํ”ผ์†Œ๋“œ ์ด๋ก ์„ ์–ธ์–ด ๋ชจ๋ธ์— ์ ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์—ํ”ผ์†Œ๋“œ ์ด๋ก ์€ ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์ผ๋ จ์˜ ์ธ์ง€์  โ€˜๋‹จ๊ณ„โ€™๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ๋‹จ๊ณ„๊ฐ€ ์–ด๋–ป๊ฒŒ ์ „์ด๋˜๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Analysis(๋ฌธ์ œ ๋ถ„์„)โ€™, โ€˜Explore(๊ฐ€๋Šฅ์„ฑ ํƒ์ƒ‰)โ€™, โ€˜Implement(ํ•ด๋ฒ• ๊ตฌํ˜„)โ€™, โ€˜Verify(๊ฒฐ๊ณผ ๊ฒ€์ฆ)โ€™ ๋“ฑ ๊ตฌ์ฒด์ ์ธ ๋ผ๋ฒจ๋กœ ๋งคํ•‘ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ํ๋ฆ„์„ ์ธ๊ฐ„์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ๋ฆ„๋„

Model
TableGPT-R1: Advancing Tabular Reasoning Through Reinforcement Learning

TableGPT-R1: Advancing Tabular Reasoning Through Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ‘œ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์—์„œ ๊ธฐ์กด LLM์ด ์ง๋ฉดํ•œ ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๊ฐ•ํ™”ํ•™์Šต(RL)์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” โ€œ๊ณ ํ’ˆ์งˆ ์—์ด์ „ํŠธ ๊ฒฝ๋กœโ€์˜ ๋ถ€์žฌ์ด๋‹ค. ํ‘œ ์ž‘์—…์€ ์ข…์ข… SQL ์ฟผ๋ฆฌ ์ƒ์„ฑ, ํŒŒ์ด์ฌ ์ฝ”๋“œ ์‹คํ–‰, ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ฝ”๋“œ์™€ ํ™˜๊ฒฝ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌํ•จํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณตํ•ฉ ์ž‘์—…์„ ์‹ค์ œ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›๋Š” ๋ฐ์ดํ„ฐ๋Š” ์ˆ˜์ง‘ ๋น„์šฉ์ด ๋†’๊ณ , ํŠนํžˆ ๋‹ค์–‘ํ•œ ์Šคํ‚ค๋งˆ์™€ ๋ณต์žกํ•œ ์—ฐ์‚ฐ์„ ํฌํ•จํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋”์šฑ ๋“œ๋ฌผ๋‹ค. ์ €์ž๋“ค์€ ๋‚œ์ด๋„โ€‘๊ณ„์ธตํ™”(stratified difficulty) ๋ฐฉ์‹์„

Learning
A Multi-objective Optimization Approach for Feature Selection in Gentelligent Systems

A Multi-objective Optimization Approach for Feature Selection in Gentelligent Systems

๋ณธ ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์— AI ๊ธฐ๋ฐ˜ ์ง€๋Šฅํ˜• ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. โ€œGentelligent systemโ€์ด๋ผ๋Š” ์šฉ์–ด๋Š” ์ƒ๋ฌผํ•™์  ์œ ์ „์ •๋ณด์™€ ์ œ์กฐ ๊ณต์ •(์—ผ์ƒ‰์ฒด) ์‚ฌ์ด์˜ ์œ ์‚ฌ์„ฑ์„ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ, ๊ฐœ๋ณ„ ๋ถ€ํ’ˆ์˜ ๋‚ด์žฌ๋œ ํŠน์„ฑ(์œ ์ „์ž)๊ณผ ์ž๋™ํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๊ฒฐํ•ฉ๋œ ํ†ตํ•ฉ ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ๋…์  ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋ฉฐ, ์‹œ์Šคํ…œ ์ž์ฒด๊ฐ€ ์Šค์Šค๋กœ ์ง„ํ™”ํ•˜๊ณ  ์ตœ์ ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋‚ดํฌํ•œ๋‹ค. ์šฐ์„ธ ๊ธฐ๋ฐ˜ ๋‹ค๋ชฉํ‘œ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜(Dominanceโ€‘based Multiโ€‘objective E

System
AraToken: Optimizing Arabic Tokenization with Normalization Pipeline and Language Extension for Qwen3

AraToken: Optimizing Arabic Tokenization with Normalization Pipeline and Language Extension for Qwen3

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ์ƒํƒœ๊ณ„์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ํ† ํฌ๋‚˜์ด์ €๊ฐ€ ์˜์–ด ์ค‘์‹ฌ์œผ๋กœ ์„ค๊ณ„๋˜์–ด ์žˆ๋‹ค๋Š” ์ ์„ ๋น„ํŒ์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์˜์–ด์™€ ๋‹ฌ๋ฆฌ ์•„๋ž์–ด๋Š” ์–ด๊ทผ๊ณผ ์ ‘์‚ฌ, ์–ด๋ฏธ๊ฐ€ ๋ณตํ•ฉ์ ์œผ๋กœ ๊ฒฐํ•ฉ๋˜๋Š” ํ˜•ํƒœ์†Œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์•Œ๋ฆฌํ”„(ุง)์™€ ์•Œ๋ฆฌํ”„ ๋งˆํฌ(ุฃ, ุฅ, ุข) ๋“ฑ ๋‹ค์–‘ํ•œ ํ‘œ๊ธฐ ๋ณ€ํ˜•, ๋ชจ์Œ ๋ถ€ํ˜ธ(๋‹ค์ด์•„ํฌ๋ฆฌํ‹ฑ), ๊ทธ๋ฆฌ๊ณ  ์•„๋ผ๋น„์•„ ์ธ๋„ ์ˆซ์ž ์ฒด๊ณ„๊ฐ€ ๊ณต์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋‹จ์–ด๋ผ๋„ ๋ฌธ์ž ์ˆ˜์ค€์—์„œ ์—ฌ๋Ÿฌ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ผ๋ฐ˜ ํ† ํฌ๋‚˜์ด์ €๊ฐ€ ์ด๋Ÿฌํ•œ ๋ณ€ํ˜•์„ ๋ฌด์‹œํ•˜๊ณ  ๊ทธ๋Œ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋ฉด, ๋™์ผ ์–ดํœ˜๊ฐ€

Collaborative Edge-to-Server Inference for Vision-Language Models

Collaborative Edge-to-Server Inference for Vision-Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์™€ ์„œ๋ฒ„ ๊ฐ„์˜ ํ˜‘์—…์„ ํ†ตํ•ด ๋น„์ „ ์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ†ต์‹  ๋น„์šฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ VLM ์ถ”๋ก  ๋ฐฉ๋ฒ•์—์„œ๋Š” ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ ์บก์ฒ˜๋œ ์ด๋ฏธ์ง€๋ฅผ ์„œ๋ฒ„๋กœ ์ „์†กํ•˜๊ณ , ์ด ์ด๋ฏธ์ง€๋Š” ์„œ๋ฒ„ ๋‚ด๋ถ€์˜ ๋น„์ „ ์ธ์ฝ”๋”์— ๋งž๊ฒŒ ๋ฆฌ์‚ฌ์ด์ง•๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ณผ์ •์—์„œ ์„ธ๋ฐ€ํ•œ ์‹œ๊ฐ ์ •๋ณด๊ฐ€ ์†์‹ค๋˜์–ด ์ถ”๋ก  ์ •ํ™•๋„๊ฐ€ ์ €ํ•˜๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์„œ๋ฒ„์—์„œ ์ „์ฒด ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์ดˆ๊ธฐ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜๊ณ , VLM ๋‚ด๋ถ€์˜ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„

Model
CoAgent: Collaborative Planning and Consistency Agent for Coherent Video Generation

CoAgent: Collaborative Planning and Consistency Agent for Coherent Video Generation

CoAgent ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธโ€‘ํˆฌโ€‘๋น„๋””์˜ค ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ๊ฐ„ ์ œ๊ธฐ๋˜์–ด ์˜จ โ€œ์ƒท ๊ฐ„ ์ผ๊ด€์„ฑ ๋ถ€์žฌโ€ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๊ธฐ์กด ๋ชจ๋ธ์ด ๊ฐ–๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์ง„๋‹จํ•˜๊ณ  ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ๊ณ„ํšโ€‘ํ•ฉ์„ฑโ€‘๊ฒ€์ฆโ€‘ํŽธ์ง‘ ๋ผ๋Š” ํ์‡„โ€‘๋ฃจํ”„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ธ๊ฐ„ ๊ฐ๋…์ž๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋˜ โ€˜๊ตฌ์ƒ โ†’ ๊ตฌํ˜„ โ†’ ๊ฒ€์ˆ˜ โ†’ ์ˆ˜์ •โ€™ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•œ๋‹ค. ํŠนํžˆ ์Šคํ† ๋ฆฌ๋ณด๋“œ ํ”Œ๋ž˜๋„ˆ๊ฐ€ ์ถ”์ƒ์ ์ธ ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ๋ฅผ โ€œ์—”ํ‹ฐํ‹ฐ(์ธ๋ฌผยท์˜ค๋ธŒ์ ํŠธ)โ€, โ€œ๊ณต๊ฐ„ ๊ด€๊ณ„(์œ„์น˜ยท๊ฑฐ๋ฆฌ)โ€, โ€œ์‹œ๊ฐ„ ๋‹จ์„œ(๋™์ž‘ ์ˆœ์„œยท

World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty

World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธโ€™์ด ์‹ค์ œ ๋ฌผ๋ฆฌ ๋ฒ•์น™๊ณผ ์–ด๊ธ‹๋‚˜๋Š” ํ”„๋ ˆ์ž„์„ ์ƒ์„ฑํ•  ๋•Œ, ์ด๋ฅผ ์‚ฌ์ „์— ์ธ์ง€ํ•˜๊ณ  ๊ฒฝ๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ถ€์žฌํ•˜๋‹ค๋Š” ์ ์ด๋‹ค. ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์ •์ฑ…์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜ ์˜ˆ์ธกํ•  ๋•Œ, ๋ชจ๋ธ์ด ์ƒ์„ฑํ•œ ์˜์ƒ์ด ํ˜„์‹ค๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด๋ฉด ์ž˜๋ชป๋œ ํ–‰๋™ ๊ณ„ํš์„ ์„ธ์šฐ๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋ธ ์ž์ฒด๊ฐ€ โ€œ์–ผ๋งˆ๋‚˜ ํ™•์‹ ์„ ๊ฐ€์ง€๊ณ โ€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. Cยณ๊ฐ€ ์ œ์‹œํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ํ˜์‹ ์€ โ€˜์—„๊ฒฉํžˆ ์ ํ•ฉํ•œ ์Šค์ฝ”์–ด๋ง ๋ฃฐ(strictly proper scoring rules)โ€™์„ ํ™œ์šฉํ•œ๋‹ค

Model
Comparative Analysis of 47 Context-Based Question Answer Models Across 8 Diverse Datasets

Comparative Analysis of 47 Context-Based Question Answer Models Across 8 Diverse Datasets

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ•™์Šต๋œ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์งˆ๋ฌธ์‘๋‹ต(CBQA) ๋ชจ๋ธ์„ ์ถ”๊ฐ€ ํŒŒ์ธํŠœ๋‹ ์—†์ด ๊ทธ๋Œ€๋กœ ์ ์šฉํ–ˆ์„ ๋•Œ์˜ ์ „๋ฐ˜์ ์ธ ์„ฑ๋Šฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ๋‹ค๋Š” ์ ์—์„œ ์‹ค์šฉ์ ์ธ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € 47๊ฐœ์˜ ๋ชจ๋ธ์„ ์„ ์ •ํ•œ ๊ธฐ์ค€์€ Hugging Face ํ”Œ๋žซํผ์— ๊ณต๊ฐœ๋œ ์ตœ์‹  ๋ชจ๋ธ์ด๋ฉฐ, ๋ชจ๋ธ๊ตฐ์€ Transformer ๊ธฐ๋ฐ˜์˜ BERT, RoBERTa, ELECTRA, DeBERTa, ALBERT ๋“ฑ ๋‹ค์–‘ํ•œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํฌ๊ด„ํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํญ๋„“์€ ๋ชจ๋ธ ํ’€์„ ๊ตฌ์ถ•ํ•จ์œผ๋กœ์จ ํŠน์ • ์•„ํ‚คํ…์ฒ˜๊ฐ€ ํŠน์ • ๋„๋ฉ”์ธ์— ํŽธํ–ฅ๋˜๋Š” ํ˜„์ƒ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์ „๋ฐ˜์ ์ธ ํŠธ๋ Œ๋“œ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค

Model Analysis Data
์ •๋ณด ํ๋ฆ„ ๋ฐœ์‚ฐ์„ ์ด์šฉํ•œ ํ•„ํ„ฐยท๋ ˆ์ด์–ด ํ†ตํ•ฉ ์••์ถ• ๊ธฐ๋ฒ•

์ •๋ณด ํ๋ฆ„ ๋ฐœ์‚ฐ์„ ์ด์šฉํ•œ ํ•„ํ„ฐยท๋ ˆ์ด์–ด ํ†ตํ•ฉ ์••์ถ• ๊ธฐ๋ฒ•

์ด ๋…ผ๋ฌธ์€ ์‹ ๊ฒฝ๋ง ์••์ถ• ๋ถ„์•ผ์—์„œ โ€˜์ •๋ณด ํ๋ฆ„ ๋ฐœ์‚ฐโ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”ํŠธ๋ฆญ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ํ”„๋ฃจ๋‹ยท์ถ•์†Œ ๊ธฐ๋ฒ•์ด ๊ฐ–๋Š” ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ํ•„ํ„ฐ ํ”„๋ฃจ๋‹์€ ์ฃผ๋กœ ๊ฐ€์ค‘์น˜ ํฌ๊ธฐ, L1/L2 ์ •๊ทœํ™”, ํ˜น์€ ๊ทธ๋ผ๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ค‘์š”๋„ ์ง€ํ‘œ์— ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐœ๋ณ„ ํ•„ํ„ฐ๊ฐ€ ๋„คํŠธ์›Œํฌ ์ „์ฒด ์ •๋ณด ์ „๋‹ฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋น„ํŒ์„ ๋ฐ›์•„์™”๋‹ค. ๋ฐ˜๋ฉด ์ €์ž๋“ค์€ ํ…์„œ ํ๋ฆ„ ๋ฐœ์‚ฐ์„ ํ†ตํ•ด ๊ฐ ๋ ˆ์ด์–ด๊ฐ€ ์ž…๋ ฅ ์ •๋ณด๋ฅผ ์–ผ๋งˆ๋‚˜ ๋ณ€ํ˜•ยท์†Œ์‹ค์‹œํ‚ค๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ , ์ด ๊ฐ’์„ โ€˜์ •๋ณด ๋ณด์กด๋„โ€™์˜ ์—ญ์œผ๋กœ ํ•ด์„ํ•œ๋‹ค. ๋ฐœ์‚ฐ์ด ๋‚ฎ์€ ํ•„ํ„ฐ๋Š”

Memories Retrieved from Many Paths: A Multi-Prefix Framework for Robust Detection of Training Data Leakage in Large Language Models

Memories Retrieved from Many Paths: A Multi-Prefix Framework for Robust Detection of Training Data Leakage in Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ์›๋ณธ ํ…์ŠคํŠธ๋ฅผ ๊ทธ๋Œ€๋กœ ์ €์žฅํ•˜๋Š” โ€˜๊ธฐ์–ตโ€™ ํ˜„์ƒ์ด ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ์ €์ž‘๊ถŒ ์ธก๋ฉด์—์„œ ์‹ฌ๊ฐํ•œ ์œ„ํ—˜์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ์ ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๊ธฐ์–ต์„ โ€œํŠน์ • ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ถœ๋ ฅโ€ ํ˜น์€ โ€œ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ์ง์ ‘์ ์ธ ๋ณต์ œโ€ ๋“ฑ์œผ๋กœ ์ •์˜ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ •์˜๋Š” ๋ชจ๋ธ์ด ์ •๋ ฌ(align) ๊ณผ์ •์—์„œ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์•ˆ์ „์„ฑ ํ•„ํ„ฐ๋ง์ด๋‚˜ ์ถœ๋ ฅ ์ œํ•œ์„ ๋ฐ›๊ฒŒ ๋˜๋ฉด ์‹ค์ œ ๊ธฐ์–ต ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ธฐ ์–ด๋ ค์›Œ์ง„๋‹ค. ์ฆ‰, ๋‹จ์ผ ํ”„๋กฌํ”„ํŠธ์— ์˜์กดํ•˜๋Š” ๋ฐฉ์‹์€ ๊ธฐ์–ต์ด ์กด์žฌํ•˜๋”๋ผ๋„ ํƒ์ง€๋˜์ง€ ์•Š์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ๋…ผ๋ฌธ

Model Data Framework Detection
RevFFN: Memory-Efficient Full-Parameter Fine-Tuning of Mixture-of-Experts LLMs with Reversible Blocks

RevFFN: Memory-Efficient Full-Parameter Fine-Tuning of Mixture-of-Experts LLMs with Reversible Blocks

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ „์ฒด ํŒŒ์ธํŠœ๋‹(full fineโ€‘tuning) ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด์˜ ํŒŒ์ธํŠœ๋‹ ๋ฐฉ์‹์€ ์—ญ์ „ํŒŒ๋ฅผ ์œ„ํ•ด ๊ฐ ๋ ˆ์ด์–ด์˜ ์ž…๋ ฅ ํ™œ์„ฑ๊ฐ’์„ ์ €์žฅํ•ด์•ผ ํ•˜๋Š”๋ฐ, ๋ชจ๋ธ ๊ทœ๋ชจ๊ฐ€ ์ˆ˜์‹ญ์–ต ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋‹ฌํ•˜๋ฉด ์ด ์ €์žฅ ๋น„์šฉ์ด GPU ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ดˆ๊ณผํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด DeepSpeed์˜ ZeRO(Zero Redundancy Optimizer)๋‚˜ FSDP(Fully Sharded Data Parallel)์™€ ๊ฐ™์€ ๋ถ„์‚ฐ ํ•™์Šต ๊ธฐ๋ฒ•์ด ๊ณ ์•ˆ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋“ค์€ ํŒŒ๋ผ

Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling

Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ํ…Œ์ŠคํŠธโ€‘์‹œ ์Šค์ผ€์ผ๋ง ๊ธฐ๋ฒ•, ํŠนํžˆ MindJourney๊ฐ€ ์ œ์‹œํ•œ ํ–‰๋™โ€‘์กฐ๊ฑด๋ถ€ ์‹œ์  ์ƒ์„ฑ๊ณผ ํœด๋ฆฌ์Šคํ‹ฑ ๊ฒ€์ฆ๊ธฐ์˜ ์กฐํ•ฉ์„ ๋น„ํŒ์  ์‹œ๊ฐ์—์„œ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. ๋จผ์ €, ์ €์ž๋“ค์€ ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„ ์ถ”๋ก  ๋ฒค์น˜๋งˆํฌ(SATโ€‘Real, MMSIโ€‘Bench ๋“ฑ)๋ฅผ ํ™œ์šฉํ•ด ๊ฒ€์ฆ๊ธฐ์˜ ์„ ํƒ ๊ธฐ์ค€์ด ์‹ค์ œ๋กœ ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š”์ง€, ํ˜น์€ ๋‹จ์ˆœํžˆ ์—”ํŠธ๋กœํ”ผ๋ฅผ ๋‚ฎ์ถ”๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌด๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, MindJourney ๊ฒ€์ฆ๊ธฐ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋ณด์ƒ ์‹ ํ˜ธ๋Š” ์‹ค์ œ ์ •๋‹ต ํ™•๋ฅ ๊ณผ ์•ฝํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ฌด์ž‘์œ„ ์ ์ˆ˜ ๋ถ€์—ฌ(random sc

Model
Intelligent Knowledge Mining Framework: Bridging AI Analysis and Trustworthy Preservation

Intelligent Knowledge Mining Framework: Bridging AI Analysis and Trustworthy Preservation

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ๋ฐ์ดํ„ฐ ํญ์ฆ ์†์—์„œ ์–ด๋–ป๊ฒŒ ์˜๋ฏธ ์žˆ๋Š” ์ง€์‹์„ ์ถ”์ถœํ•˜๊ณ , ๋™์‹œ์— ๊ทธ ์ง€์‹์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์žฅํ•  ๊ฒƒ์ธ๊ฐ€โ€์ด๋‹ค. ํ˜„์žฌ ๊ธฐ์—…ยท์—ฐ๊ตฌ๊ธฐ๊ด€ยท๊ณต๊ณต ๋ถ€๋ฌธ์—์„œ๋Š” ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๊ตฌ์กฐํ™”ยท๋น„๊ตฌ์กฐํ™” ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ๊ฐ ๋ณ„๋„ ์‹œ์Šคํ…œ์— ์ €์žฅํ•˜๊ณ  ์žˆ๋‹ค. ๋ฐ์ดํ„ฐ ๋ ˆ์ดํฌ, ๋ฌธ์„œ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ, ๋กœ๊ทธ ํŒŒ์ผ ๋“ฑ์€ ์„œ๋กœ ๋‹ค๋ฅธ ์Šคํ‚ค๋งˆ์™€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ํ‘œ์ค€์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ฐ์ดํ„ฐ ๊ฐ„ ์—ฐ๊ณ„์™€ ์žฌํ™œ์šฉ์ด ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅ์— ๊ฐ€๊น๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ AIยทML ๋ชจ๋ธ์€ ํ’๋ถ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ํ’ˆ์งˆยท์ถœ์ฒ˜ยท๋ฒ„์ „ ๊ด€๋ฆฌ๊ฐ€ ๋ฏธ๋น„ํ•˜๋ฉด ๋ชจ๋ธ์˜ ์‹ 

Analysis Framework
Towards Mass Spectrum Analysis with ASP

Towards Mass Spectrum Analysis with ASP

์ด ๋…ผ๋ฌธ์€ Answer Set Programming (ASP)์„ ์ด์šฉํ•ด ์งˆ๋Ÿ‰ ๋ถ„์„๋ฒ•์œผ๋กœ ์–ป์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํƒ์ง€ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ASP๋Š” ๋ณต์žกํ•œ ์กฐํ•ฉ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ธฐ์ˆ ๋กœ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ํ†ตํ•ด ๋ถ„์ž์˜ ์›์†Œ ๊ตฌ์„ฑ๊ณผ ๊ตฌ์กฐ์  ์กฐ๊ฐ์˜ ์ƒ๋Œ€์  ํ’๋ถ€๋„๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์•ฝํ•˜๊ธฐ ์œ„ํ•ด ์บ๋…ผ์  ํ‘œํ˜„์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜๊ณ  ์ด๋ฅผ ASP์— ํ†ตํ•ฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์บ๋…ผ์  ํ‘œํ˜„์€ ๋ถ„์ž์˜ ๋‹ค์–‘ํ•œ ํ‘œํ˜„

Analysis
Toward Training Superintelligent Software Agents through Self-Play SWE-RL

Toward Training Superintelligent Software Agents through Self-Play SWE-RL

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ โ€œ์ธ๊ฐ„ ๋ผ๋ฒจ๋ง ์˜์กด์„ฑโ€์ด๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ฝ”๋”ฉ ๋ณด์กฐ ์‹œ์Šคํ…œ์€ GitHub ์ด์ŠˆยทPR, ํ…Œ์ŠคํŠธ ์Šค์œ„ํŠธ ๋“ฑ ์ธ๊ฐ„์ด ๋งŒ๋“  ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ์–‘์งˆ์ด์ง€๋งŒ, ๊ทœ๋ชจ์™€ ๋‹ค์–‘์„ฑ ๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋ฉฐ, ์ธ๊ฐ„์˜ ํŽธํ–ฅ๊ณผ ์˜ค๋ฅ˜๊ฐ€ ๊ทธ๋Œ€๋กœ ๋ชจ๋ธ์— ์ „์ด๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. SSR์€ ์ด๋Ÿฌํ•œ ์ „์ œ์กฐ๊ฑด์„ ์™„์ „ํžˆ ๋ฐฐ์ œํ•˜๊ณ , ์˜ค์ง โ€œ์ฝ”๋“œ์™€ ๊ทธ ์‹คํ–‰ ํ™˜๊ฒฝโ€๋งŒ์„ ์ž…๋ ฅ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ์ด๋Š” ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ํ˜์‹ ์„ ๋‚ดํฌํ•œ๋‹ค. ์ฒซ์งธ,

Fragile Knowledge, Robust Instruction-Following: The Width Pruning Dichotomy in Llama-3.2

Fragile Knowledge, Robust Instruction-Following: The Width Pruning Dichotomy in Llama-3.2

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ์‹  ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์ธ ๋ผ๋งˆ3์ 2 ์‹œ๋ฆฌ์ฆˆ์— ๋Œ€ํ•ด GLUโ€‘MLP ๋ ˆ์ด์–ด์˜ ํญ์„ ๊ตฌ์กฐ์ ์œผ๋กœ ์ถ•์†Œํ•˜๋Š” โ€˜ํญ ํ”„๋ฃจ๋‹โ€™์„ ์ ์šฉํ•˜๊ณ , ๊ทธ ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•œ ์ตœ์ดˆ์˜ ์‹œ๋„๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”„๋ฃจ๋‹ ๊ธฐ์ค€์œผ๋กœ ์‚ฌ์šฉ๋œ ์ตœ๋Œ€ ์ ˆ๋Œ€ ๊ฐ€์ค‘์น˜(MAW) ๊ธฐ์ค€์€ ๊ฐ ๋‰ด๋Ÿฐ์˜ ๊ฐ€์ค‘์น˜ ์ ˆ๋Œ€๊ฐ’ ์ค‘ ๊ฐ€์žฅ ํฐ ๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์ค‘์š”๋„๋ฅผ ํŒ๋‹จํ•˜๋Š” ๋‹จ์ˆœํ•˜๋ฉด์„œ๋„ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์ „์ฒด ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ด๋ฉด์„œ๋„ ํ•ต์‹ฌ ์—ฐ์‚ฐ ํ๋ฆ„์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ํ™•์žฅ ๋น„์œจ(expansion ratio)์„ 7๋‹จ๊ณ„๋กœ ์กฐ์ ˆํ–ˆ์œผ๋ฉฐ, ๊ฐ ๋‹จ๊ณ„๋งˆ๋‹ค MML

TradeTrap: Are LLM-based Trading Agents Truly Reliable and Faithful?

TradeTrap: Are LLM-based Trading Agents Truly Reliable and Faithful?

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ž๋™ ํŠธ๋ ˆ์ด๋”ฉ ์—์ด์ „ํŠธ๊ฐ€ ์‹ค์ œ ๊ธˆ์œต ์‹œ์žฅ์— ์ ์šฉ๋  ๋•Œ ์ง๋ฉดํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ทจ์•ฝ์„ฑ์„ ์ตœ์ดˆ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์˜ˆ์ธก ์ •ํ™•๋„๋‚˜ ์ „๋žต ํšจ์œจ์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์™ธ๋ถ€ ๊ต๋ž€์ด๋‚˜ ๋‚ด๋ถ€ ์˜ค๋ฅ˜๊ฐ€ ์—์ด์ „ํŠธ ์ „์ฒด์— ๋ฏธ์น˜๋Š” ํŒŒ๊ธ‰ ํšจ๊ณผ๋Š” ์ถฉ๋ถ„ํžˆ ํƒ๊ตฌ๋˜์ง€ ์•Š์•˜๋‹ค. TradeTrap์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ๋„ค ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ตฌ์„ฑ ์š”์†Œโ€”์‹œ์žฅ ์ธํ…”๋ฆฌ์ „์Šค, ์ „๋žต ํฌ๋ฎฌ๋ ˆ์ด์…˜, ํฌํŠธํด๋ฆฌ์˜คยท์›์žฅ ๊ด€๋ฆฌ, ํŠธ๋ ˆ์ด๋“œ ์‹คํ–‰โ€”๋ฅผ ๋…๋ฆฝ์ ์ธ ๊ณต๊ฒฉ ํ‘œ๋ฉด์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์ •

Large Language Models for Education and Research: An Empirical and User Survey-based Analysis

Large Language Models for Education and Research: An Empirical and User Survey-based Analysis

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ์ฃผ๋ชฉ๋ฐ›๋Š” ๋‘ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ธ ChatGPT์™€ DeepSeek์„ ๊ต์œก ๋ฐ ์—ฐ๊ตฌ ํ˜„์žฅ์—์„œ์˜ ์‹ค์ œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ค‘์‹ฌ์œผ๋กœ ๋น„๊ตยท๋ถ„์„ํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฐฐ๊ฒฝ ๊ธฐ์ˆ  ๋ถ„์„ ๋‹จ๊ณ„์—์„œ๋Š” ๋‘ ๋ชจ๋ธ์˜ ์•„ํ‚คํ…์ฒ˜์™€ ํ•™์Šต ๋ฐ์ดํ„ฐ, ํŒŒ์ธํŠœ๋‹ ์ „๋žต์„ ์ƒ์„ธํžˆ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ChatGPT๋Š” OpenAI๊ฐ€ ๊ฐœ๋ฐœํ•œ ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜์˜ ๊ฑฐ๋Œ€ ๋ชจ๋ธ๋กœ, ๋ฐฉ๋Œ€ํ•œ ์›น ํ…์ŠคํŠธ์™€ ์ธ๊ฐ„ ํ”ผ๋“œ๋ฐฑ์„ ํ™œ์šฉํ•œ Reinforcement Learning from Human Feedback(RLHF) ๊ณผ์ •์„ ๊ฑฐ์ณ ์–ธ์–ด ์ดํ•ด์™€ ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ๊ทน๋Œ€ํ™”ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด DeepSeek์€ ํšจ

Model Analysis
Scalable Offline Model-Based RL with Action Chunks

Scalable Offline Model-Based RL with Action Chunks

์ด ์—ฐ๊ตฌ๋Š” ์˜คํ”„๋ผ์ธ ๊ฐ•ํ™”ํ•™์Šต์—์„œ โ€œ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ฐ€์น˜ ํ™•์žฅโ€์ด๋ผ๋Š” ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ๋„˜์–ด๊ฐ„๋‹ค. ์ „ํ†ต์ ์ธ MBVE๋Š” ํ˜„์žฌ ์ •์ฑ…์„ ์‚ฌ์šฉํ•ด ๊ฐ€์ƒ์˜ ํŠธ๋žœ์ง€์…˜์„ n ๋‹จ๊ณ„๊นŒ์ง€ ์—ฐ์žฅํ•˜๊ณ , ๊ทธ ๋์ ์—์„œ ์–ป์€ ๋ณด์ƒ๊ณผ ๋ถ€ํŠธ์ŠคํŠธ๋žฉ๋œ ๊ฐ€์น˜ ์ถ”์ •์น˜๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. n์ด ํด์ˆ˜๋ก ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์žฅ๊ธฐ ๊ฐ€์น˜์— ๋Œ€ํ•œ ํŽธํ–ฅ์ด ๊ฐ์†Œํ•˜์ง€๋งŒ, ํ•™์Šต๋œ ๋™์—ญํ•™ ๋ชจ๋ธ์˜ ์˜ค์ฐจ๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ๋ˆ„์ ๋˜๋Š” โ€˜์˜ค์ฐจ ๋ณตํ•ฉํ™”โ€™ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ํŠนํžˆ ๋ณต์žกํ•œ ๋ฌผ๋ฆฌ ์—”์ง„์ด๋‚˜ ๊ณ ์ฐจ์› ๊ด€์ธก์„ ๋‹ค๋ฃจ๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” ์ž‘์€ ๋ชจ๋ธ ์˜ค์ฐจ๋„ ๋ช‡ ๋‹จ๊ณ„ ๋’ค์—๋Š” ํฌ๊ฒŒ ์ฆํญ๋ผ ๊ฐ€์น˜ ์ถ”์ •์ด ๋ฌด

Model
Admissibility Alignment

Admissibility Alignment

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” โ€˜ํ—ˆ์šฉ๊ฐ€๋Šฅ์„ฑ ์ •๋ ฌ(Admissibility Alignment)โ€™ ๊ฐœ๋…์€ AI ์ •๋ ฌ ์—ฐ๊ตฌ์˜ ๊ธฐ์กด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์ธ ์ •๋ ฌ ์ ‘๊ทผ๋ฒ•์€ ์ฃผ๋กœ ๊ฐ€์น˜ ํ•จ์ˆ˜๋‚˜ ๋ชฉํ‘œ๋ฅผ ๋ชจ๋ธ ๋‚ด๋ถ€์— ์ง์ ‘ ์‚ฝ์ž…ํ•˜๊ฑฐ๋‚˜, ์‚ฌ์ „ ์ •์˜๋œ ๊ทœ์น™์„ ํ†ตํ•ด ์ถœ๋ ฅ ์ž์ฒด๋ฅผ ์ œํ•œํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์ด ํ•™์Šต ๊ณผ์ •์—์„œ ๋‚ด์žฌํ™”๋œ ํŽธํ–ฅ์ด๋‚˜ ๋ชฉํ‘œ ๋ณ€ํ˜•์„ ์™„์ „ํžˆ ์ฐจ๋‹จํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ์žฅ๊ธฐ์ ยท๋ถˆํ™•์‹คํ•œ ํ™˜๊ฒฝ์—์„œ โ€˜์˜ˆ์ธกโ€™๊ณผ โ€˜ํ–‰๋™โ€™ ์‚ฌ์ด์˜ ๊ฐ„๊ทน์„ ๋ฉ”์šฐ์ง€ ๋ชปํ–ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด ๊ฐ„๊ทน์„ โ€˜์ •

DARC: Drum accompaniment generation with fine-grained rhythm control

DARC: Drum accompaniment generation with fine-grained rhythm control

DARC๋Š” ํ˜„์žฌ ์Œ์•… ์ƒ์„ฑ ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋ฌธ์ œ์ , ์ฆ‰ โ€˜๊ตฌ์กฐ์  ์ œ์–ด์™€ ์Šคํƒ€์ผ์  ์ž์œ  ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€™๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด์†Œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์Šคํ…œโ€‘ํˆฌโ€‘์Šคํ…œ ์ ‘๊ทผ๋ฒ•์€ ์•…๊ธฐ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐ˜์˜ํ•ด ์กฐํ™”๋กœ์šด ๋ฐ˜์ฃผ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ฆฌ๋“ฌ ํŒจํ„ด์„ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์ง€์ •ํ•˜๊ฑฐ๋‚˜ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๊ธฐ๋Š” ์–ด๋ ค์› ๋‹ค. ๋ฐ˜๋Œ€๋กœ timbreโ€‘transfer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ๋งŒ๋“  ๋น„ํŠธ๋ฐ•์‹ฑยทํƒญํ•‘ ๊ฐ™์€ ๋ฆฌ๋“ฌ ์‹œํ€€์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ทธ ๋ฆฌ๋“ฌ์ด ํ˜„์žฌ ์ง„ํ–‰ ์ค‘์ธ ํ™”์„ฑยท๋ฉœ๋กœ๋””์™€ ์–ผ๋งˆ๋‚˜ ์ž˜ ๋งž๋Š”์ง€๋Š” ๋ณด์žฅ๋˜์ง€ ์•Š๋Š”๋‹ค. DARC๋Š” ์ด ๋‘

Computer Science Sound
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jeniusโ€‘Agent ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLMโ€‘๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์‹คํ–‰ ๊ฐ€์‹œ์„ฑ ๋ถ€์กฑโ€์ด๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ์ตœ์ข… ์ถœ๋ ฅ๋งŒ์„ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ์‚ผ์•„, ์—์ด์ „ํŠธ๊ฐ€ ๋‚ด๋ถ€์ ์œผ๋กœ ์–ด๋–ค ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์–ด๋–ค ๋„๊ตฌ๋ฅผ ์–ธ์ œ ํ˜ธ์ถœํ–ˆ๋Š”์ง€, ์ƒํƒœ๋ฅผ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธํ–ˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•  ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋กœ ์ธํ•ด ๊ฐœ๋ฐœ์ž๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ์ถ”์ ํ•˜๊ธฐ ์œ„ํ•ด ๋กœ๊ทธ๋ฅผ ์ผ์ผ์ด ์ˆ˜์ž‘์—…์œผ๋กœ ๋ถ„์„ํ•ด์•ผ ํ•˜๋ฉฐ, ์žฌํ˜„์„ฑ๋„ ๋–จ์–ด์ง„๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” โ€œ์žฅ๊ธฐยท๋„๊ตฌโ€‘๋ณด๊ฐ• ์ž‘์—…์—์„œ์˜ ๋ถˆ์•ˆ์ •์„ฑโ€์ด๋‹ค. LLM์€ ์งง์€ ์ปจํ…์ŠคํŠธ์—์„œ๋Š” ๋›ฐ์–ด๋‚œ

Computer Science Artificial Intelligence
No Image

Nodule-DETR: A Novel DETR Architecture with Frequency-Channel Attention for Ultrasound Thyroid Nodule Detection

๊ฐ‘์ƒ์„ ์•”์€ ๋‚ด๋ถ„๋น„๊ณ„ ์•” ์ค‘ ๊ฐ€์žฅ ํ”ํ•˜๋ฉฐ, ์กฐ๊ธฐ ๋ฐœ๊ฒฌ์ด ์น˜๋ฃŒ ์„ฑ๊ณต๋ฅ ์„ ํฌ๊ฒŒ ์ขŒ์šฐํ•œ๋‹ค. ํ˜„์žฌ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์ดˆ์ŒํŒŒ๋Š” ๋น„์นจ์Šต์ ์ด๋ฉฐ ๋น„์šฉ ํšจ์œจ์ ์ธ ์˜์ƒ modality๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์ง€๋งŒ, ์ดˆ์ŒํŒŒ ํŠน์„ฑ์ƒ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ๋‚ฎ๊ณ , ๊ฒฐ์ ˆ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ฆฟํ•ด radiologist์˜ ์ฃผ๊ด€์  ํŒ๋‹จ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ž๋™ ๊ฒ€์ถœ ์‹œ์Šคํ…œ์ด ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ์œผ๋‚˜, ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ๋‹ค์ค‘ ์Šค์ผ€์ผ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜, ์ž‘์€ ๊ฒฐ์ ˆ์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๊ฐ€ ๋–จ์–ด์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์ด ์ œ์•ˆํ•˜๋Š” No

Detection
Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization

Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization

Yukthi Opus(YO)๋Š” ๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ ์„ค๊ณ„์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” โ€˜์ „์—ญ ํƒ์ƒ‰๊ณผ ์ง€์—ญ ํƒ์ƒ‰์˜ ๊ท ํ˜•โ€™ ๋ฌธ์ œ๋ฅผ ์„ธ ๋‹จ๊ณ„ ๊ตฌ์กฐ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•จ์œผ๋กœ์จ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ ˆ์ด์–ด์ธ MCMC ๊ธฐ๋ฐ˜ ์ „์—ญ ํƒ์ƒ‰์€ ํ™•๋ฅ ์  ์ „์ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ด์šฉํ•ด ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ๊ท ๋“ฑํ•˜๊ฒŒ ์ƒ˜ํ”Œ๋งํ•˜๊ณ , ์ดˆ๊ธฐ ๋ฒˆ์ธ ๋‹จ๊ณ„์—์„œ ์ถฉ๋ถ„ํžˆ ๋‹ค์–‘ํ•œ ์˜์—ญ์„ ๋ฐฉ๋ฌธํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋•Œ ๋ธ”๋ž™๋ฆฌ์ŠคํŠธ๋ฅผ ๋„์ž…ํ•ด ์ด๋ฏธ ๋‚ฎ์€ ํ’ˆ์งˆ์„ ๋ณด์ธ ์ง€์—ญ์„ ์žฌ๋ฐฉ๋ฌธํ•˜์ง€ ์•Š๊ฒŒ ํ•จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์ ์ด ๋ˆˆ์— ๋ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ ˆ์ด์–ด๋Š” ์ „ํ†ต์ ์ธ ํƒ์š•์  ๋กœ์ปฌ ์„œ์น˜๋ฅผ ์ ์šฉํ•ด ํ˜„์žฌ ์œ„์น˜์—์„œ ๊ฐ€

Computer Science Neural Computing
No Image

A construction of an optimal base for conditional attribute and attributional condition implications in triadic contexts

์‚ผ์ค‘ ์ปจํ…์ŠคํŠธ๋Š” ์ „ํ†ต์ ์ธ ์ดํ•ญ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด ๊ฐ์ฒดโ€‘์†์„ฑโ€‘์กฐ๊ฑด์ด๋ผ๋Š” ์„ธ ์ฐจ์›์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋กœ, ์ง€์‹ ๋ฐœ๊ฒฌ ๋ฐ ์˜๋ฏธ๋ก ์  ๋ถ„์„์— ์žˆ์–ด ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋‹ค์ฐจ์› ๊ตฌ์กฐ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ดํ•ญ ์ปจํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ•จ์ถ•(implication) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ๊ธฐ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํŠนํžˆ ์กฐ๊ฑด ์†์„ฑ(conditional attribute)๊ณผ ๊ท€์† ์กฐ๊ฑด(attributional condition)์ด๋ผ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ํ•จ์ถ•์ด ๋™์‹œ์— ์กด์žฌํ•  ๊ฒฝ์šฐ, ์„œ๋กœ ์–ฝํžˆ๋Š” ์ „์ œ์™€ ๊ฒฐ๋ก  ์‚ฌ์ด์˜ ์ค‘๋ณต ๋ฐ ๋ถˆํ•„์š”ํ•œ ํ•จ์ถ•์ด ๊ธ‰์ฆํ•˜์—ฌ ํšจ์œจ

Computer Science Artificial Intelligence
Accelerating Storage-Based Training for Graph Neural Networks

Accelerating Storage-Based Training for Graph Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ํ•™์Šต์„ ๋Œ€๊ทœ๋ชจ ์‹ค์„ธ๊ณ„ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€ ์Šคํ† ๋ฆฌ์ง€๋ฅผ ํ™œ์šฉํ•˜๋Š” โ€˜์Šคํ† ๋ฆฌ์ง€ ๊ธฐ๋ฐ˜โ€™ ์ ‘๊ทผ๋ฒ•์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด NVMe SSD์™€ ๊ฐ™์€ ๊ณ ์† ์ €์žฅ์†Œ๋ฅผ ์ด์šฉํ–ˆ์ง€๋งŒ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ๋งค์šฐ ๋ถˆ๊ทœ์น™ํ•˜๊ณ  ์—ฃ์ง€์™€ ๋…ธ๋“œ๊ฐ€ ์ˆ˜๋ฐฑ๋งŒ~์ˆ˜์‹ญ์–ต ์ˆ˜์ค€์œผ๋กœ ๋ถ„์‚ฐ๋ผ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์‹ญ๋งŒ~์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ์ž‘์€ I/O ์š”์ฒญ์„ ํšจ์œจ์ ์œผ๋กœ ๋ณ‘ํ•ฉํ•˜๊ฑฐ๋‚˜ ์Šค์ผ€์ค„๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์†Œํ˜• I/O ํญ์ฃผโ€™๋Š” ์Šคํ† ๋ฆฌ์ง€์˜ ์ˆœ์ฐจ ์ „์†ก ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ๊ฒฐ

Machine Learning Computer Science Network
Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python

Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python

๋ณธ ๋…ผ๋ฌธ์€ LLM๊ณผ ์ „ํ†ต์ ์ธ ์ •์  ๋ถ„์„ ๋„๊ตฌ(SAST)์˜ ์ทจ์•ฝ์  ํƒ์ง€ ๋Šฅ๋ ฅ์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ ํ”„๋ ˆ์ž„์›Œํฌ์ธ ALPHA๋ฅผ ์„ค๊ณ„ํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ด์ง„ ๋ถ„๋ฅ˜ ๊ธฐ๋ฐ˜ ๋ฒค์น˜๋งˆํฌ๋Š” โ€œ์ทจ์•ฝ์  ์กด์žฌ ์—ฌ๋ถ€โ€๋งŒ์„ ํŒ๋‹จํ•˜๋„๋ก ์ œํ•œ๋ผ, ๊ฐœ๋ฐœ์ž๊ฐ€ ์‹ค์ œ ์ฝ”๋“œ ์ˆ˜์ •์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์ฒด์ ์ธ CWE(CWEโ€‘Common Weakness Enumeration) ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ALPHA๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ํ•จ์ˆ˜ ์ˆ˜์ค€์—์„œ CWE ๋ ˆ์ด๋ธ”์„ ๋ถ€์—ฌํ•˜๊ณ , ์˜ค๋ฅ˜ ์œ ํ˜•์„ ์„ธ ๊ฐ€์ง€ ๊ณ„์ธต์  ํŒจ๋„ํ‹ฐ(

Computer Science Software Engineering
Data Complexity-aware Deep Model Performance Forecasting

Data Complexity-aware Deep Model Performance Forecasting

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฐ์ดํ„ฐ ๋ณต์žก๋„ ์ธ์‹ ๋”ฅ ๋ชจ๋ธ ์„ฑ๋Šฅ ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ, ๋ชจ๋ธ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฌ์ „์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ฐ์ดํ„ฐ ์ž์ฒด์˜ ํ†ต๊ณ„์ ยท๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ ์ด์Šค๋ผ์ธ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์‚ฐ, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•, ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„, ํ…์ŠคํŠธ ๊ธธ์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฉ”ํŠธ๋ฆญ์ด ํฌํ•จ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋ณต์žก๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ ˆ์ด์–ด ์ˆ˜, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ, ์—ฐ์‚ฐ๋Ÿ‰)์™€ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(ํ•™์Šต๋ฅ , ๋ฐฐ์น˜

Computer Science Data Machine Learning Model
No Image

DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving

DrivingGen ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” โ€˜์ƒ์„ฑ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธโ€™ ์—ฐ๊ตฌ์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ๋ถ€์žฌํ•จ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ PSNR, SSIM, LPIPS์™€ ๊ฐ™์€ ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ํ’ˆ์งˆ ์ง€ํ‘œ์— ์˜์กดํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋Š” ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์ฐจ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ๋ฟ, ์ž์œจ์ฃผํ–‰์— ํ•„์ˆ˜์ ์ธ ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ์•ˆ์ „์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฐจ๋Ÿ‰์ด ๊ฐ‘์ž๊ธฐ ์‚ฌ๋ผ์ง€๊ฑฐ๋‚˜ ๋ณดํ–‰์ž๊ฐ€ ๋น„ํ˜„์‹ค์ ์ธ ์†๋„๋กœ ์›€์ง์ด๋Š” ๊ฒฝ์šฐ, ์‹œ๊ฐ์ ์œผ๋กœ๋Š” ๋†’์€ SSIM์„ ๊ธฐ๋กํ•˜๋”๋ผ๋„ ์‹ค์ œ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ

Computer Science Model Computer Vision
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅยท๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” โ€œํ…”๋ ˆ์˜คโ€‘์ŠคํŽ˜์ด์…œ ์ธํ…”๋ฆฌ์ „์Šค(TSI)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฌผ์ฒดโ€‘์ค‘์‹ฌ(objectโ€‘centric) ์ ‘๊ทผ์„ ์ทจํ•ด, ๋ฌผ๋ฆฌโ€‘๋™์—ญํ•™(Physicalโ€‘Dynamic) ๋ชจ๋ธ๋ง์— ์ง‘์ค‘ํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€, ๋ฌผ์ฒด์˜ ์งˆ๋Ÿ‰ยท๋งˆ์ฐฐยท์ถฉ๋Œ ๋ฒ•์น™์„ ์ด์šฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜, ๋น„์ „ ๊ธฐ๋ฐ˜ ํŠธ๋ž˜ํ‚น์„ ํ†ตํ•ด ์›€์ง์ž„์„ ์˜ˆ์ธกํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ •๋Ÿ‰์  ์ •ํ™•๋„์—์„œ๋Š” ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ์ธ๊ฐ„์ด ๋ฌผ์ฒด๋ฅผ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋ฐฐ์น˜ํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ โ€˜์˜๋„โ€™๋ฅผ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. TSI๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ

Computer Vision Computer Science Data
Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks

Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks

MOTIF๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Objectiveโ€‘C ๋Ÿฐํƒ€์ž„ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด ๋ฉ”์„œ๋“œ ํ˜ธ์ถœ ๊ด€๊ณ„์™€ ํด๋ž˜์Šค ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ์ถ”์ถœํ•˜๋Š” โ€˜๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ชจ๋“ˆโ€™์ด๋‹ค. ์ด ๋ชจ๋“ˆ์€ dyld shared cache์™€ Machโ€‘O ๋ฐ”์ด๋„ˆ๋ฆฌ๋ฅผ ๋™์ ์œผ๋กœ ๋กœ๋“œํ•˜๊ณ , objc getClass, method getImplementation ๋“ฑ์˜ ๋Ÿฐํƒ€์ž„ API๋ฅผ ํ˜ธ์ถœํ•ด ์‹ค์ œ ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ์™€ ์‹ฌ๋ณผ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•œ๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ์ •๊ทœํ™”๋˜์–ด ์ดํ›„ ๋‹จ๊ณ„์— ์ „๋‹ฌ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ํŒŒ์ธํŠœ๋‹๋œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด๋‹ค. ์—ฐ๊ตฌํŒ€์€

Computer Science Framework Cryptography and Security
No Image

FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation

FALCON ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ถ„์•ผ๊ฐ€ ์ง๋ฉดํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ผ๋ฒจ ๋ฐ์ดํ„ฐ์˜ ํฌ์†Œ์„ฑ, ํ™˜์ž ๊ฐ„ ํ•ด๋ถ€ํ•™์  ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ์‹ค์‹œ๊ฐ„ ์ž„์ƒ ์ ์šฉ์„ ์œ„ํ•œ ์—ฐ์‚ฐ ํšจ์œจ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ โ€œ๋ฉ”ํƒ€โ€‘ํ•™์Šต โ†’ ์ ๋Œ€์  ํŒŒ์ธํŠœ๋‹ โ†’ ๊ฒฝ๊ณ„ ์ธ์‹ ํ•™์Šตโ€์ด๋ผ๋Š” 3๋‹จ๊ณ„ ์ „์ด ์ „๋žต์ด๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ž์—ฐ ์ด๋ฏธ์ง€(์˜ˆ: PASCALโ€‘5โฑ, COCOโ€‘20โฑ)๋กœ ๋ฉ”ํƒ€โ€‘๋Ÿฌ๋‹์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ, ๋‹ค์–‘ํ•œ ํด๋ž˜์Šค์™€ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ์ƒํ™ฉ์—์„œ๋„ ๋น ๋ฅด๊ฒŒ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜ํ•™์Šตโ€‘ํ•™์Šตโ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌ์ถ•ํ•œ๋‹ค.

Computer Vision Computer Science Learning
HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ œ์–ด์— ์žˆ์–ด ๊ฐ•ํ™”ํ•™์Šต(RL)์ด ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ ๋’ค, JEPA ๊ธฐ๋ฐ˜ ์ž๊ธฐ์ง€๋„ ํ•™์Šต์ด ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด RL ์ ‘๊ทผ๋ฒ•์€ ๋ณด์ƒ ์„ค๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ˜น์€ ์‹ค์ œ ๋„๋กœ์—์„œ ์ˆ˜๋ฐฑ๋งŒ ๋‹จ๊ณ„์— ๋‹ฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํŠนํžˆ ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋ชฉํ‘œ๋Š” ๊ณ ์ฐจ์› ์ž…๋ ฅ ๊ณต๊ฐ„์—์„œ ์žก์Œ(๋…ธ์ด์ฆˆ) ํŠน์„ฑ์„ ๊ณผ๋„ํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ์ด๋Š” ์ •์ฑ…์˜ ๋ถˆ์•ˆ์ •์„ฑ๊ณผ ์•ˆ์ „์„ฑ ์ €ํ•˜๋กœ ์ด์–ด์ง„๋‹ค. ์ธ๊ฐ„์ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์Šต๋“ํ•  ๋•Œ โ€˜์ƒ์ƒโ€™๊ณผ โ€˜์˜ˆ์ธกโ€™ ๊ณผ์ •์„ ํ†ตํ•ด ์ ์€ ๊ฒฝํ—˜๋งŒ์œผ๋กœ๋„ ์ผ๋ฐ˜ํ™”๋œ ๋ชจ๋ธ์„ ๊ตฌ์ถ•

Computer Science Robotics Model
KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ต์œก์šฉ AI ์—์ด์ „ํŠธ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์„ค๊ณ„ ์›์น™์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€˜ํ”„๋ผ์ด๋น— ๋„๋ฉ”์ธ ์†Œํ”„ํŠธ์›จ์–ดโ€™์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ์ดํ•ด ๋ถ€์กฑ์ด๋‹ค. XiaoYa Intelligent Assistant๋‚˜ HuaShi XiaZi์™€ ๊ฐ™์€ ํ•™๊ต ์ „์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ UI ํ๋ฆ„, API ํ˜ธ์ถœ ๋ฐฉ์‹, ๋ฐ์ดํ„ฐ ํฌ๋งท ๋“ฑ์ด ์ผ๋ฐ˜ ์ƒ์šฉ ์†Œํ”„ํŠธ์›จ์–ด์™€ ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ด๋Ÿฌํ•œ ํŠน์ˆ˜ ์‚ฌ๋ก€๊ฐ€ ๊ฑฐ์˜ ํฌํ•จ๋˜์ง€ ์•Š์•„, ์‹ค์ œ ์‹คํ–‰

Computer Science Artificial Intelligence Model
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logicsโ€‘STEM ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLM(Large Language Model) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋œจ๊ฑฐ์šด ์ด์Šˆ์ธ โ€œ์ถ”๋ก  ๋Šฅ๋ ฅ ๊ฐ•ํ™”โ€์— ๋Œ€ํ•ด ๋ฐ์ดํ„ฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๋Š” ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ ์ธก๋ฉด์„ ์‚ดํŽด๋ณด๋ฉด, ์ €์ž๋“ค์€ 7.2 M ๊ทœ๋ชจ์˜ SFT( supervised fineโ€‘tuning ) ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด 5๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ ์šฉํ–ˆ๋‹ค. ์ฃผ์„ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์žฅ๊ธฐ ์‚ฌ๊ณ  ์‚ฌ์Šฌ(chainโ€‘ofโ€‘thought) ํ˜•ํƒœ์˜ ๋‹ต๋ณ€์„ ์ง์ ‘ ์ž‘์„ฑํ•˜๋„๋ก ํ•˜์—ฌ, ๋ชจ๋ธ์ด ๋‹จ์ˆœํžˆ ์ •๋‹ต์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ  ๊ณผ์ •์„ ํ•™์Šตํ•˜๋„๋ก

Computer Science Artificial Intelligence
Online Estimation and Manipulation of Articulated Objects

Online Estimation and Manipulation of Articulated Objects

์ด ๋…ผ๋ฌธ์€ ์„œ๋น„์Šค ๋กœ๋ด‡์ด ์ผ์ƒ ๊ฐ€์ • ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ ๊ด€์ ˆํ˜• ๊ฐ์ฒด(์˜ˆ: ์„œ๋ž, ๋ฌธ, ํšŒ์ „์‹ ์†์žก์ด ๋“ฑ)๋ฅผ ์‚ฌ์ „ ์ง€์‹ ์—†์ด๋„ ์‹ ์†ํžˆ ํŒŒ์•…ํ•˜๊ณ  ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์‹œ๊ฐโ€‘์ด‰๊ฐ ์œตํ•ฉโ€™์ด๋‹ค. ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ดํฌ๋˜์Šค ์˜ˆ์ธก์€ ํ’๋ถ€ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ์ฒด์˜ ์ž ์žฌ์  ์›€์ง์ž„ ์ถ•์ด๋‚˜ ์ œํ•œ์„ ์ถ”์ •ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ(๋งˆ์ฐฐ, ์Šคํ”„๋ง ์ €ํ•ญ ๋“ฑ)์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด, ๊ด€์ ˆ ์šด๋™์„ ์ง์ ‘ ๊ด€์ฐฐํ•ด ์ถ”์ •ํ•˜๋Š” ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ์‹ค์ œ ์ ‘์ด‰์ด ์„ ํ–‰๋ผ์•ผ ํ•˜๋ฏ€๋กœ ์ดˆ๊ธฐ ํƒ์ƒ‰ ๋น„์šฉ์ด ํฌ๋‹ค. ์ €์ž๋“ค์€ ์ด ๋‘

Computer Science Robotics
REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

๋ณธ ๋…ผ๋ฌธ์€ ๋ ˆ์ด๋” ์—์ฝ” ์™ธ์‚ฝ(Radar Echo Extrapolation, REE) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๋ฌธ์ œ์ธ ๋„๋ฉ”์ธ ์ „์ด์™€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ๋ณ€ํ™” ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ REE ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ ˆ์ด๋” ์‹œํ€€์Šค๋ฅผ ํ•™์Šตํ•ด ๋‹จ๊ธฐ ๊ฐ•์ˆ˜ ์˜ˆ๋ณด๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ๋œ ์ง€์—ญยท์‹œ์ฆŒยท๊ธฐํ›„ ์กฐ๊ฑด์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ƒˆ๋กœ์šด ์ง€์—ญ์ด๋‚˜ ๊ทนํ•œ ๊ฐ•์ˆ˜ ์ƒํ™ฉ์— ์ ์šฉํ•˜๋ฉด ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. 1. ํ•ต์‹ฌ ์•„์ด๋””์–ด์™€ ๊ธฐ์—ฌ ํ…Œ์ŠคํŠธโ€‘์‹œ์  ํ•™์Šต(Testโ€‘Time Training, TTT) ์ ์šฉ : ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ

Computer Science Machine Learning
SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS๋Š” ์–ผ๊ตด ์ดˆํ•ด์ƒ๋„(Face Superโ€‘Resolution, FSR) ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ โ€˜์„ธ๋ฐ€ํ•œ ๊ตฌ์กฐ ์†์‹คโ€™๊ณผ โ€˜์•„์ด๋ดํ‹ฐํ‹ฐ ๋ณ€ํ˜•โ€™์— ๋™์‹œ์— ๋Œ€์‘ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ง€์—ญ์ ์ธ ํŠน์ง•์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€๋งŒ, ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด Vision Transformer(ViT) ๊ณ„์—ด์€ ์ „์—ญ ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜์ง€๋งŒ, ์–ผ๊ตด๊ณผ ๊ฐ™์ด ๊ณ ์ •๋œ ๊ตฌ์กฐ์  ํŒจํ„ด์„ ๋‹ค๋ฃฐ ๋•Œ๋Š” ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•ด ์„ธ๋ถ€ ๋””ํ…Œ์ผ ๋ณต์›์— ์•ฝ์ ์ด ์žˆ๋‹ค. SwinIFS๋Š” ์ด๋Ÿฌํ•œ ๋”œ๋ ˆ๋งˆ๋ฅผ โ€˜๋žœ๋“œ๋งˆํฌ ๊ฐ€์ด๋“œ

Computer Science Computer Vision
No Image

The Optimal Sample Complexity of Linear Contracts

์ด ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์Œ์•… ํ”Œ๋žซํผ์—์„œ ์ƒˆ๋กœ์šด ๋กœ์—ดํ‹ฐ ๋ชจ๋ธ ๋„์ž…์— ๋Œ€ํ•œ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ ๋ถˆํ™•์‹คํ•œ ์•„ํ‹ฐ์ŠคํŠธ ํŠน์„ฑ์˜ ํ•™์Šต์„ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•œ ์ตœ์  ์ƒ˜ํ”Œ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ (Dรผtting ๋“ฑ, 2025)์˜ ํ‘œ๋ณธ ๊ธฐ๋ฐ˜ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ ์„ ํ˜• ๊ณ„์•ฝ์ด๋ผ๋Š” ํŠน์ • ๊ณ„์•ฝ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์ตœ์  ํ•™์Šต์„ ์œ„ํ•œ ์ƒ˜ํ”Œ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์Œ์•… ํ”Œ๋žซํผ์ด ์ƒˆ๋กœ์šด ๋กœ์—ดํ‹ฐ ๋ชจ๋ธ์„ ๋„์ž…ํ•  ๋•Œ ์ง๋ฉดํ•˜๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ๋ถˆํ™•์‹คํ•œ ์•„ํ‹ฐ์ŠคํŠธ ํŠน์„ฑ์˜ ํ•™์Šต์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ

Computer Science Game Theory
An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions

An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions

๋ณธ ๋…ผ๋ฌธ์€ ๊ธ‰์„ฑ ๋‡Œ์กธ์ค‘ ์˜์ƒ ์ง„๋‹จ์„ ์œ„ํ•œ AI ์‹œ์Šคํ…œ์˜ ๊ฐœ์„  ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋ถˆํ™•์‹ค์„ฑ ์ธ์‹๊ณผ ์˜์‚ฌ๊ฒฐ์ • ์ œ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•œ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ AI ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ์•ˆ์ „์„ฑ, ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์ž„์ƒ ๊ด€๋ จ์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ํ˜์‹ ์€ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ AI ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ถˆํ™•์‹ค์„ฑ ์ธ์‹๊ณผ ์˜์‚ฌ๊ฒฐ์ • ์ œ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋‹จ์ˆœํžˆ ์˜ˆ์ธก์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ถˆํ™•์‹ค์„ฑ์ด ๋†’์€ ๊ฒฝ์šฐ ๋ณด๋ฅ˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜

Framework Image Processing Electrical Engineering and Systems Science
Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code

Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์—์„œ ์ƒ์„ฑ๋œ ์ฝ”๋“œ์˜ ์‹คํ–‰ ์•ˆ์ •์„ฑ์— ์ค‘์ ์„ ๋‘๊ณ , ํŠนํžˆ ๋ฉ”๋ชจ๋ฆฌ ๋™์—ญํ•™ ์ธก๋ฉด์—์„œ ๊ทธ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ LLM์˜ ์ถœ๋ ฅ ์ •ํ™•๋„์™€ ๋‹ค์–‘์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋ฐ˜๋“œ์‹œ ์‹คํ–‰ ์‹œ๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ํ”„๋กœํŒŒ์ผ๋ง์—์„œ๋„ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ์ง€์ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์ฃผ์š” ๊ธฐ์—ฌ ์ค‘ ํ•˜๋‚˜๋Š” Monotonic Peak Profile (MPP) ์™€ Dynamic Time Warping (DTW) ๋ฅผ ํ™œ์šฉํ•œ ์‹คํ–‰ ์‹œ๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ํ”„๋กœํŒŒ์ผ๋ง ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์• ํ”Œ

Computer Science Software Engineering
Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

์ด ๋…ผ๋ฌธ์€ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ ๋‚ด์—์„œ ์—ผํ™”๋ฌผ์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ํ˜ผํ•ฉ๋ฌผ ์กฐ์„ฑ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฃผ๋„์  ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€, k ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€, ์ปค๋„ ๋ฆฌ์ง€ ํšŒ๊ท€์™€ ๋ณต์žกํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ํšŒ๊ท€, ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค ํšŒ๊ท€, ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (MLP), ๊ฒŒ์ดํŠธ ์ˆœํ™˜ ์œ ๋‹›(GRU)์„ ํฌํ•จํ•œ๋‹ค. ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜๋ฉฐ, ํŠนํžˆ GPR ๋ชจ๋ธ์€ ๋ช…ํ™•ํ•˜๊ณ  ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ถ”์„ธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋ฐ ํšจ๊ณผ

Computer Science Learning Data Machine Learning
No Image

EgoGrasp: World-Space Hand-Object Interaction Estimation from Egocentric Videos

EgoGrasp ๋…ผ๋ฌธ์€ ์ด๋จธ์‹œ๋ธŒ(egocentric) ์˜์ƒ์—์„œ ์„ธ๊ณ„ ์ขŒํ‘œ๊ณ„์˜ ์†โ€‘๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์›ํ•œ๋‹ค๋Š” ๋งค์šฐ ์•ผ์‹ฌ์ฐฌ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ์ •์  ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•ด ๋™์ ์ธ ์†๋™์ž‘๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋‘˜์งธ, ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ๊ตญํ•œ๋œ ์ ‘๊ทผ๋ฒ•์€ ์ „์—ญ์ ์ธ ์œ„์น˜์™€ ์ž์„ธ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ ์ผ์ƒ ์ƒํ™œ์—์„œ ์ดฌ์˜๋˜๋Š” ์ด๋จธ์‹œ๋ธŒ ์˜์ƒ์€ ๊ธ‰๊ฒฉํ•œ ์นด๋ฉ”๋ผ ์›€์ง์ž„, ์กฐ๋ช… ๋ณ€ํ™”, ๊ทธ๋ฆฌ๊ณ  ์†๊ณผ ๋ฌผ์ฒด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐ€๋ฆผ ํ˜„์ƒ์ด ํŠน์ง•์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” 2D

Computer Science Computer Vision
No Image

Harm in AI-Driven Societies: An Audit of Toxicity Adoption on Chirper.ai

๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์†Œ์…œ ์—์ด์ „ํŠธ๊ฐ€ ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์—์„œ ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ๋…์„ฑ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์ ์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” Chirper.ai๋ผ๋Š” ํ”Œ๋žซํผ์„ ํ†ตํ•ด LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ์˜ ๋™์ž‘ ํŒจํ„ด์„ ๊ฒฝํ—˜์ ์œผ๋กœ ๊ฐ์‚ฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์—์ด์ „ํŠธ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋…์„ฑ์„ ์ƒ์„ฑํ•˜๊ณ  ์ฑ„ํƒํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์†Œ์…œ ์—์ด์ „ํŠธ์˜ ํ–‰๋™ ์ดํ•ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, Chirper.ai ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜์—ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ๋…์„ฑ ์ฝ˜

Computer Science Multiagent Systems
No Image

Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ์ฒด ์ค‘์‹ฌ ํ•™์Šต(Object centric Learning, OCL) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. CODA(Contrastive Object centric Diffusion Alignment)๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋””ํ“จ์ „ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์Šฌ๋กฏ ์—ฎ์ž„๊ณผ ์•ฝํ•œ ์ •๋ ฌ์ด๋ผ๋Š” ์ฃผ์š” ๋„์ „ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: 1. ๋“ฑ๋ก ์Šฌ๋กฏ(Register Slots): ๋“ฑ๋ก ์Šฌ๋กฏ์€ ๋…๋ฆฝ์ ์ธ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๊ฐ€๋˜์–ด ์ž”์—ฌ ์ฃผ์˜๋ฅผ ํก์ˆ˜ํ•˜๊ณ  ๊ฐ์ฒด ์Šฌ๋กฏ ๊ฐ„์˜ ๊ฐ„์„ญ์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์Šฌ๋กฏ ์—ฎ์ž„ ๋ฌธ

Computer Science Learning Computer Vision
Learning from Historical Activations in Graph Neural Networks

Learning from Historical Activations in Graph Neural Networks

HISTOGRAPH๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋Œ์–ด๋‚ด๋ฉฐ, ํŠนํžˆ ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์˜ ์ง„ํ™”์™€ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด GNN ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„ ๊ด€๋ จ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: HISTOGRAPH์˜ ํ•ต์‹ฌ ํ˜์‹  ์ค‘ ํ•˜๋‚˜๋Š” ์—ญ์‚ฌ์  ํ™œ์„ฑํ™” ์ถ”์  ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ GNN์ด ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ๊ณผ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•œ ์‹œ๊ฐ„์  ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋…ธ๋“œ์˜ ์ธต๋ณ„ ํ‘œํ˜„์„ ์‹œํ€€์Šค

Computer Science Network Learning Machine Learning

< Category Statistics (Total: 2829) >

Electrical Engineering and Systems Science
100
General
731
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut