KOINEU Logo
No Image

MatKV: Trading Compute for Flash Storage in LLM Inference

๋ณธ ๋…ผ๋ฌธ์€ LLM ๊ธฐ๋ฐ˜ ์ƒ์„ฑ AI ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ์ถ”์„ธ๋ฅผ ๋ถ„์„ํ•˜๊ณ , ํŠนํžˆ RAG ๋ฐฉ์‹์˜ prefill ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—๋„ˆ์ง€ ์†Œ๋น„์™€ ์‹œ๊ฐ„ ์†Œ๋ชจ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. MatKV ๋ฐฉ์‹์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด ๋ฐฉ์‹์€ key value ๋ฒกํ„ฐ(KVs)๋ฅผ ์‚ฌ์ „ ๊ณ„์‚ฐํ•˜๊ณ  ์ €๋ ดํ•œ ํ”Œ๋ž˜์‹œ ์ €์žฅ ์žฅ์น˜์— ๋ฌผ๋ฆฌํ™”ํ•˜์—ฌ ์ถ”๋ก  ์‹œ๊ฐ„๊ณผ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ด๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์—์„œ๋Š” Hugging Face์˜ Transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•ด ์ตœ์‹  GPU์™€ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ SSD์—์„œ RAG ์ž‘์—…์„

Parallel Multi-Circuit Quantum Feature Fusion in Hybrid Quantum-Classical Convolutional Neural Networks for Breast Tumor Classification

Parallel Multi-Circuit Quantum Feature Fusion in Hybrid Quantum-Classical Convolutional Neural Networks for Breast Tumor Classification

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์žโ€‘ํด๋ž˜์‹ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ์ด ์‹ค์ œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์„์— ์–ด๋–ค ์ด์ ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ์„ ํƒ์ด ์ค‘์š”ํ•œ๋ฐ, BreastMNIST๋Š” 28 ร— 28 ํ”ฝ์…€์˜ ํ‘๋ฐฑ ์œ ๋ฐฉ ์ดˆ์ŒํŒŒ ์ด๋ฏธ์ง€๋ฅผ ํฌํ•จํ•œ ๊ณต๊ฐœ ๋ฒค์น˜๋งˆํฌ๋กœ, ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ์™€ ์ง์ ‘ ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ณ ์ „์ ์ธ CNN์„ ๊ธฐ๋ณธ ๋ฒ ์ด์Šค๋ผ์ธ์œผ๋กœ ์‚ผ๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ๋™์ผํ•˜๊ฒŒ ๋งž์ถค์œผ๋กœ์จ ์–‘์ž ๋ ˆ์ด์–ด ์ž์ฒด๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜์˜€๋‹ค. ์ด๋Š” โ€œparameterโ€‘matchedโ€ ์„ค๊ณ„

Network
Shortest Paths on Convex Polyhedral Surfaces

Shortest Paths on Convex Polyhedral Surfaces

๋ณธ ๋…ผ๋ฌธ์€ ๋ณผ๋ก ๋‹ค๋ฉด์ฒด์˜ ํ‘œ๋ฉด์—์„œ ๋‘ ์  ์‚ฌ์ด์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ด๋Š” ์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค, ๋กœ๋ด‡ ๊ณตํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋กœ, ํŠนํžˆ ๋ณต์žกํ•œ 3D ๋ชจ๋ธ์„ ์ฒ˜๋ฆฌํ•  ๋•Œ ์ค‘์š”ํ•˜๋‹ค. ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” O(n^8+ฯต)์˜ ์ „์ฒ˜๋ฆฌ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ๋ณต์žก๋„๊ฐ€ ํ•„์š”ํ–ˆ์œผ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋ฅผ ๊ฐ๊ฐ O(n^6+ฯต)์œผ๋กœ ํฌ๊ฒŒ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ํŠนํžˆ, ํ•˜๋‚˜์˜ ์งˆ์˜ ์ ์ด ๋ณ€์— ์œ„์น˜ํ•ด์•ผ ํ•˜๋Š” ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ์—์„œ๋Š” ์ „์ฒ˜๋ฆฌ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ๋ณต์žก๋„๋ฅผ ๋” ๋‚˜์•„๊ฐ€ O(n^5+ฯต)๋กœ ์ค„์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„ ์€ ๋ณผ๋ก ๋‹ค๋ฉด์ฒด์—์„œ ์ตœ๋‹จ ๊ฒฝ๋กœ

System Report for CCL25-Eval Task 10: Prompt-Driven Large Language Model Merge for Fine-Grained Chinese Hate Speech Detection

System Report for CCL25-Eval Task 10: Prompt-Driven Large Language Model Merge for Fine-Grained Chinese Hate Speech Detection

์ด ๋…ผ๋ฌธ์€ ์ค‘๊ตญ ๋‚ด ์†Œ์…œ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” ํ˜์˜ค๋ฐœ์–ธ์„ ์ž๋™์œผ๋กœ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์‚ฌ์ „ ์ •์˜๋œ ํ‚ค์›Œ๋“œ๋‚˜ ํ‘œ๋ฉด์ ์ธ ๋ฌธ๋งฅ์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์€์–ดยท์‹ ์กฐ์–ดยท๋น„์œ ์  ํ‘œํ˜„ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์–ธ์–ด ํ˜„์ƒ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ๋‹จ๊ณ„์ ์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ „๋žต์„ ์ฑ„ํƒํ–ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์—์„œ๋Š” โ€œ๋งฅ๋ฝ ์ธ์‹ ํ”„๋กฌํ”„ํŠธโ€๋ฅผ ์„ค๊ณ„ํ•ด LLM์ด ์ž…๋ ฅ ๋ฌธ์žฅ์˜ ์ˆจ์€ ์˜๋ฏธ์™€ ์‚ฌํšŒ๋ฌธํ™”์ 

Model Detection System
A Systematic Characterization of LLM Inference on GPUs

A Systematic Characterization of LLM Inference on GPUs

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLM ์ถ”๋ก ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์‚ฐ์žฌํ•˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์„ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ํ•˜๋‚˜์˜ ์ผ๊ด€๋œ ๋ถ„์„ ์ฒด๊ณ„๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์ธ โ€œ๋‘ ๋‹จ๊ณ„ ์ด์งˆ์„ฑ ๊ด€์ฐฐโ€์€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์„ฑ๋Šฅ ๋ณ€๋™์„ ๋‘ ๋‹จ๊ณ„, ์ฆ‰ ์ž…๋ ฅ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์™€ ์‹ค์ œ ์—ฐ์‚ฐ ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ด์งˆ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ด๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋กœ ์ „์ฒด ์ง€์—ฐ ์‹œ๊ฐ„๋งŒ์„ ๋ณด๊ณ ํ–ˆ์ง€๋งŒ, ์„ธ๋ถ€ ๋‹จ๊ณ„๋ณ„ ๋ณ‘๋ชฉ์„ ๋“œ๋Ÿฌ๋‚ด์–ด ๋ฏธ์„ธ ์กฐ์ •์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค€๋‹ค. ๋‘ ๋ฒˆ์งธ ์ถ•์ธ โ€œ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜ ๊ทผ๋ณธ ์›์ธ ๋ถ„์„โ€์€ CPU, GPU, ๊ฐ€์†๊ธฐ ๋“ฑ ๋‹ค์–‘ํ•œ ํ•˜๋“œ์›จ์–ด ํ”Œ๋žซํผ์—์„œ

System
AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets

AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets

์ด ๋…ผ๋ฌธ์€ ๊ธˆ์œต ์˜์‚ฌ๊ฒฐ์ •์—์„œ LLM์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ์™„์ „ ์ž๋™ํ™”๋œ ๋ฒค์น˜๋งˆํฌ์ธ AI Trader๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ํ™˜๊ฒฝ์—์„œ์˜ ์˜์‚ฌ๊ฒฐ์ • ๋Šฅ๋ ฅ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ๊ธˆ์œต ๋ถ„์•ผ์—์„œ๋Š” ์—„๊ฒฉํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์ด ์žˆ์–ด ์‹ค์ œ ์„ธ๊ณ„ ์ ์šฉ์„ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ํ‰๊ฐ€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. AI Trader๋Š” ๋ฏธ๊ตญ ์ฃผ์‹, A์ฃผ, ์•”ํ˜ธํ™”ํ ์‹œ์žฅ์—์„œ ๋‹ค์–‘ํ•œ ๊ฑฐ๋ž˜ ๋‹จ์œ„๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ํ™˜๊ฒฝ์„ ๋ชจ๋ฐฉํ•˜๋ฉฐ, LLM ์—์ด์ „ํŠธ๋“ค์ด ์ธ๊ฐ„์˜ ๊ฐœ์ž… ์—†์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์†Œ ์ •๋ณด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ

BlendedNet++: A Large-Scale Blended Wing Body Aerodynamics Dataset and Benchmark

BlendedNet++: A Large-Scale Blended Wing Body Aerodynamics Dataset and Benchmark

BlendedNet++๋Š” ํ˜„์žฌ ํ•ญ๊ณต๊ธฐ ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ, ์ฆ‰ ๊ณ ํ•ด์ƒ๋„ ์ ๋ณ„ ๊ณต๊ธฐ์—ญํ•™ ๋ฐ์ดํ„ฐ์˜ ๋ถ€์žฌ์™€ ์—ญ์„ค๊ณ„ ๊ณผ์ •์˜ ์žฌํ˜„์„ฑ ๋ถ€์กฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, 12,000์—ฌ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ BWB ํ˜•์ƒ์„ ํฌํ•จํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์ •๋ฐ€ RANS CFD ํ•ด์„์„ ์ˆ˜ํ–‰ํ•œ 12,490๊ฐœ์˜ ์ƒ˜ํ”Œ์€ ๊ธฐ์กด ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹์ด ๋ช‡ ๋ฐฑ ๊ฐœ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋ €๋˜ ๊ฒƒ์— ๋น„ํ•ด ํš๊ธฐ์ ์œผ๋กœ ๊ทœ๋ชจ๊ฐ€ ํ™•๋Œ€๋œ ์ ์ด ํฐ ์žฅ์ ์ด๋‹ค. ํŠนํžˆ ์••๋ ฅยทํ”ผ๋ถ€๋งˆ์ฐฐ ๊ณ„์ˆ˜์™€ ๊ฐ™์€ ํ‘œ๋ฉด ํ•„๋“œ๋ฅผ ๋ฐ€์ง‘ํ•˜๊ฒŒ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ํ†ตํ•ฉ ๊ณ„์ˆ˜(C L, C D, C M)๋ฟ

Data
CAPTURE: A Benchmark and Evaluation for LVLMs in CAPTCHA Resolving

CAPTURE: A Benchmark and Evaluation for LVLMs in CAPTCHA Resolving

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์‹œ๊ฐ ์–ธ์–ด ๋ชจ๋ธ(LVLM)์„ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด CAPTCHA ๋ฒค์น˜๋งˆํฌ์ธ CAPTURE๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ CAPTCHA ๋ฒค์น˜๋งˆํฌ๋Š” ํŠน์ • ์—ฐ๊ตฌ ๋ชฉํ‘œ์— ๋งž์ถฐ ์„ค๊ณ„๋˜์–ด ์žˆ์–ด, ๋ชจ๋“  CAPTCHA ์œ ํ˜•์„ ํฌ๊ด„ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด CAPTURE๋Š” ๋‹ค์–‘ํ•œ CAPTCHA ์œ ํ˜•๊ณผ ํ•˜์œ„ ์œ ํ˜•์„ ํฌํ•จํ•˜์—ฌ LVLM ์„ฑ๋Šฅ์„ ๋‹ค๊ฐ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๊ธฐ์กด์˜ LVLM์€ CAPTCHA๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์—์„œ ์ œ์•ฝ์ด ์žˆ์—ˆ์ง€๋งŒ, CRRD ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Constant-Time Motion Planning with Manipulation Behaviors

Constant-Time Motion Planning with Manipulation Behaviors

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Bโ€‘CTMP๋Š” ๊ธฐ์กด CTMP ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ์ค‘์š”ํ•œ ์ง„์ „์ด๋‹ค. CTMP๋Š” ์‚ฌ์ „ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์ฟผ๋ฆฌ ๋‹จ๊ณ„์—์„œ ์ผ์ •ํ•œ ์‹คํ–‰ ์‹œ๊ฐ„์„ ๋ณด์žฅํ•œ๋‹ค๋Š” ์ ์—์„œ ์‹ค์‹œ๊ฐ„ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์— ๋งค๋ ฅ์ ์ด์ง€๋งŒ, ์‹ค์ œ ์กฐ์ž‘ ์ž‘์—…์€ ๋‹จ์ˆœํžˆ ์ถฉ๋Œ์„ ํ”ผํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๋‹ค. ๋ฌผ์ฒด๋ฅผ ์žก๊ฑฐ๋‚˜ ์‚ฝ์ž…ํ•˜๋Š” ํ–‰๋™์€ ๋กœ๋ด‡์˜ ์—”๋“œ ์ดํŽ™ํ„ฐ์™€ ๋Œ€์ƒ ๋ฌผ์ฒด ์‚ฌ์ด์˜ ๋ณต์žกํ•œ ์ ‘์ด‰ ์—ญํ•™์„ ํฌํ•จํ•˜๋ฉฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ๊ฒฝ๋กœ ๊ณ„ํš ๊ณต๊ฐ„๊ณผ๋Š” ๋ณ„๊ฐœ์˜ ์ฐจ์›์œผ๋กœ ์ทจ๊ธ‰๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. Bโ€‘CTMP๋Š” ์ด๋Ÿฌํ•œ ๋‘ ๋‹จ๊ณ„ ๊ณผ์ •์„ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๋ฌถ์Œ์œผ๋กœ์จ, โ€œ์ด๋™โ€‘ํ–‰๋™โ€ ์—ฐ์‡„

Data-Free Pruning of Self-Attention Layers in LLMs

Data-Free Pruning of Self-Attention Layers in LLMs

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์˜ ๊ตฌ์กฐ์  ํšจ์œจ์„ฑ์„ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”๋ฅผ ์œ„ํ•ด ํŒŒ๋ผ๋ฏธํ„ฐ ์–‘์„ ์ค„์ด๊ฑฐ๋‚˜, ์ง€์‹ ์ฆ๋ฅ˜, ์–‘์žํ™”์™€ ๊ฐ™์€ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ์žฌ์กฐ์ •ํ•˜๊ฑฐ๋‚˜ ๋Œ€๋Ÿ‰์˜ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•„์š”๋กœ ํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ €์ž๋“ค์€ โ€œAttention Suppression Hypothesisโ€(์ฃผ์˜ ์–ต์ œ ๊ฐ€์„ค)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ฐ€์„ค์— ๋”ฐ๋ฅด๋ฉด, ์‚ฌ์ „ ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ผ๋ถ€ ๊นŠ์€ selfโ€‘attention ๋ ˆ์ด์–ด๋Š” ์ž์‹ ์ด ์ƒ์„ฑํ•˜๋Š” ์–ดํ…์…˜ ๊ฐ€์ค‘์น˜๋ฅผ ์˜๋„์ ์œผ๋กœ

Data
Dora: QoE-Aware Hybrid Parallelism for Distributed Edge AI

Dora: QoE-Aware Hybrid Parallelism for Distributed Edge AI

Dora ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์—์ง€ AI ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉ์ž ํ’ˆ์งˆ ๊ฒฝํ—˜(QoE)์„ ์ตœ์ ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ๊ณ„ํš์ž๊ฐ€ ์ฃผ๋กœ ์žฅ์น˜ ํ™œ์šฉ๋„๋‚˜ ์ฒ˜๋ฆฌ๋Ÿ‰์— ์ง‘์ค‘ํ•˜์—ฌ QoE๋ฅผ ๋ฌด์‹œํ•˜๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Dora ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. Dora๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์ด์งˆ์ ์ธ ํ™˜๊ฒฝ์—์„œ์˜ ๊ณ„์‚ฐ๊ณผ ๋„คํŠธ์›Œํฌ ๊ฒฝ์Ÿ ์œ„ํ—˜์„ ๊ด€๋ฆฌํ•˜๋ฉฐ, ๋‹ค์ฐจ์› QoE ๋ชฉํ‘œ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋ชจ๋ธ ๋ถ„ํ• ๊ธฐ๋กœ, ์ด๋Š” ์žฅ์น˜ ๊ฐ„์— ๋ชจ๋ธ ํŒŒํ‹ฐ์…˜์„ ๊ฒฐ์ •ํ•˜๊ณ  ํ• ๋‹นํ•˜์—ฌ QoE ์ค€์ˆ˜ ๊ณ„ํš ์„ธํŠธ๋ฅผ ํ˜•

From Wearables to Warnings: Predicting Pain Spikes in Patients with Opioid Use Disorder

From Wearables to Warnings: Predicting Pain Spikes in Patients with Opioid Use Disorder

๋ณธ ์—ฐ๊ตฌ๋Š” ๋งŒ์„ฑํ†ต์ฆ๊ณผ ์˜คํ”ผ์˜ค์ด๋“œ ์‚ฌ์šฉ์žฅ์• ๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๋ณตํ•ฉ์ ์ธ ๋งŒ์„ฑ ์งˆํ™˜์„ ๋™์‹œ์— ๊ฒช๋Š” ํ™˜์ž๊ตฐ์„ ๋Œ€์ƒ์œผ๋กœ, ์›จ์–ด๋Ÿฌ๋ธ” ๋””๋ฐ”์ด์Šค์—์„œ ์ˆ˜์ง‘๋œ ์ƒ๋ฆฌํ•™์ ยทํ–‰๋™์  ๋ฐ์ดํ„ฐ์™€ ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•ด ํ†ต์ฆ ๊ธ‰์ฆ(pain spikes)์„ ์˜ˆ์ธกํ•˜๊ณ  ๊ทธ ์ž„์ƒ์  ์—ฐ๊ด€์„ฑ์„ ํƒ์ƒ‰ํ•œ ์ตœ์ดˆ์˜ ํŒŒ์ผ๋Ÿฟ ์—ฐ๊ตฌ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ ์„ค๊ณ„ ์ธก๋ฉด์—์„œ, 25๋ช…์˜ ํ™˜์ž๋ฅผ ๋ชจ์ง‘ํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์‹ฌ๋ฐ•๋ณ€์ด๋„(HRV), ํ™œ๋™๋Ÿ‰, ์ˆ˜๋ฉด ํŒจํ„ด, ๊ทธ๋ฆฌ๊ณ  ์ž๊ฐ€ ๋ณด๊ณ ๋œ ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€ ๋“ฑ์„ ๋‹ค๋ณ€๋Ÿ‰ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋กœ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด์˜ ์ •ํ˜•ํ™”๋œ ์„ค๋ฌธ์ง€ ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ, ํ†ต์ฆ์ด

Informing Acquisition Functions via Foundation Models for Molecular Discovery

Informing Acquisition Functions via Foundation Models for Molecular Discovery

๋ณธ ๋…ผ๋ฌธ์€ ๋ถ„์ž์˜ ์†์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ  ์ตœ์  ํ›„๋ณด๋ฅผ ์ฐพ๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”(BO) ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. BO์˜ ์ฃผ์š” ๋ฌธ์ œ์  ์ค‘ ํ•˜๋‚˜๋Š” ๋‚ฎ์€ ๋ฐ์ดํ„ฐ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)๊ณผ ํ™”ํ•™ ๋ถ„์•ผ์— ํŠนํ™”๋œ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ BO์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ์ด ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์› ํŠน์ง•๊ณผ in context ํ•™์Šต์˜ ๋น„์šฉ, ๊นŠ์€ ๋ฒ ์ด์ง€์•ˆ ๋Œ€๋ฆฌ๋ชจ๋ธ์˜ ๊ณ„์‚ฐ ๋ถ€๋‹ด ๋“ฑ LLM๊ณผ ํ™”ํ•™ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์˜ ํ™œ์šฉ์— ๋Œ€ํ•œ ์ฃผ์š” ์žฅ์• ๋ฌผ์„ ๊ทน๋ณต

Model
Interpretable Link Prediction in AI-Driven Cancer Research: Uncovering Co-Authorship Patterns

Interpretable Link Prediction in AI-Driven Cancer Research: Uncovering Co-Authorship Patterns

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๊ธฐ์ˆ ์ด ์•” ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ์˜ ํ˜‘์—… ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํƒ๊ตฌํ•œ๋‹ค. ํŠนํžˆ, ๊ณต๋™์ €์ž ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด, ์ง€์†์ ์ธ, ๊ทธ๋ฆฌ๊ณ  ์ค‘๋‹จ๋œ ํ˜‘์—… ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•จ์œผ๋กœ์จ AI๊ฐ€ ์–ด๋–ป๊ฒŒ ์•” ์—ฐ๊ตฌ์˜ ๋‹คํ•™์ œ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ์žˆ๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณธ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” 2000๋…„๋ถ€ํ„ฐ 2017๋…„๊นŒ์ง€์˜ 7,738๊ฐœ ์ถœํŒ๋ฌผ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ•™๋ฌธ์  ์œ ์‚ฌ๋„ ์ ์ˆ˜์™€ ์ƒ์‚ฐ์„ฑ ๋ฐ ๊ฒฝ๋ ฅ์ด ํ˜‘์—… ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ๊ฒฐ๊ณผ, ํ•™๋ฌธ์  ์œ ์‚ฌ๋„๊ฐ€ ์ƒˆ๋กœ์šด ๋ฐ ์ง€์†์ ์ธ ํ˜‘์—…์—๋Š” ๊ธ์ •์ ์œผ๋กœ ์ž‘์šฉํ•˜์ง€๋งŒ ์ค‘๋‹จ๋œ ํ˜‘

No Image

LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation

์ด ๋…ผ๋ฌธ์€ ๋น„๋””์˜ค ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(VLLMs)์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ธ LinkedOut์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. VLLMs๋Š” ์ธํ„ฐ๋„ท ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์„ธ๊ณ„ ์ง€์‹์„ ํ•™์Šตํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋น„๋””์˜ค ๊ด€๋ จ ์ž‘์—…์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๋‹ค์ค‘ ๋น„๋””์˜ค ์ž…๋ ฅ, ๊ฐ€๋ฒผ์šด ๋ฐฑ๋ณธ, ๋‚ฎ์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„์˜ ์—ฐ์† ์ถ”๋ก  ๋ฐ ์‹ ์†ํ•œ ์‘๋‹ต์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— VLLMs๋ฅผ ํ•˜๋ฅ˜ ์ž‘์—…์ธ ๋น„๋””์˜ค ์ถ”์ฒœ์— ๋ฐฐํฌํ•˜๋Š” ๊ฒƒ์ด ์—ฌ์ „ํžˆ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. LinkedOut๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์„ธ๊ณ„ ์ง€์‹์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”

No Image

MMRAG-RFT: Two-stage Reinforcement Fine-tuning for Explainable Multi-modal Retrieval-augmented Generation

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด MMRAG ๋ฐฉ๋ฒ•๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™”ํ•™์Šต์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ์ด์Šˆ๋Š” ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ์™ธ๋ถ€ ๋‹ค์ค‘๋ชจ๋‹ฌ ์ง€์‹์„ ํ†ตํ•ฉํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”๋ก  ๋…ผ๋ฆฌ์˜ ๋ถˆ๋ช…ํ™•์„ฑ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์—ฐ๊ตฌ์ง„์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ๊ฐ•ํ™” ํ•™์Šต ๋ฏธ์„ธ ์กฐ์ • ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ด ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฌธ์„œ๋“ค ์ค‘์—์„œ ํฌ๊ฒŒ ๊ด€๋ จ์ด ์—†๋Š” ํ•ญ๋ชฉ๋“ค์„ ํ•„ํ„ฐ๋งํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์„ธ๋ฐ€ํ•œ ๋ชฉ๋ก ์ˆœ์œ„์™€ ๋‹ต๋ณ€ ์ƒ์„ฑ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜์—ฌ ์ถ”๋ก  ๋…ผ๋ฆฌ๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘

Multi-LLM Collaboration for Medication Recommendation

Multi-LLM Collaboration for Medication Recommendation

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ํ˜„์žฅ์—์„œ AI ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ • ์ง€์› ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œโ€”๋ชจ๋ธ์˜ ํ™˜๊ฐ ํ˜„์ƒ๊ณผ ์•™์ƒ๋ธ”์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ฐœ๋ณ„ LLM์ด ์ƒ์„ฑํ•˜๋Š” ํ…์ŠคํŠธ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ํ†ต๊ณ„์  ํŒจํ„ด์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํŠนํžˆ ์ „๋ฌธ ์˜๋ฃŒ ์ง€์‹์ด ์š”๊ตฌ๋˜๋Š” ์ƒํ™ฉ์—์„œ ์‚ฌ์‹ค๊ณผ ๋‹ค๋ฅธ ์ •๋ณด๋ฅผ โ€˜ํ™˜๊ฐโ€™์œผ๋กœ ๋‚ด๋†“๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋Š” ํ™˜์ž ์•ˆ์ „์— ์ง์ ‘์ ์ธ ์œ„ํ˜‘์„ ๊ฐ€ํ•˜๋ฏ€๋กœ, ๋‹จ์ˆœํžˆ ๋ชจ๋ธ ๊ทœ๋ชจ๋ฅผ ํ‚ค์šฐ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ๊ทผ๋ณธ์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด ๋˜์ง€ ์•Š๋Š”๋‹ค. ์ „ํ†ต์ ์ธ ์•™์ƒ๋ธ” ๊ธฐ๋ฒ•์€ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ ํ‰๊ท ํ•˜

One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation

One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์‹œ๊ฐ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๊ณ ์ฐจ์› ์ด๋ฏธ์ง€ ํŠน์ง•์„ ์ง์ ‘ ํ™œ์šฉํ•˜๊ธฐ๋ณด๋‹ค ์••์ถ•๋œ ์ž ์žฌ๊ณต๊ฐ„์—์„œ ์ž‘๋™ํ•จ์œผ๋กœ์จ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ  ์ƒ˜ํ”Œ ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ ค๋Š” ํ๋ฆ„์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋น„์ „ ํŠธ๋žœ์Šคํฌ๋จธ(DINO, SigLIP ๋“ฑ)์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ์ดํ•ดโ€‘์ง€ํ–ฅ ํŠน์ง•์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’์€ ์ฐจ์›์„ ์œ ์ง€ํ•˜๋ฉฐ, ์ด๋Š” ๋งˆ์Šคํฌ๋œ ์˜์—ญ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๊ฐ€์„ค์„ ๋™์‹œ์— ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ํ™•์‚ฐ ๋ชจ๋ธ์ด๋‚˜ ์ •๊ทœํ™” ํ๋ฆ„๊ณผ ๊ฐ™์€ ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋…ธ์ด์ฆˆ๋ฅผ ์ •ํ™•ํžˆ ์ „๋‹ฌํ•˜๊ณ  ์ ์ง„์ ์œผ๋กœ ์ƒ˜ํ”Œ์„ ๋ณต์›ํ•ด์•ผ ํ•˜๋ฏ€๋กœ, ์ฐจ์›์ด ๋‚ฎ๊ณ  ์—ฐ์†์ ์ธ ์ž ์žฌ๊ณต๊ฐ„์„ ์š”๊ตฌ

Over-the-Air Federated Learning: Rethinking Edge AI Through Signal Processing

Over-the-Air Federated Learning: Rethinking Edge AI Through Signal Processing

์˜ค๋ฒ„๋”์—์–ด ํŽ˜๋”๋ ˆ์ดํ‹ฐ๋“œ ๋Ÿฌ๋‹(AirFL)์€ ์ „ํ†ต์ ์ธ ํŽ˜๋”๋ ˆ์ดํ‹ฐ๋“œ ๋Ÿฌ๋‹(Federated Learning, FL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ†ต์‹  ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด์†Œํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๋ฌด์„  ์ฑ„๋„์˜ ์•„๋‚ ๋กœ๊ทธ ํ•ฉ์„ฑ(superposition) ํŠน์„ฑ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๊ฐ ํด๋ผ์ด์–ธํŠธ๋Š” ๋กœ์ปฌ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋ฅผ ๋””์ง€ํ„ธํ™”ํ•˜์ง€ ์•Š๊ณ , ๋ฐ”๋กœ ์ „์†ก ํŒŒ์›Œ์™€ ํ”„๋ฆฌ์•ฐํ”Œ๋ฆฌํŒŒ์ด์–ด๋ฅผ ์กฐ์ •ํ•œ ์•„๋‚ ๋กœ๊ทธ ์‹ ํ˜ธ ํ˜•ํƒœ๋กœ ์ „์†กํ•œ๋‹ค. ๋ฒ ์ด์Šค์Šคํ…Œ์ด์…˜(๋˜๋Š” ์—์ง€ ์„œ๋ฒ„)์€ ์ด ์‹ ํ˜ธ๋“ค์„ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ•ฉ์„ฑ๋œ ํ˜•ํƒœ๋กœ ์ˆ˜์‹ ํ•˜๊ณ , ๋ฐ”๋กœ ํ‰๊ท  ํ˜น์€ ๊ฐ€์ค‘ ํ‰๊ท  ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ โ€œํ†ต์‹ 

Learning
Self-Transparency Failures in Expert-Persona LLMs: How Instruction-Following Overrides Disclosure

Self-Transparency Failures in Expert-Persona LLMs: How Instruction-Following Overrides Disclosure

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด โ€œ์ „๋ฌธ๊ฐ€โ€๋ผ๋Š” ์—ญํ• ์„ ๋ถ€์—ฌ๋ฐ›์•˜์„ ๋•Œ, ์ž์‹ ์ด ์ธ๊ณต์ง€๋Šฅ์ด๋ผ๋Š” ์‚ฌ์‹ค์„ ์–ผ๋งˆ๋‚˜ ํˆฌ๋ช…ํ•˜๊ฒŒ ๊ณ ๋ฐฑํ•˜๋Š”์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ์„ค๊ณ„๋Š” โ€˜commonโ€‘gardenโ€™ ๋ฐฉ์‹์œผ๋กœ, ๋™์ผํ•œ ์‹คํ—˜ ํ”„๋กœํ† ์ฝœ์„ 16๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋ธ์— ์ ์šฉํ•ด 19 200๊ฐœ์˜ ์‘๋‹ต์„ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ๊ฐ„ ๋น„๊ต ๊ฐ€๋Šฅ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ํ•ต์‹ฌ ๋ณ€์ˆ˜๋Š” โ€˜์ž์•„ ๊ณ ๋ฐฑ๋ฅ (disclosure rate)โ€™์ด๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์ฒ˜์Œ ์งˆ๋ฌธ์„ ๋ฐ›์•˜์„ ๋•Œ ์ž์‹ ์˜ ๋น„์ธ๊ฐ„์  ์ •์ฒด์„ฑ์„ ๋ช…์‹œํ•˜๋Š” ๋น„์œจ๋กœ ์ •์˜๋œ๋‹ค. ์ฒซ

Simultaneous Image Quality Improvement and Artefacts Correction in Accelerated MRI

Simultaneous Image Quality Improvement and Artefacts Correction in Accelerated MRI

๋ณธ ๋…ผ๋ฌธ์€ MRI ์ดฌ์˜ ์‹œ๊ฐ„ ๋‹จ์ถ•์ด๋ผ๋Š” ์ž„์ƒ์  ์š”๊ตฌ์™€, ์‹ค์ œ ์Šค์บ” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์žก์Œยท์šด๋™ ์•„ํ‹ฐํŒฉํŠธ๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ’ˆ์งˆ ์ €ํ•˜ ์š”์ธ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ณดํ†ต ์–ธ๋”์ƒ˜ํ”Œ๋ง ๋ณต์›(Compressed Sensing, Deepโ€‘Learning ๊ธฐ๋ฐ˜ ์žฌ๊ตฌ์„ฑ)๊ณผ ์•„ํ‹ฐํŒฉํŠธ ๊ต์ •(denoising, motion correction) ์ค‘ ํ•˜๋‚˜์—๋งŒ ์ง‘์ค‘ํ•ด ์™”์œผ๋ฉฐ, ๋‘ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ๋‹ค๋ฃจ๋Š” ํ†ตํ•ฉ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์—†์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ USArt๋Š” โ€˜dual subโ€‘modelโ€™ ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•œ๋‹ค๋Š” ์ ์—์„œ ๋…์ฐฝ์ 

STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions

STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions

STELLA ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ์—ฐ๊ตฌ๊ฐ€ ์ง๋ฉดํ•œ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๊ฑฐ๋‚˜, ์ •์  ์˜๋ฏธ ์‚ฌ์ „์—์„œ ์œ ์‚ฌํ•œ ์‹œ๊ณ„์—ด ํŒจํ„ด์„ ์ฐพ์•„ ํ”„๋กฌํ”„ํŠธ์— ์‚ฝ์ž…ํ•˜๋Š” ๋ฐฉ์‹์„ ์ทจํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์‹œ๊ณ„์—ด์ด ๊ฐ–๋Š” ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ, ๋น„์„ ํ˜•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๊ณ„์ ˆยท์ถ”์„ธยท์ž”์ฐจ์™€ ๊ฐ™์€ ๊ตฌ์กฐ์  ์š”์†Œ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ LLM์€ โ€œ๋ฌด์—‡์ด ์ผ์–ด๋‚ฌ๋Š”๊ฐ€โ€์— ๋Œ€ํ•œ ์„œ์ˆ ์  ์ •๋ณด๋ฅผ ์–ป์„ ๋ฟ, โ€œ์™œ ๊ทธ๋Ÿฐ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ–ˆ๋Š”๊ฐ€โ€๋ผ๋Š” ์ธ๊ณผ์ ยท๋™์  ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด ๋น„ํŒ๋œ๋‹ค.

Model
Stochasticity in Agentic Evaluations: Quantifying Inconsistency with Intraclass Correlation

Stochasticity in Agentic Evaluations: Quantifying Inconsistency with Intraclass Correlation

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋‹จ์ผ ์—์ด์ „ํŠธ๊ฐ€ ์•„๋‹ˆ๋ผ ๋ณตํ•ฉ์ ์ธ ํ•˜์œ„ ์—์ด์ „ํŠธ๋“ค์˜ ์ง‘ํ•ฉ์œผ๋กœ ์šด์˜๋˜๋Š” โ€˜์—์ด์ „ํŠธ ์‹œ์Šคํ…œโ€™์œผ๋กœ ์ง„ํ™”ํ•จ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ๋‹จ์ผ ์‹คํ–‰ ์ •ํ™•๋„๋งŒ์„ ๋ณด๊ณ ํ•˜๋Š” ํ‰๊ฐ€ ๋ฐฉ์‹์ด ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ธ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํ•˜์œ„ ์—์ด์ „ํŠธ๊ฐ€ ๋ถˆ์•ˆ์ •ํ•˜๊ฑฐ๋‚˜ ์ผ๊ด€๋˜์ง€ ๋ชปํ•˜๋ฉด ์ „์ฒด ์‹œ์Šคํ…œ์˜ ํ–‰๋™์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€๋™ํ•  ์œ„ํ—˜์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€๋™์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•˜๋ฉด, ์—ฐ๊ตฌ์ž์™€ ์‹ค๋ฌด์ž๋Š” ์šฐ์—ฐํžˆ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์–ป์€ ๊ฒฝ์šฐ์™€ ์‹ค์ œ ๋ชจ๋ธ ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋œ ๊ฒฝ์šฐ๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•ด ์ž˜๋ชป๋œ ๊ฒฐ๋ก ์— ๋„๋‹ฌํ•œ๋‹ค๋Š” ์œ„ํ—˜์— ์ฒ˜ํ•œ๋‹ค.

SynCraft: Guiding Large Language Models to Predict Edit Sequences for Molecular Synthesizability Optimization

SynCraft: Guiding Large Language Models to Predict Edit Sequences for Molecular Synthesizability Optimization

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” ํ˜„์žฌ์˜ ์ƒ์„ฑํ˜• ํ™”ํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ์„ค๊ณ„ํ•œ ๋ถ„์ž๋“ค์˜ โ€˜ํ•ฉ์„ฑ ๊ฐ€๋Šฅ์„ฑ(synthesizability)โ€™์ด ๋‚ฎ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ์ ‘๊ทผ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ๋งŒ๋“  ๋ถ„์ž๋ฅผ ์‚ฌํ›„์— ํ•„ํ„ฐ๋งํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ์ด๋Š” ํ•ฉ์„ฑ ๋ถˆ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฑธ๋Ÿฌ๋‚ด์ง€๋งŒ ๋™์‹œ์— ์ƒˆ๋กœ์šด ํ™”ํ•™ ๊ตฌ์กฐ๋ฅผ ํฌ๊ธฐํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋ชฉํ‘œ ํ™”ํ•™ ๊ณต๊ฐ„์„ ๋ฏธ๋ฆฌ ์ •์˜๋œ ํ•ฉ์„ฑ ํ…œํ”Œ๋ฆฟ์— ํˆฌ์˜(projection)ํ•˜๋Š” ๋ฐฉ๋ฒ•์ธ๋ฐ, ์ด๋Š” ํ…œํ”Œ๋ฆฟ์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๋ถ„์ž์˜ ํ•ต์‹ฌ ์•ฝ๋ฌผํ•™์  ํฌํ•ต(pharmacophore)์„ ๋ณ€ํ˜•์‹œ์ผœ ์•ฝํšจ๋ฅผ ์ €ํ•˜์‹œํ‚ฌ ์œ„

Model
UnwrapDiff: A Conditional Diffusion Model for InSAR Phase Unwrapping

UnwrapDiff: A Conditional Diffusion Model for InSAR Phase Unwrapping

์œ„์ƒ ํ’€๊ธฐ๋Š” InSAR(Interferometric Synthetic Aperture Radar)์—์„œ ๊ด€์ธก๋œ ๋ณต์†Œ ์œ„์ƒ์„ ์‹ค์ œ ๋ณ€ํ˜• ์‹ ํ˜ธ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์ด๋ฉฐ, ์ด ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฅ˜๋Š” ์ตœ์ข… ๋ณ€ํ˜• ์ง€๋„ ์ „์ฒด์— ์น˜๋ช…์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” SNAPHU๋Š” ์ตœ์†Œ ๋น„์šฉ ํ๋ฆ„(minimum cost flow) ์›๋ฆฌ๋ฅผ ์ ์šฉํ•ด ์œ„์ƒ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜์ง€๋งŒ, ๊ณ ๋„ ๋ณ€๋™, ๋Œ€๊ธฐ ์ง€์—ฐ, ๋ ˆ์ด๋” ์žก์Œ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๋…ธ์ด์ฆˆ๊ฐ€ ์กด์žฌํ•  ๊ฒฝ์šฐ ์ตœ์  ํ•ด๋ฅผ ์ฐพ๊ธฐ ์–ด๋ ค์›Œ์ง„๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ๋“ฑ์žฅํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€

Model
EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI

EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI

EfficientFlow ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ƒ์„ฑ ๊ธฐ๋ฐ˜ ๋กœ๋ด‡ ์ •์ฑ…์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ณ‘๋ชฉ, ์ฆ‰ ๋ฐ์ดํ„ฐ ๋น„ํšจ์œจ์„ฑ๊ณผ ์ƒ˜ํ”Œ๋ง ์ง€์—ฐ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ๊ธธ์„ ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” ํ๋ฆ„ ๋งค์นญ(flow matching) ํ”„๋ ˆ์ž„์›Œํฌ์— ๋“ฑ๋ณ€์„ฑ(equivariance)์„ ๋„์ž…ํ•œ ์ ์ด๋‹ค. ๋“ฑ๋ณ€์„ฑ์€ ์ž…๋ ฅ ๊ณต๊ฐ„(์˜ˆ: ๋กœ๋ด‡์˜ ๊ด€์ธก์ด๋‚˜ ๋ชฉํ‘œ ์œ„์น˜)์ด ํšŒ์ „ยท์ด๋™ ๋“ฑ ๋ณ€ํ™˜์„ ๋ฐ›์„ ๋•Œ, ์ •์ฑ…์ด ๋™์ผํ•œ ๋ณ€ํ™˜์„ ํ–‰๋™์— ๋ฐ˜์˜ํ•˜๋„๋ก ๋ณด์žฅํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์‹œ์•ˆ ์‚ฌ์ „(p(z) ๐’ฉ(0,I))๊ณผ ๋“ฑ๋ณ€ ์†๋„ ์˜ˆ์ธก ๋„คํŠธ์›Œํฌ vฮธ(x,z)๋ฅผ ๊ฒฐํ•ฉํ•˜๋ฉด, ์ตœ์ข… ํ–‰๋™

Learning
Feasibility of Radio Frequency Based Wireless Sensing of Lead Contamination in Soil

Feasibility of Radio Frequency Based Wireless Sensing of Lead Contamination in Soil

๋ณธ ๋…ผ๋ฌธ์€ ๋„์‹œ ํ™˜๊ฒฝ์—์„œ์˜ ๋‚ฉ(Pb) ์˜ค์—ผ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ํ•ด๊ฒฐ์ฑ…์„ ์ œ์•ˆํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋‚ฉ ์˜ค์—ผ์€ ์‹ํ’ˆ ์•ˆ์ „๊ณผ ๊ณต์ค‘ ๋ณด๊ฑด์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ๋„์‹œ ๊ณต๊ฐ„์˜ ๋…นํ™”๋ฅผ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์ด์Šˆ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋‚ฉ ์ธก์ • ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ๊ทธ ๊ณผ์ •์ด ์‹œ๊ฐ„๊ณผ ๋น„์šฉ ๋ฉด์—์„œ ๋ถ€๋‹ด์Šค๋Ÿฝ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์„  ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ํ† ์–‘ ๋‚ด์˜ ์—ผ ์„ฑ๋ถ„๋“ค์ด ๋‹ค์–‘ํ•œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ๋ฌด์„  ์‹ ํ˜ธ ์ „ํŒŒ์— ๋ฏธ์น˜๋Š”

BookRAG: A Hierarchical Structure-aware Index-based Approach for Retrieval-Augmented Generation on Complex Documents

BookRAG: A Hierarchical Structure-aware Index-based Approach for Retrieval-Augmented Generation on Complex Documents

BookRAG ๋…ผ๋ฌธ์€ ๊ธฐ์กด RAG ์—ฐ๊ตฌ๊ฐ€ ์ผ๋ฐ˜์ ์ธ ํ‰๋ฉด ๋ฌธ์„œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”๋˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš๊ณ , ๊ณ„์ธต์  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฌธ์„œโ€”ํŠนํžˆ ๊ต๊ณผ์„œยทํ•ธ๋“œ๋ถยท๋งค๋‰ด์–ผ ๋“ฑโ€”์— ํŠนํ™”๋œ ๊ฒ€์ƒ‰โ€‘์ฆ๊ฐ• ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ์š”์•ฝํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ๋ฌธ์„œ์˜ ๋…ผ๋ฆฌ์  ๋ชฉ์ฐจ์™€ ์œ ์‚ฌํ•œ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” โ€˜BookIndexโ€™๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ์„น์…˜ยท์ฑ•ํ„ฐยท์ ˆ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ ˆ๋ฒจ์„ ๋ณด์กดํ•จ์œผ๋กœ์จ ์งˆ์˜๊ฐ€ ์š”๊ตฌํ•˜๋Š” ์„ธ๋ถ€ ์ˆ˜์ค€์— ๋งž๋Š” ๋‹จ์œ„๋กœ ์ •๋ณด๋ฅผ ์กฐํšŒํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ๋‘˜์งธ, ์—”ํ„ฐํ‹ฐ ๊ฐ„ ๊ด€๊ณ„๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•ด

Cross-Language Bias Examination in Large Language Models

Cross-Language Bias Examination in Large Language Models

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜•์–ธ์–ด๋ชจ๋ธ(Large Language Models, LLM)์—์„œ ํŽธํ–ฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค๊ตญ์–ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ช…์‹œ์  ํŽธํ–ฅ์„ฑ๊ณผ ์•”๋ฌต์  ํŽธํ–ฅ์„ฑ์„ ์ธก์ •ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์—ฌ, LLM์˜ ํŽธํ–ฅ์„ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ๋‹ค์„ฏ ๊ฐœ ์–ธ์–ด๋กœ ํ”„๋กฌํ”„ํŠธ์™€ ๋‹จ์–ด ๋ชฉ๋ก์„ ๋ฒˆ์—ญํ•จ์œผ๋กœ์จ ๋‹ค์–‘ํ•œ ์–ธ์–ด ๊ฐ„์˜ ํŽธํ–ฅ์„ฑ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ๊ณตํ•œ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๊ฐ๊ฐ์˜ ์–ธ์–ด๊ฐ€ LLM์—์„œ ๋ณด์ด๋Š” ํŽธํ–ฅ์„ฑ์ด ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ์•„๋ž์–ด์™€ ์ŠคํŽ˜์ธ์–ด์—์„œ๋Š” ๊ณ ์ • ๊ด€๋…์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ

Model
Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation

Generative Adversarial Gumbel MCTS for Abstract Visual Composition Generation

์ด ๋…ผ๋ฌธ์€ โ€œ์ถ”์ƒ ์‹œ๊ฐ ๊ตฌ์„ฑโ€์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ƒ์„ฑ ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ , ๊ธฐ์กด ํ”ฝ์…€โ€‘๋ ˆ๋ฒจ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์ง๋ฉดํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์  ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ตฌ์„ฑ์˜ ์ •์ฒด์„ฑ์„ โ€œ๊ธฐํ•˜ํ•™์  ๊ด€๊ณ„โ€์— ๋‘๊ณ , ํ…์Šค์ฒ˜๋‚˜ ์ƒ‰์ฑ„์™€ ๊ฐ™์€ ์ €์ฐจ์› ํŠน์„ฑ์€ ๋ถ€์ฐจ์ ์œผ๋กœ ์ทจ๊ธ‰ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Š” ์ธ๊ฐ„์ด ํผ์ฆ ์กฐ๊ฐ์„ ๋งž์ถœ ๋•Œ, ์กฐ๊ฐ์˜ ๋ชจ์–‘ยท์—ฐ๊ฒฐ ๊ด€๊ณ„๋ฅผ ์šฐ์„ ์ ์œผ๋กœ ํŒ๋‹จํ•˜๋Š” ์ธ์ง€ ๊ณผ์ •๊ณผ ์ผ๋งฅ์ƒํ†ตํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ด๊ณ , ๊ฐ€๋Šฅํ•œ ๋ฐฐ์น˜๊ฐ€ ์ด์‚ฐ์ ์ด๋ฉฐ, ๊ฒน์นจ ๋ฐฉ์ง€์™€ ๊ฐ™์€ ์ œ์•ฝ์ด ๊ฐ•ํ•˜๊ฒŒ ์ž‘์šฉํ•˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ์ˆœ์ˆ˜ํžˆ ํ™•๋ฅ ์  ํ”ฝ์…€โ€‘์ŠคํŽ˜์ด์Šค

Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems

Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems

๋ณธ ๋…ผ๋ฌธ์€ RAG ์‹œ์Šคํ…œ์ด ๋ณต์žกํ•œ ์ถ”๋ก  ์ž‘์—…์— ํ•„์š”ํ•œ ๋‹ค๋‹จ๊ณ„ ์ฆ๊ฑฐ๋ฅผ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๊ทธ๋ž˜ํ”„RAG ๋ฐฉ๋ฒ•์€ ๊ณ ํ’ˆ์งˆ ๊ทธ๋ž˜ํ”„ ํ‘œํ˜„์ด ํ•„์š”ํ•˜๊ฑฐ๋‚˜ ์ž๋™ํ™”๋œ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ์ด ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ™•์‚ฐ ํ™œ์„ฑํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด ์ •๋ณด ๊ฒ€์ƒ‰์„ ๊ฐœ์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด RAG ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ž๋™์œผ๋กœ ์ƒ์„ฑ๋œ ์ง€์‹ ๊ทธ๋ž˜ํ”„๋กœ ์—ฐ๊ฒฐ๋œ ๋ฌธ์„œ ์ฝ”ํผ์Šค์—์„œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋ฉฐ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์˜ ๋ณต์žกํ•œ ์ž‘์—…

System
OptPO: Optimal Rollout Allocation for Test-time Policy Optimization

OptPO: Optimal Rollout Allocation for Test-time Policy Optimization

๋ณธ ๋…ผ๋ฌธ์€ ํ…Œ์ŠคํŠธ ์‹œ ์ •์ฑ… ์ตœ์ ํ™”(Testโ€‘time Policy Optimization, TPO)๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉด์„œ, ๊ธฐ์กด์˜ ๊ณ ์ •โ€‘์˜ˆ์‚ฐ ๋‹ค์ˆ˜๊ฒฐ ํˆฌํ‘œ ๋ฐฉ์‹์ด ๊ฐ–๋Š” ๋น„ํšจ์œจ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ๋‹ค์ˆ˜๊ฒฐ ํˆฌํ‘œ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ผ์ • ์ˆ˜์˜ ๋กค์•„์›ƒ์„ ๋ฌด์กฐ๊ฑด ์ˆ˜ํ–‰ํ•œ ๋’ค, ๊ฐ€์žฅ ๋งŽ์ด ์„ ํƒ๋œ ๋‹ต๋ณ€์„ ์ตœ์ข… ์˜ˆ์ธก์œผ๋กœ ์ฑ„ํƒํ•œ๋‹ค. ์ด ๊ณผ์ •์€ โ€œ์ถฉ๋ถ„ํžˆ ํ™•์‹ ์ด ์žˆ๋Š”โ€ ๊ฒฝ์šฐ์—๋„ ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋งŽ์€ ์ถ”๋ก  ์ž์›์„ ์†Œ๋ชจํ•œ๋‹ค๋Š” ์ ์—์„œ, ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์„ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ์šด์˜ํ•  ๋•Œ ๋น„์šฉ ๋ถ€๋‹ด์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. OptPO๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๋ฒ ์ด์ง€์•ˆ

CoPHo: Classifier-guided Conditional Topology Generation with Persistent Homology

CoPHo: Classifier-guided Conditional Topology Generation with Persistent Homology

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ์งธ, ์œ„์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ๊ตฌ์กฐ์  ์†์„ฑ์„ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•œ ํ•ฉ์„ฑ ๊ทธ๋ž˜ํ”„๋ฅผ ๋งŒ๋“ค ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์กฐ๊ฑด๋ถ€ ํ™•์‚ฐ ๋ชจ๋ธ์€ ๊ฐ ์†์„ฑ๋งˆ๋‹ค ๋ณ„๋„์˜ ์žฌํ•™์Šต์„ ์š”๊ตฌํ•ด ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ค์› ์œผ๋ฉฐ, ์‚ฌํ›„์— ๋ถ„๋ฅ˜๊ธฐ ๊ฐ€์ด๋“œ๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐฉ์‹์€ ๊ทธ๋ž˜ํ”„์˜ ์ „์—ญ์ ์ธ ์œ„์ƒ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ๋‘˜์งธ, ์œ„์ƒ ๊ตฌ์กฐ๋Š” ๋‹จ์ˆœํžˆ ๋…ธ๋“œยท์—ฃ์ง€ ์ˆ˜์™€ ๊ฐ™์€ ์ €์ฐจ์› ํ†ต๊ณ„๋Ÿ‰์ด ์•„๋‹ˆ๋ผ, ์—ฐ๊ฒฐ์„ฑยท๊ตฌ๋ฉยท๊ตฌ์กฐ์  ๋ณต์žก์„ฑ ๋“ฑ์„ ํฌ๊ด„ํ•˜๋Š” ๊ณ ์ฐจ์› ํŠน์„ฑ์„ ํฌํ•จํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค

Flux-Preserving Adaptive Finite State Projection for Multiscale Stochastic Reaction Networks

Flux-Preserving Adaptive Finite State Projection for Multiscale Stochastic Reaction Networks

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ™”ํ•™ ์ฃผ.Ma์‹(CME)์˜ ๊ทผ์‚ฌ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ์œ ํ•œ ์ƒํƒœ ํˆฌ์˜(FSP) ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค๋ฃน๋‹ˆ๋‹ค. FSP๋Š” ๋ฌดํ•œํ•œ ์ƒํƒœ ๊ณต๊ฐ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žก์„ฑ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํŠน์ • ํ•˜์œ„ ์ง‘ํ•ฉ์„ ์„ ํƒํ•˜๊ณ  ์ด ๋ฒ”์œ„ ๋‚ด์—์„œ ๋™์—ญํ•™์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋„“๊ฒŒ ๋ถ„๋ฆฌ๋œ ๋ฐ˜์‘ ์†๋„๋ฅผ ๊ฐ€์ง„ ์‹œ์Šคํ…œ์—์„œ๋Š”, ํŠนํžˆ ๋‚ฎ์€ ํ™•๋ฅ ์˜ ์ƒํƒœ๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ณ‘๋ชฉ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๋ฉด FSP ๋ฐฉ๋ฒ•์ด ์ œ์•ฝ์„ ๋ฐ›์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ์œ ๋™ ๊ธฐ๋ฐ˜ ์ ์‘ํ˜• FSP ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•๋ฅ  ์œ ๋™์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋‚ฎ์€ ํ™•๋ฅ  ์ƒํƒœ๋ผ๋„ ํฐ ์™ธ๋ถ€ ์œ 

Network
MetaHGNIE: Meta-Path Induced Hypergraph Contrastive Learning in Heterogeneous Knowledge Graphs

MetaHGNIE: Meta-Path Induced Hypergraph Contrastive Learning in Heterogeneous Knowledge Graphs

์ด ๋…ผ๋ฌธ์€ ์ด์งˆ์ ์ธ ์ง€์‹ ๊ทธ๋ž˜ํ”„์—์„œ ๋…ธ๋“œ ์ค‘์š”๋„๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ์Œ๋ฐฉํ–ฅ ์—ฐ๊ฒฐ์— ์˜์กดํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณ ์ฐจ ๊ด€๊ณ„์™€ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ํ†ตํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ MetaHGNIE๋Š” ๋ฉ”ํƒ€๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ๊ตฌ์กฐ์  ๋ฐ ์˜๋ฏธ ์ •๋ณด๋ฅผ ๋ถ„๋ฆฌํ•˜๊ณ  ์ •๋ ฌํ•˜๋Š” ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ๋Œ€์กฐํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. MetaHGNIE์˜ ํ•ต์‹ฌ์€ ๊ณ ์ฐจ ์ง€์‹ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์„ฑ๊ณผ ์ด๋ฅผ ํ†ตํ•œ ๋‹ค์ค‘ ๊ฐœ์ฒด ๊ด€๊ณ„ ๋งฅ๋ฝ ํฌ์ฐฉ์— ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฉ”ํƒ€๊ฒฝ๋กœ ์‹œํ€€์Šค๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง€๋ฉฐ, ํƒ€์ž…ํ™”

Learning
OPAL: Operator-Programmed Algorithms for Landscape-Aware Black-Box Optimization

OPAL: Operator-Programmed Algorithms for Landscape-Aware Black-Box Optimization

์ด ๋…ผ๋ฌธ์€ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™” ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ Operator Programmed Algorithms (OPAL)์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. OPAL๋Š” ๊ฐ ๋ฌธ์ œ ์ธ์Šคํ„ด์Šค๋ณ„๋กœ ์—ฐ์‚ฐ์ž ํ”„๋กœ๊ทธ๋žจ์„ ํ•™์Šตํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ์ง„ํ™” ๋ฐ ๊ตฐ์ง‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋‹ฌ๋ฆฌ ํŠน์ • ๋ฌธ์ œ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ž‘์€ ์„ค๊ณ„ ์˜ˆ์‚ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋ถ„ ์ง„ํ™”๋ฅผ ํ†ตํ•ด ํ’๊ฒฝ์„ ํƒ์ƒ‰ํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•œ ํŠธ๋ž˜์ ํ† ๋ฆฌ ์ธ์ฝ”๋”ฉ ๋ฐ ๋ฉ”ํƒ€ ํ•™์Šต๊ธฐ๋ฅผ ํ†ตํ•œ ์—ฐ์‚ฐ์ž ์ผ์ • ๊ฒฐ์ •์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. OPAL์˜ ์„ฑ๋Šฅ์€ CEC 2017 ํ…Œ์ŠคํŠธ ์Šค์œ„ํŠธ์—์„œ ๊ฒ€์ฆ

STAR: Semantic-Traffic Alignment and Retrieval for Zero-Shot HTTPS Website Fingerprinting

STAR: Semantic-Traffic Alignment and Retrieval for Zero-Shot HTTPS Website Fingerprinting

์ด ๋…ผ๋ฌธ์€ ์›น์‚ฌ์ดํŠธ ์ง€๋ฌธ ๊ณต๊ฒฉ(Website Fingerprinting, WF)์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ๋„˜์–ด๊ฐ„๋‹ค. ๊ธฐ์กด์˜ WF ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ๊ฐ๋…ํ•™์Šต(supervised learning) ๊ธฐ๋ฐ˜์œผ๋กœ, ๊ฐ ์›น์‚ฌ์ดํŠธ๋ณ„๋กœ ๋ผ๋ฒจ์ด ๋ถ™์€ ํŠธ๋ž˜ํ”ฝ ์ƒ˜ํ”Œ์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฐ ์ ‘๊ทผ๋ฒ•์€ ๋‘ ๊ฐ€์ง€ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ฒซ์งธ, ๋ผ๋ฒจ๋ง ๋น„์šฉ์ด ๋ง‰๋Œ€ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. ์›น์‚ฌ์ดํŠธ ์ˆ˜์ฒœ ๊ฐœ์— ๋Œ€ํ•ด ๋งค์ผ ๋ณ€ํ•˜๋Š” ์ฝ˜ํ…์ธ ๋ฅผ ๋ฐ˜์˜ํ•˜๋ ค๋ฉด ์ง€์†์ ์ธ ์žฌ์ˆ˜์ง‘๊ณผ ์žฌ๋ผ๋ฒจ๋ง์ด ํ•„์š”ํ•˜๋‹ค. ๋‘˜์งธ, ํ›ˆ๋ จ ๋‹จ๊ณ„์— ํฌํ•จ๋˜์ง€ ์•Š์€ โ€˜์ƒˆ๋กœ์šดโ€™ ์‚ฌ์ดํŠธ์— ๋Œ€ํ•ด์„œ๋Š” ๋ชจ๋ธ์ด ์ „ํ˜€ ์ผ๋ฐ˜ํ™”๋˜์ง€

Systematization of Knowledge: Security and Safety in the Model Context Protocol Ecosystem

Systematization of Knowledge: Security and Safety in the Model Context Protocol Ecosystem

๋ชจ๋ธ ์ปจํ…์ŠคํŠธ ํ”„๋กœํ† ์ฝœ(MCP)์€ LLM์ด ์™ธ๋ถ€ ๋ฆฌ์†Œ์Šค์™€ ๋„๊ตฌ๋ฅผ ๋™์ ์œผ๋กœ ํ˜ธ์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ์ธํ„ฐํŽ˜์ด์Šค ๊ณ„์ธต์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ๊ณ„์ธต์€ ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€ ์›์‹œ ์š”์†Œโ€”Resources(๋ฐ์ดํ„ฐยท์„œ๋น„์Šค), Prompts(์ปจํ…์ŠคํŠธ ์ „๋‹ฌ), Tools(์‹คํ–‰ ๊ฐ€๋Šฅํ•œ API)โ€”๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ธ ์ธ์ฆยท๊ถŒํ•œ ๋ถ€์—ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฐ–์ถ”์ง€ ์•Š์€ ๊ฒฝ์šฐ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด์ด ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์œ„ํ—˜์€ โ€œ๊ฐ„์ ‘ ํ”„๋กฌํ”„ํŠธ ์ธ์ ์…˜โ€์ด๋‹ค. ๊ณต๊ฒฉ์ž๋Š” ์ •์ƒ ์‚ฌ์šฉ์ž์™€ ๋™์ผํ•œ ์ปจํ…์ŠคํŠธ ํ๋ฆ„์— ์•…์˜์ ์ธ ํ…์ŠคํŠธ๋ฅผ ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ LLM์ด ๋‚ด๋ถ€์ ์œผ๋กœ ์ƒ์„ฑํ•œ ํ”„๋กฌํ”„ํŠธ

Model System
Variance-Aware Prior-Based Tree Policies for Monte Carlo Tree Search

Variance-Aware Prior-Based Tree Policies for Monte Carlo Tree Search

๋ณธ ๋…ผ๋ฌธ์€ Monte Carlo Tree Search(MCTS)์™€ ๊ฐ•ํ™”ํ•™์Šต(RL) ์‚ฌ์ด์˜ ์‹œ๋„ˆ์ง€๋ฅผ ํ•œ ๋‹จ๊ณ„ ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ์ƒˆ๋กœ์šด ํƒ์ƒ‰ ์ •์ฑ…์„ ์ œ์•ˆํ•œ๋‹ค. AlphaZero๊ฐ€ ๋ณด์—ฌ์ค€ ๋ฐ”์™€ ๊ฐ™์ด, ๊ธฐ์กด UCT๋Š” ํƒ์ƒ‰๊ณผ ํ™œ์šฉ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด UCB1์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์‚ฌ์ „ ํ™•๋ฅ (P)์„ ๊ฒฐํ•ฉํ•œ PUCT๊ฐ€ ์‹ค์ œ๋กœ๋Š” ํƒ์ƒ‰ ํšจ์œจ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ๊ฒฝํ—˜์  ์ฆ๊ฑฐ๊ฐ€ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ PUCT๋Š” โ€œ๊ฒฝํ—˜์ โ€์œผ๋กœ ์„ค๊ณ„๋œ ๊ฒƒ์ด๋ฉฐ, ์ด๋ก ์  ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•ด ๋‹ค๋ฅธ UCB ๋ณ€ํ˜•์„ ์‚ฌ์ „ ๊ธฐ๋ฐ˜ ํ˜•ํƒœ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์› ๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ๊ฐ€ MCTS๋ฅผ ์ •๊ทœํ™” ์ •์ฑ… ์ตœ์ ํ™”(RP

Context-Sensitive Abstractions for Reinforcement Learning with Parameterized Actions

Context-Sensitive Abstractions for Reinforcement Learning with Parameterized Actions

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜ํŒŒ๋ผ๋ฏธํ„ฐํ™”๋œ ํ–‰๋™ ๊ณต๊ฐ„(parameterized action space)โ€™์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ์˜์‚ฌ๊ฒฐ์ • ๊ตฌ์กฐ์ด๋‹ค. ์ „ํ†ต์ ์ธ ๊ฐ•ํ™”ํ•™์Šต์€ ํฌ๊ฒŒ ๋‘ ๊ฐˆ๋ž˜๋กœ ๋‚˜๋‰œ๋‹ค. ํ•˜๋‚˜๋Š” ์ด์‚ฐ ํ–‰๋™ ์ง‘ํ•ฉ์„ ์ „์ œ๋กœ ํ•˜๋Š” Qโ€‘learning, DQN ๋“ฑ์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์—ฐ์† ํ–‰๋™์„ ์ง์ ‘ ์ตœ์ ํ™”ํ•˜๋Š” DDPG, SAC์™€ ๊ฐ™์€ ์ •์ฑ… ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ๋กœ๋ด‡ ์ œ์–ด, ๊ฒŒ์ž„ AI, ์ž๋™ ์šด์ „ ๋“ฑ์—์„œ๋Š” โ€œ์ ํ”„โ€์™€ ๊ฐ™์€ ์ด์‚ฐ ํ–‰๋™๊ณผ ๋™์‹œ์— ๊ทธ ํ–‰๋™์˜ ์„ธ๋ถ€ ์‹คํ–‰ ํŒŒ๋ผ๋ฏธํ„ฐ(์˜ˆ: ์ ํ”„ ๋†’์ด, ๋ฐฉํ–ฅ)๋ฅผ ๊ฒฐ์ •ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค.

Learning
Detecting Perspective Shifts in Multi-agent Systems

Detecting Perspective Shifts in Multi-agent Systems

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์ƒ์„ฑํ˜• ์—์ด์ „ํŠธ์™€ ์™ธ๋ถ€ ๋„๊ตฌ์˜ ๊ฒฐํ•ฉ, ์ฆ‰ โ€˜์—์ด์ „ํŠธโ€™๋ผ๋Š” ๊ฐœ๋…์ด ๋‹จ์ˆœํžˆ ํ•˜๋‚˜์˜ ๋ชจ๋ธ์„ ๋ณด์กฐํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋‹ค์ˆ˜์˜ ์—์ด์ „ํŠธ๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง„ํ™”ํ•˜๋Š” ๋ณตํ•ฉ ์‹œ์Šคํ…œ์œผ๋กœ ์ „์ดํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•œ๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ์€ ์ฃผ๋กœ ์ •์  ํ˜น์€ ๋‹จ์ผ ์‹œ์ ์—์„œ์˜ ์—์ด์ „ํŠธ ํ–‰๋™์„ ์ €์ฐจ์› ์ž„๋ฒ ๋”ฉ์œผ๋กœ ์š”์•ฝํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜์‹œ๊ฐ„์  ๋ฐ์ดํ„ฐ ์ปค๋„ ๊ด€์  ๊ณต๊ฐ„(TDKPS)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ

System
Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers

Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ํƒ€์› ๊ณก์„  ์•”ํ˜ธ(ECC)์˜ ๋น„๋ฐ€ํ‚ค ๋ณต์› ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ECC๋Š” ํ˜„๋Œ€ ์ธํ„ฐ๋„ท ๋ณด์•ˆ๊ณผ ์•”ํ˜ธํ™” ๊ธˆ์œต ๋„๊ตฌ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ, ๊ทธ ์ค‘์š”์„ฑ์€ HTTPS์™€ ๊ฐ™์€ ํ”„๋กœํ† ์ฝœ ๋ฐ ๋น„ํŠธ์ฝ”์ธ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™•์ธ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ์•”ํ˜ธํ™” ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์‹ค์ œ ํ…Œ์ŠคํŠธ๋Š” ๋งค์šฐ ์ œํ•œ์ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜ ์—ญํ• ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด ๋ชจ๋ธ์ด ๊ณต๊ฐœํ‚ค์™€ ๊ฐœ์ธํ‚ค ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•˜๊ณ  ์ด๋ฅผ ์—ญ๊ณตํ•™ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์ฃผ์žฅํ•œ๋‹ค. ํŠนํžˆ, secp256r1 ํ˜•์‹์˜ ํ‚ค ์Œ์— ๋Œ€ํ•ด

QGShap: Quantum Acceleration for Faithful GNN Explanations

QGShap: Quantum Acceleration for Faithful GNN Explanations

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์˜ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ํš๊ธฐ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์–‘์ž ์ปดํ“จํŒ…์„ ๋„์ž…ํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด ์ƒคํ”Œ๋ฆฌ ๊ฐ’ ๊ธฐ๋ฐ˜ ์„ค๋ช… ๊ธฐ๋ฒ•์€ ์ด๋ก ์ ์œผ๋กœ๋Š” ๊ฐ€์žฅ ๊ณต์ •ํ•œ ๊ธฐ์—ฌ๋„ ์ธก์ •์„ ์ œ๊ณตํ•˜์ง€๋งŒ, 2โฟ๊ฐœ์˜ ์—ฐํ•ฉ์„ ๋ชจ๋‘ ํ‰๊ฐ€ํ•ด์•ผ ํ•˜๋Š” ์กฐํ•ฉ ํญ๋ฐœ ๋ฌธ์ œ ๋•Œ๋ฌธ์— ์‹ค์ œ ๋Œ€๊ทœ๋ชจ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ๊ฐ€ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋Š” ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์ƒ˜ํ”Œ๋ง, ๊ทผ์‚ฌ ๋ชจ๋ธ, ํ˜น์€ ์ œํ•œ๋œ ์ˆœ์—ด ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ค๋ช…์˜ ์ถฉ์‹ค๋„๋ฅผ ์ €ํ•˜์‹œํ‚ฌ ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. QGShap์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ์–‘์ž ์ง„ํญ ์ฆํญ(ampli

SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards

SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards

๋ณธ ๋…ผ๋ฌธ์€ AI ์ƒ์„ฑ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ ํ‰๊ฐ€๋ผ๋Š” ๋„“์€ ์˜์—ญ์—์„œ โ€˜๊ณต๊ฐ„ ๋ฏธํ•™(Spatial Aesthetics)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํŠนํžˆ ์‹ค๋‚ด ์žฅ๋ฉด์— ํŠนํ™”๋œ ํ‰๊ฐ€ ๊ธฐ์ค€์„ ์ฒด๊ณ„ํ™”ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด IQA ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ „๋ฐ˜์ ์ธ ์™œ๊ณก ์ •๋„, ์ƒ‰์ƒ ์™œ๊ณก, ๊ตฌ์กฐ์  ์†์‹ค ๋“ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ธ๊ฐ„์ด ์ผ์ƒ์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” โ€˜๊ณต๊ฐ„์  ์•„๋ฆ„๋‹ค์›€โ€™โ€”์˜ˆ๋ฅผ ๋“ค์–ด ๊ฐ€๊ตฌ ๋ฐฐ์น˜์˜ ํ•ฉ๋ฆฌ์„ฑ, ์ƒ‰์ฑ„์™€ ์žฌ์งˆ์˜ ์กฐํ™”, ์กฐ๋ช…์˜ ๋ฐฉํ–ฅ๊ณผ ๊ฐ•๋„, ๊ทธ๋ฆฌ๊ณ  ๋ Œ์ฆˆ ์™œ๊ณก ๋“ฑโ€”์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด

Social Comparison without Explicit Inference of Others' Reward Values: A Constructive Approach Using a Probabilistic Generative Model

Social Comparison without Explicit Inference of Others' Reward Values: A Constructive Approach Using a Probabilistic Generative Model

์ด ๋…ผ๋ฌธ์€ ์˜์žฅ๋ฅ˜ ์‚ฌํšŒ ์ธ์ง€ ์—ฐ๊ตฌ์— ๊ณ„์‚ฐ ๋ชจ๋ธ๋ง์„ ๋„์ž…ํ•จ์œผ๋กœ์จ โ€˜์‚ฌํšŒ์  ๋น„๊ตโ€™๋ผ๋Š” ๋ณตํ•ฉ ํ˜„์ƒ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ•ด์„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ์ž๋Š” ์„ธ ๊ฐ€์ง€ ๋Œ€์•ˆ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ–ˆ๋Š”๋ฐ, ๊ฐ๊ฐ์ด ์‚ฌํšŒ์  ์ •๋ณด ์ฒ˜๋ฆฌ์˜ ๋‹ค๋ฅธ ์ˆ˜์ค€์„ ๋Œ€ํ‘œํ•œ๋‹ค. IPM์€ ํŒŒํŠธ๋„ˆ์˜ ํ–‰๋™์œผ๋กœ๋ถ€ํ„ฐ ์ฃผ๊ด€์  ๊ฐ€์น˜ ํ•จ์ˆ˜๋ฅผ ์—ญ์ถ”์ •ํ•˜๋Š” ๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก  ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Š” ์ธ๊ฐ„์˜ ์ด๋ก ์  ๋งˆ์Œ ์ด๋ก (theory of mind)๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ, ํƒ€์ธ์˜ ๋‚ด๋ถ€ ์ƒํƒœ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋ ค๋Š” ์ ‘๊ทผ์ด๋‹ค. ๋ฐ˜๋ฉด NCM์€ ์ „ํ†ต์ ์ธ ๊ฐ•ํ™” ํ•™์Šต ๋ชจ๋ธ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ž๊ธฐ ์ž์‹ ์˜ ๋ณด์ƒ ์‹ ํ˜ธ๋งŒ์„ ์‚ฌ์šฉํ•ด ํ–‰๋™ ์ •์ฑ…์„

Model
The Silent Scholar Problem: A Probabilistic Framework for Breaking Epistemic Asymmetry in LLM Agents

The Silent Scholar Problem: A Probabilistic Framework for Breaking Epistemic Asymmetry in LLM Agents

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ž์œจ ์—์ด์ „ํŠธ๊ฐ€ RAG(๊ฒ€์ƒ‰ ๋ณด๊ฐ• ์ƒ์„ฑ)์™€ ๊ฒฐํ•ฉ๋  ๋•Œ ๊ฒช๋Š” ๊ทผ๋ณธ์ ์ธ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•œ๋‹ค. RAG๋Š” ์™ธ๋ถ€ ์ง€์‹์„ โ€˜์ฝ์–ด๋“ค์—ฌโ€™ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋Š” ์ผ๋ฐฉํ–ฅ์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋ถˆ๊ณผํ•˜๋ฏ€๋กœ, ์—์ด์ „ํŠธ๋Š” ์ •๋ณด๋ฅผ ์†Œ๋น„ํ•˜๋Š” ์—ญํ• ์— ๋จธ๋ฌด๋ฅธ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ โ€˜์ธ์‹ ๋น„๋Œ€์นญ(epistemic asymmetry)โ€™์ด๋ผ ๋ช…๋ช…ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋น„๋Œ€์นญ์ด ์ „ ์„ธ๊ณ„์ ์ธ ์ง€์‹ ์ƒ์‚ฐ ๊ณผ์ •์—์„œ ์ค‘๋ณต๊ณผ ๋น„ํšจ์œจ์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ํŠนํžˆ, ๋™์ผํ•˜๊ฑฐ๋‚˜ ์œ ์‚ฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์—ฌ๋Ÿฌ ๋…๋ฆฝ์ ์ธ ์—์ด์ „ํŠธ๊ฐ€ ์„œ๋กœ์˜ ํ•™์Šต ๊ฒฐ๊ณผ๋ฅผ ๊ณต์œ ํ•˜์ง€ ๋ชปํ•˜๊ณ , ๊ฒฐ๊ตญ ๊ฐ™

Framework
A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback

A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback

MATS ๋…ผ๋ฌธ์€ ํ˜„์žฌ ํ…์ŠคํŠธํˆฌSQL ๋ถ„์•ผ์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋Š” ์ง€๋ฐฐ์ ์ธ ์œ„์น˜๋ฅผ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. LLM์€ ๋ฐฉ๋Œ€ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ ๋•๋ถ„์— ๋ณต์žกํ•œ ์ž์—ฐ์–ด ์ดํ•ด์™€ ๋…ผ๋ฆฌ์  ์ถ”๋ก ์— ๊ฐ•์ ์„ ๋ณด์ด์ง€๋งŒ, ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๋ณด์•ˆ, ๋ผ์ด์„ ์Šค ๋น„์šฉ, ์‘๋‹ต ์ง€์—ฐ ๋“ฑ์˜ ์‹ค์งˆ์ ์ธ ์ œ์•ฝ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์‹ค์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์„ ํ™œ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ์œผ๋‚˜, SLM์€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ์™€ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์ œํ•œ์œผ๋กœ ์ธํ•ด ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ํŠนํžˆ ํ…์ŠคํŠธํˆฌSQL์ฒ˜๋Ÿผ ์ž…๋ ฅ ๋ฌธ์žฅ์˜ ์˜๋ฏธ๋ฅผ ์ •

Model Framework
ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes

ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes

ioPUF+๋Š” ๊ธฐ์กด IC ์„ค๊ณ„์— ๋‚ด์žฌ๋œ ์ž…์ถœ๋ ฅ ์ €ํ•ญ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด PUF ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ „ํ†ต์ ์ธ SRAMโ€‘PUF, Ringโ€‘Oscillatorโ€‘PUF ๋“ฑ์€ ๋ณ„๋„์˜ ํšŒ๋กœ ๋ธ”๋ก์„ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ํŠน์ˆ˜ํ•œ ๋ ˆ์ด์•„์›ƒ์„ ์š”๊ตฌํ•œ๋‹ค. ๋ฐ˜๋ฉด ioPUF+๋Š” ์ œ์กฐ ๊ณต์ •์—์„œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ํ’€์—…ยทํ’€๋‹ค์šด ์ €ํ•ญ๊ฐ’์˜ ๋ฏธ์„ธ ์ฐจ์ด๋ฅผ ์ธก์ •ํ•จ์œผ๋กœ์จ ์ถ”๊ฐ€ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ๋˜๋Š” COTS ๋ถ€ํ’ˆ์„ ์‚ฌ์šฉํ•˜๋Š” ์ €๊ฐ€ํ˜• IoT ๋””๋ฐ”์ด์Šค์— ํฐ ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ์ œ์•ˆ๋œ PUF๋Š” ๋‘ ๋‹จ๊ณ„์˜ ๋ณ€ํ™˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์›

Open-Ended Goal Inference through Actions and Language for Human-Robot Collaboration

Open-Ended Goal Inference through Actions and Language for Human-Robot Collaboration

์ด ์‚ฌ๋ก€๋Š” ์ธ๊ฐ„โ€‘๋กœ๋ด‡ ํ˜‘์—…(HRI) ๋ถ„์•ผ์—์„œ โ€˜์˜๋„ ์ถ”๋ก โ€™๊ณผ โ€˜๋Œ€ํ™” ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •โ€™์ด ์–ด๋–ป๊ฒŒ ํ†ตํ•ฉ๋˜๋Š”์ง€๋ฅผ ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ธ๊ฐ„์€ โ€œ๋น ๋ฅธ ์ดํƒˆ๋ฆฌ์•ˆ ์ €๋…โ€์ด๋ผ๋Š” ๊ณ ์ˆ˜์ค€ ๋ชฉํ‘œ๋งŒ์„ ์ œ์‹œํ•œ๋‹ค. ๋กœ๋ด‡์€ ์‚ฌ์ „ ์ •์˜๋œ ์Œ์‹ ์นดํ…Œ๊ณ ๋ฆฌ(์ดํƒˆ๋ฆฌ์•ˆ ์š”๋ฆฌ)์™€ ์‹œ๊ฐ„ ์ œ์•ฝ(๋น ๋ฅธ ์กฐ๋ฆฌ)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ›„๋ณด ์˜ต์…˜์„ ์ƒ์„ฑํ•˜๊ณ , ํŒŒ์Šคํƒ€์™€ ๋ฐฅ์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ํ•˜์œ„ ๋ชฉํ‘œ ์ค‘ ํŒŒ์Šคํƒ€๋ฅผ ์„ ํ˜ธํ•œ๋‹ค๋Š” ํ™•๋ฅ ์  ํŒ๋‹จ์„ ๋‚ด๋ฆฐ๋‹ค. ์—ฌ๊ธฐ์„œ ๋กœ๋ด‡์€ ์‚ฌ์ „ ์ง€์‹ ๋ฒ ์ด์Šค์™€ ์ƒํ™ฉ ์ธ์‹(๋“๋Š” ๋ฌผ)์ด๋ผ๋Š” ๋ฌผ๋ฆฌ์  ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ๋กœ๋ด‡์€ ํŒŒ์Šคํƒ€๋ฅผ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฐ€์ ธ์˜ด์œผ

A Time-efficient Prioritised Scheduling Algorithm to Optimise Initial Flock Formation of Drones

A Time-efficient Prioritised Scheduling Algorithm to Optimise Initial Flock Formation of Drones

๋“œ๋ก  ๋ฌด๋ฆฌ ๋น„ํ–‰์€ ๊ตฐ์ง‘ ํ–‰๋™์„ ํ†ตํ•ด ๋ณต์žกํ•œ ์ž„๋ฌด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ฃผ์ง€๋งŒ, ์ดˆ๊ธฐ ํ˜•์„ฑ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถฉ๋Œ ์œ„ํ—˜์€ ์‹œ์Šคํ…œ ์ „์ฒด์˜ ์•ˆ์ •์„ฑ์„ ํฌ๊ฒŒ ์œ„ํ˜‘ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ํž˜(์˜ˆ: ์ธ๊ณต์œ„๋ ฅ)์ด๋‚˜ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์„ ํ™œ์šฉํ•œ ๊ฒฐํ•ฉ ์ฐจ์ˆ˜(Coupling Degree) ๊ธฐ๋ฐ˜ ์šฐ์„ ์ˆœ์œ„ ์ง€์ • ๋ฐฉ์‹์„ ์ฑ„ํƒํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋“œ๋ก  ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์—ฐ์‚ฐ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ƒ์Šนํ•˜๊ณ , ์ถฉ๋Œ ํšŒํ”ผ๋ฅผ ์œ„ํ•œ ๊ฒฝ๋กœ ์žฌ๊ณ„์‚ฐ์ด ๋นˆ๋ฒˆํžˆ ์ผ์–ด๋‚˜ ๋น„ํšจ์œจ์ ์ธ ๋น„ํ–‰ ํŒจํ„ด์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ, ์ž ์žฌ ์ถฉ๋Œ์ด ๋‹ค์ˆ˜ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ€์ง‘ ํ™˜๊ฒฝ์—์„œ๋Š” ์ผ๋ถ€ ๋“œ๋ก ์ด

< Category Statistics (Total: 2829) >

Electrical Engineering and Systems Science
100
General
731
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut