KOINEU Logo
No Image

Differences That Matter: Auditing Models for Capability Gap Discovery and Rectification

์ด ๋…ผ๋ฌธ์€ ๋‹ค๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM)์˜ ํ‰๊ฐ€์™€ ๊ฐœ์„ ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ MLLM ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋“ค์€ ํ•ด์„์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ๋ชจ๋ธ ๊ฐ„์˜ ๋Šฅ๋ ฅ ๊ฒฉ์ฐจ๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ด์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ AuditDM์ด๋ผ๋Š” ์ž๋™ํ™”๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. AuditDM์€ ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด MLLM์„ ๊ฐ์‚ฌ์›์œผ๋กœ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์—ฌ, ๋ชจ๋ธ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ์ตœ๋Œ€ํ•œ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์–ด๋ ค์šด ์งˆ๋ฌธ๊ณผ ๋ฐ˜์‚ฌ์‹ค์  ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹คํŒจ ์œ ํ˜•์„ ์ฐพ์•„๋‚ด๊ณ , ์ด๋Ÿฌํ•œ ์‹คํŒจ ์‚ฌ๋ก€๋“ค์€ ์ฃผ์„ ์—†์ด๋„ ๋ฐ

Model
Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test

Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test

์ด ๋…ผ๋ฌธ์€ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์ด ์ด๋ก ์ ์œผ๋กœ๋Š” ์ž…๋ ฅ ์ˆœ์„œ๋ฅผ ๋’ค์ง‘๋Š” ์ž‘์—…๊ณผ ์›๋ž˜ ์ˆœ์„œ๋ฅผ ์œ ์ง€ํ•˜๋Š” ์ž‘์—…์„ ๋™๋“ฑํ•˜๊ฒŒ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‹ค์ œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์‹คํ—˜์—์„œ๋Š” โ€œ์—ญ์ „(curse of reversal)โ€์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ํ˜„์ƒ์ด ์ง€์†์ ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์ด ๋ฐ์ดํ„ฐ ์ž์ฒด์— ๋‚ด์žฌ๋œ ์‹œ๊ฐ„์  ๋น„๋Œ€์นญ์„ฑโ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์„œ์ˆ ์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ์ •๋ณด๊ฐ€ ๋ˆ„์ ๋˜๋Š” ๊ตฌ์กฐโ€”์— ๊ธฐ์ธํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ์ง€๋งŒ, ๋ฐ์ดํ„ฐ์˜ ํ†ต๊ณ„์  ํŠน์„ฑ๊ณผ ๋ชจ๋ธ ๊ตฌ์กฐ ์‚ฌ์ด์˜ ์›์ธ ๊ทœ๋ช…์„ ์œ„ํ•ด์„œ๋Š” ์™„์ „ํžˆ ํ†ต์ œ๋œ ์‹คํ—˜ ํ™˜๊ฒฝ์ด ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ์œ„ํ•ด โ€˜์—”ํŠธ๋กœํ”ผ

Dominating vs. Dominated: Generative Collapse in Diffusion Models

Dominating vs. Dominated: Generative Collapse in Diffusion Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ํ…์ŠคํŠธโ€‘์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ด ๋‹ค์ค‘ ๊ฐœ๋… ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” โ€˜์ง€๋ฐฐโ€‘์ง€๋ฐฐ๋ฐ›์Œ(Dominantโ€‘vsโ€‘Dominated, DvD) ๋ถˆ๊ท ํ˜•โ€™ ํ˜„์ƒ์„ ์‹ฌ์ธต์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ์ด ํ˜„์ƒ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒค์น˜๋งˆํฌ์ธ DominanceBench ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋‹ค์–‘ํ•œ ๊ฐœ๋… ์Œ(์˜ˆ: โ€œ๊ณ ์–‘์ด์™€ ์ž๋™์ฐจโ€, โ€œ์‚ฐ๊ณผ ๋ฐ”๋‹คโ€)์„ ํฌํ•จํ•˜๊ณ , ๊ฐ ๊ฐœ๋…๋ณ„๋กœ ๊ธฐ๋Œ€๋˜๋Š” ์‹œ๊ฐ์  ๋น„์ค‘์„ ์‚ฌ์ „์— ์ •์˜ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ๊ท ํ˜• ์žˆ๊ฒŒ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ์ธก๋ฉด์—์„œ๋Š” ํ•™์Šต ์ฝ”ํผ์Šค

Model
Dual Attention Guided Defense Against Malicious Edits

Dual Attention Guided Defense Against Malicious Edits

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋ฐœ์ „ํ•œ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ด ์ด๋ฏธ์ง€ ํŽธ์ง‘์— ํ˜์‹ ์„ ๊ฐ€์ ธ์™”์ง€๋งŒ, ์ด๋กœ ์ธํ•ด ์†์ž„์ˆ˜๋‚˜ ํ•ด๋กœ์šด ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์œค๋ฆฌ์  ๋„์ „์ด ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ์˜ ๋ฐฉ์–ด ๊ธฐ๋ฒ•๋“ค์€ ์•…์˜์ ์ธ ์กฐ์ž‘์— ๋Œ€ํ•œ ํšจ๊ณผ๊ฐ€ ์ œํ•œ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋…ผ๋ฌธ์€ DANP๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. DANP๋Š” ๋ชจ๋ธ์˜ ์˜๋ฏธ ์ดํ•ด์™€ ์ƒ์„ฑ ๊ณผ์ •์„ ๋ฐฉํ•ดํ•˜๋Š” ์ธ์‹๋˜์ง€ ์•Š๋Š” ๋ณ€ํ˜•์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค. DANP๋Š” ๊ต์ฐจ ์ฃผ์˜๋„ ๋งต๊ณผ ๋…ธ์ด์ฆˆ ์˜ˆ์ธก ๊ณผ์ •์„ ์กฐ์ž‘ํ•˜์—ฌ ํ…์ŠคํŠธ ๊ด€๋ จ ๋ฐ ๋น„๊ด€๋ จ ์˜์—ญ์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž˜๋ชป๋œ ์˜์—ญ์œผ๋กœ ํŽธ

EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection

EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์—…์˜ ํ™˜๊ฒฝ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๋ถ€์ •ํ™•ํ•œ ์ฃผ์žฅ, ์ฆ‰ ๋…น์ƒ‰์„ธํƒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ AI ํ”„๋ ˆ์ž„์›Œํฌ์ธ Emerald Mind๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํŠน์ • ๋ถ„์•ผ์˜ ์ง€์‹ ๊ทธ๋ž˜ํ”„์™€ ๊ฒ€์ƒ‰ ๊ฐ•ํ™” ์ƒ์„ฑ์„ ํ†ตํ•ฉํ•˜์—ฌ ๋…น์ƒ‰์„ธํƒ ์ž๋™ ํƒ์ง€๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์—…๋“ค์˜ ESG ๋ณด๊ณ ์„œ์—์„œ ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌ์„ฑ๋œ EmeraldGraph๊ฐ€ ํ•ต์‹ฌ ์—ญํ• ์„ ํ•˜๋ฉฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ์ง€์‹ ๊ทธ๋ž˜ํ”„์— ๋ถ€์กฑํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ์ฃผ์žฅ์˜ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. Emerald Mind ํ”„๋ ˆ์ž„์›Œ

Framework Detection
ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning

ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ–‰๋™ ๋ณต์ œ(Behaviorโ€‘Cloning) ๊ธฐ๋ฐ˜ ๋น„์ฃผ์–ผ๋ชจํ„ฐ ์ •์ฑ…์ด ์ธ๊ฐ„ ์‹œ์—ฐ์˜ ์ •๋ฐ€์„ฑ์„ ๊ทธ๋Œ€๋กœ ๋ฌผ๋ ค๋ฐ›๋Š” ๋™์‹œ์—, ์ธ๊ฐ„์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ทจํ•˜๋Š” ๋А๋ฆฐ ํ…œํฌ๊ฐ€ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ์ง€์ ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์‹œ์—ฐ์˜ ์†๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ‰๊ท  ์†๋„, ๊ฐ€์†๋„, ํ˜น์€ ์†๋ชฉ ๊ถค์ ๊ณผ ๊ฐ™์€ ํ†ต๊ณ„์  ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ๋‹จ์ˆœํžˆ ์ผ์ • ๊ฐ„๊ฒฉ์œผ๋กœ ํ”„๋ ˆ์ž„์„ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ํœด๋ฆฌ์Šคํ‹ฑ ๋ฐฉ์‹์„ ์ ์šฉํ•ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ž‘์—…์˜ ์˜๋ฏธ์  ๊ตฌ์กฐโ€”์˜ˆ๋ฅผ ๋“ค์–ด โ€œ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ์ˆœ๊ฐ„โ€์ด๋‚˜ โ€œ์ •๋ฐ€ํ•œ ์‚ฝ์ž… ๋‹จ๊ณ„โ€์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ตฌ๊ฐ„โ€”๋ฅผ ๋ฌด์‹œ

Learning Data
From In Silico to In Vitro: Evaluating Molecule Generative Models for Hit Generation

From In Silico to In Vitro: Evaluating Molecule Generative Models for Hit Generation

๋ณธ ๋…ผ๋ฌธ์€ ์‹ ์•ฝ ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ์ธ๊ณต์ง€๋Šฅ, ํŠนํžˆ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์–ด๋–ค ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ์•ฝ ๊ฐœ๋ฐœ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„ ์ค‘ ํ•˜๋‚˜์ธ 'ํƒ€๊ฒŸ ๋ถ„์ž ๋ฐœ๊ตด'์€ ์ „ํ†ต์ ์œผ๋กœ ๋Œ€๊ทœ๋ชจ ํ™”ํ•ฉ๋ฌผ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— ๋Œ€ํ•œ ๊ณ ์† ๊ฒ€์ƒ‰์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ์‹œ๊ฐ„๊ณผ ์ž์› ์†Œ๋น„๊ฐ€ ํฐ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๊ฐ€์ƒ ์Šคํฌ๋ฆฌ๋‹ ๊ธฐ์ˆ ์˜ ๋„์ž…์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์—ฌ์ „ํžˆ ๋งŽ์€ ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ๋ณต์žกํ•œ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜๊ณ  ์ƒˆ๋กœ์šด ํ™”ํ•ฉ๋ฌผ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ์„ฑ ๋ชจ๋ธ๋“ค์ด ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋“ค์ด ์‹ ์•ฝ ๊ฐœ๋ฐœ ์ „์ฒด ๊ณผ์ •์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์€ ์•„์ง

Model
No Image

Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ˆ˜ํ•™์  ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด LLM๋“ค์€ ์ˆ˜ํ•™ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ํ”„๋กœ์„ธ์Šค ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด Generative Adversarial Reasoner๋ผ๋Š” ์˜จ ํด๋ฆฌ์‹œ ํ•ฉ๋™ ํ›ˆ๋ จ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋„์ž…ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ ๋Œ€ ๊ฐ•ํ™”ํ•™์Šต์„ ํ™œ์šฉํ•˜์—ฌ LLM ์ถ”๋ก ๊ธฐ์™€ ํŒ๋ณ„๊ธฐ๋ฅผ ๊ณต๋™์œผ๋กœ ์ง„ํ™”์‹œํ‚ค๋ฉฐ, ๊ฐ ์ถ”๋ก  ์ฒด์ธ์„ ๋…ผ๋ฆฌ์ ์œผ๋กœ ์™„์ „ํ•œ ์Šฌ๋ผ์ด์Šค๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ด๋ฅผ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” LLM ์ถ”๋ก ๊ธฐ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ๋‹ต๋ณ€์„ ์–ป๋Š” ๋ฐ ๋ณด

Learning
Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates

Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates

์ด ๋…ผ๋ฌธ์€ ์–‘์ž ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๊ฐ€์žฅ ์‹ค์งˆ์ ์ธ ์žฅ์• ๋ฌผ ์ค‘ ํ•˜๋‚˜์ธ ๋ณ€๋ถ„ ์–‘์ž ํšŒ๋กœ(VQC)์˜ ์„ค๊ณ„ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ํšŒ๋กœ๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์„ ์„œํ”„๋ผ์ด์ฆˆ ๋ชจ๋ธ๋กœ ํ™œ์šฉํ•œ ๊ฒƒ์€ ๊ธฐ์กด์˜ ๋ฒกํ„ฐ ๊ธฐ๋ฐ˜ ๋ฉ”ํƒ€๋ชจ๋ธ๋ณด๋‹ค ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ์— ๊ธฐ๋Œ€ ํ–ฅ์ƒ(Expected Improvement) ํš๋“ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜๊ณ , ์„œํ”„๋ผ์ด์ฆˆ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ๋“œ๋กญ์•„์›ƒ์œผ๋กœ ์ถ”์ •ํ•จ์œผ๋กœ์จ ํƒ์ƒ‰ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€๋‹ค. ์ด๋Š” ํƒ์ƒ‰ ๊ณต๊ฐ„์ด ๊ธฐํ•˜๊ธ‰์ˆ˜

Hardware Software Optimizations for Fast Model Recovery on Reconfigurable Architectures

Hardware Software Optimizations for Fast Model Recovery on Reconfigurable Architectures

MERINDA๊ฐ€ ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œ์—ฐ์‚ฐ์„ ์ŠคํŠธ๋ฆฌ๋ฐ ๋ฐ์ดํ„ฐํ”Œ๋กœ์šฐ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , FPGA ๋‚ด๋ถ€ ์ž์›์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•œ๋‹คโ€๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด GPU ๊ธฐ๋ฐ˜ MR ๊ตฌํ˜„์€ ๋ฐ˜๋ณต์ ์ธ ์˜์กด์„ฑ ๋•Œ๋ฌธ์— ์ปค๋„ ๊ฐ„ ๋™๊ธฐํ™”๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๊ณ , ์ด๋Š” ์ปค๋„ ๋Ÿฐ์น˜ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ ๋‚ญ๋น„๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ MR์€ ๋งค ๋ฐ˜๋ณต๋งˆ๋‹ค ์ „์ฒด ์ƒํƒœ ๋ฒกํ„ฐ๋ฅผ ์ฝ๊ณ  ์“ฐ๋Š” ํŒจํ„ด์ด ๊ฐ•ํ•ด, ๋ฉ”๋ชจ๋ฆฌ ๊ณ„์ธต ๊ฐ„ ๋ฐ์ดํ„ฐ ์ด๋™์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. MERINDA๋Š” ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ FPGA์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•œ๋‹ค. ์ฒซ์งธ, BRAM์„ ์ด์šฉํ•œ ํƒ€์ผ๋ง ๊ธฐ๋ฒ•์€ ๋Œ€๊ทœ๋ชจ ์ƒํƒœ ๊ณต๊ฐ„

Model
hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware

hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware

hls4ml์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ FPGAยทASIC์— ์ง์ ‘ ํƒ‘์žฌํ•  ์ˆ˜ ์žˆ๋Š” HLS ์ฝ”๋“œ๋กœ ์ž๋™ ๋ณ€ํ™˜ํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ํ๋ฆ„๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ๋”ฅ๋Ÿฌ๋‹ ๊ฐœ๋ฐœ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ํฌ๊ฒŒ ์ค„์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์š”์†Œ๋Š” โ€˜ํ”„๋ ˆ์ž„์›Œํฌ ์ถ”์ƒํ™” ๋ ˆ์ด์–ดโ€™์ด๋‹ค. TensorFlow, PyTorch, Keras ๋“ฑ ๋‹ค์–‘ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ์ •์˜๋œ ๋ชจ๋ธ์„ ๊ณตํ†ต๋œ ์ค‘๊ฐ„ ํ‘œํ˜„(IR)์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด IR์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ ๋ ˆ์ด์–ด(์™„์ „ ์—ฐ๊ฒฐ, ํ•ฉ์„ฑ๊ณฑ, ํ™œ์„ฑํ™” ๋“ฑ)๋ฅผ HLS ์ฝ”๋“œ ํ…œํ”Œ๋ฆฟ์— ๋งคํ•‘ํ•œ๋‹ค. ํ…œํ”Œ๋ฆฟ์€ ํŒŒ๋ผ๋ฏธํ„ฐํ™” ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ๋น„

Learning
Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

ICAR๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ์˜ ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ณ ๋ คํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋น„์ „ ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๋ณต์žก๋„์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ๊ณ ์ •๋œ ๊นŠ์ด์™€ ์—ฐ์‚ฐ๋Ÿ‰์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ๊ฐ„๋‹จํ•œ ํ’๊ฒฝ์ด๋‚˜ ๋‹จ์ผ ๊ฐ์ฒด ์ด๋ฏธ์ง€์—์„œ๋„ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ์ดˆ๋ž˜ํ•ด ์—๋„ˆ์ง€ ์†Œ๋น„์™€ ์ถ”๋ก  ์ง€์—ฐ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ICAR๋Š” ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด โ€˜์กฐ๊ธฐ ์ข…๋ฃŒ(earlyโ€‘exit)โ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋ฏธ์ง€๊ฐ€ โ€˜๋‹จ์ˆœโ€™ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋˜๋ฉด, ๋„คํŠธ์›Œํฌ๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ๋ฐ”๋กœ ์ž„๋ฒ ๋”ฉ์„ ์ถ”์ถœํ•˜๊ณ , ๋ณต์žกํ•œ ๊ฒฝ์šฐ์—๋งŒ ์ „์ฒด ๋ ˆ์ด์–ด๋ฅผ ํ†ต๊ณผํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํฐ ๋‚œ๊ด€์€ ์กฐ๊ธฐ ์ข…

Model
Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning

Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ™”ํ˜• ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋ฐ์ดํ„ฐ ์ธก๋ฉด์—์„œ โ€œ์ƒํ™ฉ ์ค‘์‹ฌโ€์ด๋ผ๋Š” ๊ธฐ์กด ํŒจ๋Ÿฌ๋‹ค์ž„์ด ์‚ฌ์šฉ์ž์˜ ์ง€์†์ ์ธ ์ •์ฒด์„ฑ ์ •๋ณด๋ฅผ ๊ฒฐ์—ฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์‹ค์ œ ์ธ๊ฐ„ ๋Œ€ํ™”์—์„œ๋Š” ๋Œ€ํ™” ์ƒ๋Œ€์˜ ๊ณผ๊ฑฐ ๊ฒฝํ—˜, ๊ฐ€์น˜๊ด€, ์„ฑ๊ฒฉ ํŠน์„ฑ ๋“ฑ์ด ๊ฐ์ • ํ‘œํ˜„๊ณผ ํ•ด์„์— ๊นŠ์ด ๊ด€์—ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„์˜ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹์€ ๋‹จ์ผ ๋ฐœํ™” ํ˜น์€ ์งง์€ ๋Œ€ํ™” ํ๋ฆ„์— ๊ตญํ•œ๋ผ ์žˆ์–ด, ๋ชจ๋ธ์ด ๊ฐœ์ธํ™”๋œ ์ •์„œ ๋ฏธ๋ฌ˜ํ•จ์„ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ํ•™์Šต ๋ชฉํ‘œ ์„ค์ •์—์„œ โ€œ๋ถˆํˆฌ๋ช…ํ•˜๊ณ  ๊ฑฐ์นœโ€ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๊ฐ์ •ยท๊ณต๊ฐ

Learning
Large Language Models as Pokรฉmon Battle Agents: Strategic Play and Content Generation

Large Language Models as Pokรฉmon Battle Agents: Strategic Play and Content Generation

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ํฌ์ผ“๋ชฌ ์ „ํˆฌ๋ผ๋Š” ํŠน์ • ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํฌ์ผ“๋ชฌ ์ „ํˆฌ๋Š” ๋‹ค์–‘ํ•œ ์š”์†Œ, ์ฆ‰ ํƒ€์ž… ํšจ๊ณผ์„ฑ, ํ†ต๊ณ„์  ํŠธ๋ ˆ์ด๋“œ์˜คํ”„, ์œ„ํ—˜ ํ‰๊ฐ€ ๋“ฑ์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ, ์ด๋Š” ์ธ๊ฐ„์˜ ์ „๋žต์  ์‚ฌ๊ณ ์™€ ์œ ์‚ฌํ•˜๋‹ค. ์—ฐ๊ตฌํŒ€์€ LLM์ด ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€ ํ…Œ์ŠคํŠธํ•˜๊ธฐ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ ํฌ์ผ“๋ชฌ ์ „ํˆฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. LLM์€ ์ „ํ†ต์ ์ธ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋กœ์ง ๋Œ€์‹  ์ „ํˆฌ ์ƒํƒœ์— ๋”ฐ๋ผ ์›€์ง์ž„์„ ์„ ํƒํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” LLM์ด ๊ฒŒ์ž„์˜ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜, ์ฆ‰ ํƒ€์ž… ํšจ๊ณผ์„ฑ ๋ฐฐ์œจ, ํ†ต๊ณ„

Model
LLM-Driven Feature-Level Adversarial Attacks on Android Malware Detectors

LLM-Driven Feature-Level Adversarial Attacks on Android Malware Detectors

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ํ˜„์žฌ ์•ˆ๋“œ๋กœ์ด๋“œ ์•…์„ฑ์ฝ”๋“œ ํƒ์ง€ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ ๋Œ€์  ์ทจ์•ฝ์„ฑโ€™์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ํŠน์„ฑ ๋ณ€ํ˜•์„ ์œ„ํ•œ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ต๋ž€์ด ๋น„ํ˜„์‹ค์ ์ด๊ฑฐ๋‚˜ ์•…์„ฑ์ฝ”๋“œ์˜ ๋™์ž‘์„ ์†์ƒ์‹œํ‚ฌ ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. LAMLAD๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ž์—ฐ์–ด ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ด์ค‘ ์—์ด์ „ํŠธ ๊ตฌ์กฐ์ด๋‹ค. โ€˜LLM ์กฐ์ž‘์žโ€™๋Š” Drebin๊ณผ ๊ฐ™์€ ์ •์  ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›์•„, ์‹ค์ œ ์•ˆ๋“œ

Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models

Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models

Sparse Mixtureโ€‘ofโ€‘Experts(MoE) ์•„ํ‚คํ…์ฒ˜๋Š” โ€œ์ „๋ฌธ๊ฐ€(expert)โ€๋ผ๋Š” ๋…๋ฆฝ์ ์ธ ์„œ๋ธŒ๋„คํŠธ์›Œํฌ ์ง‘ํ•ฉ์„ ๊ฐ€์ง€๊ณ , ์ž…๋ ฅ์— ๋”ฐ๋ผ ์ผ๋ถ€๋งŒ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ˆ˜์‹ญ ๋ฐฐ๊นŒ์ง€ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ฃผ์—ˆ์œผ๋ฉฐ, ์ตœ์‹  ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜์ฒœ ๊ฐœ ์ด์ƒ์˜ ์ „๋ฌธ๊ฐ€๋ฅผ ๋‘๊ณ ๋„ ์ถ”๋ก  ๋น„์šฉ์„ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ๋ชจ๋“  ์ „๋ฌธ๊ฐ€๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ๋กœ๋“œํ•ด์•ผ ํ•˜๋Š” ์ •์  ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ํฐ ์žฅ์• ๋ฌผ๋กœ

Model Framework
Multi-agent Adaptive Mechanism Design

Multi-agent Adaptive Mechanism Design

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ์ฃผ์ฒด๊ฐ€ ์—์ด์ „ํŠธ๋“ค์˜ ์‚ฌ์ „ ์‹ ๋…์„ ์ „ํ˜€ ๋ชจ๋ฅด๋Š” ์ƒํ™ฉ์—์„œ, ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์—์ด์ „ํŠธ๋“ค์ด ์ง„์‹ค๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ์œ ๋„ํ•˜๋ฉด์„œ๋„ ์ „์ฒด ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€โ€๋ผ๋Š” ์งˆ๋ฌธ์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์—์„œ๋Š” ์‚ฌ์ „ ๋ถ„ํฌ๊ฐ€ ์ฃผ์–ด์ง€๋ฉด ์ตœ์ ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ๋ถ€์žฌํ•˜๊ฑฐ๋‚˜ ๋ณ€๋™์„ฑ์ด ํฌ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๋ถ„์•ผโ€”๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์™€ ์˜จ๋ผ์ธ ํ•™์Šตโ€”์˜ ์•„์ด๋””์–ด๋ฅผ ์œตํ•ฉํ•œ๋‹ค. ๋จผ์ €, DRAM์€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์—์ด์ „ํŠธ๋“ค์˜ ๋ณด๊ณ ๋ฅผ ๊ด€์ฐฐํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ฒ ์ด์ง€์•ˆ ์ถ”์ •

Multi-Rigid-Body Approximation of Human Hands with Application to Digital Twin

Multi-Rigid-Body Approximation of Human Hands with Application to Digital Twin

์ด ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ถ„์•ผ์—์„œ ์ธ๊ฐ„ ์†์˜ ์‹ค์‹œ๊ฐ„ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง ํŒŒ์ดํ”„๋ผ์ธ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ด‘ํ•™ ๋ชจ์…˜ ์บก์ฒ˜๋ฅผ ์ด์šฉํ•ด ๊ฐœ๋ณ„ ์‚ฌ์šฉ์ž์˜ ์† ํ˜•ํƒœ์™€ ์›€์ง์ž„์„ ์ •๋ฐ€ํžˆ ์ธก์ •ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ MANO(Multiโ€‘Abstracted hand model with Neural Operations)๋ผ๋Š” ๊ณ ์ฐจ์› ํŒŒ๋ผ๋ฏธํ„ฐํ™” ๋ชจ๋ธ์„ ๊ฐœ์ธํ™”ํ•œ๋‹ค. MANO๋Š” ๊ด€์ ˆ ํšŒ์ „์„ 3์ฐจ์› ํšŒ์ „๊ตฐ SO(3) ์ƒ์—์„œ ์ž์œ ๋กญ๊ฒŒ ํ‘œํ˜„ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋กœ๋ด‡ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ๋Š” ๊ฐ ๊ด€์ ˆ์ด ์ œํ•œ๋œ ์ž์œ ๋„(์˜ˆ: ๊ตด

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ํš๊ธฐ์ ์ธ ์„ฑ๊ณผ๋ฅผ ๋ณด์—ฌ ์™”์œผ๋ฉฐ, ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ยท๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ์˜ ํ•ฉ์„ฑ์— ๊ฐ•์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ํ™•์‚ฐ ๊ณผ์ •์€ ์ด๋ฏธ์ง€์˜ ๋ชจ๋“  ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ๋™์ผํ•˜๊ฒŒ ๋…ธ์ด์ฆˆํ™”ํ•˜๊ณ  ๋ณต์›ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๊ตฌ์กฐ์  ์ •๋ณด(ํŠนํžˆ ์œ„์ƒ)๋Š” ์†์‹ค๋˜๊ธฐ ์‰ฝ๋‹ค. ์œ„์ƒ์€ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ์™€ ๊ฒฝ๊ณ„, ํ…์Šค์ฒ˜์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•˜๋Š” ์š”์†Œ์ด๋ฉฐ, ํฌ๊ธฐ(magnitude)๋Š” ์ฃผ๋กœ ์ƒ‰์ƒยท๋ช…์•”๊ณผ ๊ฐ™์€ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋‹ด๋‹นํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์œ„์ƒ์„ ๋ณด์กดํ•˜๋ฉด์„œ ํฌ๊ธฐ๋งŒ ๋ฌด์ž‘์œ„ํ™”ํ•˜๋ฉด, ์ƒ์„ฑ ๊ณผ์ •์—์„œ ๊ตฌ์กฐ์  ์ผ

No Image

Optimal Software Pipelining and Warp Specialization for Tensor Core GPUs

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ GPU๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ํ•˜๋“œ์›จ์–ด ์ž์›์„ ํšจ์œจ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์†Œํ”„ํŠธ์›จ์–ด ํŒŒ์ดํ”„๋ผ์ด๋‹์€ ๋ฃจํ”„ ๋ ˆ๋ฒจ์—์„œ ์—ฐ์‚ฐ ๊ฐ„ ์˜์กด์„ฑ์„ ํ•ด์†Œํ•˜๊ณ , ํŒŒ์ดํ”„๋ผ์ธ ๋‹จ๊ณ„๋งˆ๋‹ค ์„œ๋กœ ๋‹ค๋ฅธ ์—ฐ์‚ฐ์„ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๋ฐ˜๋ฉด ์›Œํ”„ ํŠน์ˆ˜ํ™”๋Š” ๋™์ผํ•œ ์›Œํ”„ ๋‚ด์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์—ญํ• ์„ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์˜ˆ๋ฅผ ๋“ค์–ด ์ผ๋ถ€ ์Šค๋ ˆ๋“œ๊ฐ€ ๋ฉ”๋ชจ๋ฆฌ ๋กœ๋“œ์— ์ „๋…ํ•˜๊ณ  ๋‹ค๋ฅธ ์Šค๋ ˆ๋“œ๊ฐ€ ๊ณ„์‚ฐ์— ์ „๋…ํ•˜๋„๋ก ํ•˜๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ๋‘ ๊ธฐ๋ฒ•์€ ๊ฐ๊ฐ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋™์‹œ์— ์ ์šฉํ•  ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ์ž์› ์ถฉ๋Œ, ๋ ˆ

PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

PULSE๋Š” ํ˜„์žฌ ์‹ฌ์žฅ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜ํ†ตํ•ฉ์ โ€™ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํ•ด๋ถ€ํ•™์  ๋ถ„ํ• , ์งˆ๋ณ‘ ๋ถ„๋ฅ˜, ๋ณด๊ณ ์„œ ์ƒ์„ฑ ๋“ฑ ๊ฐ๊ฐ์˜ ๊ณผ์ œ๋ฅผ ๋…๋ฆฝ์ ์ธ ๋„คํŠธ์›Œํฌ์— ๋งก๊ฒจ ์™”์œผ๋ฉฐ, ์ด๋Š” ๋ฐ์ดํ„ฐ ๋ผ๋ฒจ๋ง ๋น„์šฉ ์ฆ๊ฐ€์™€ ๋ชจ๋ธ ๊ฐ„ ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. PULSE๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ๊ณตํ†ต backbone์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ๊ณผ์ œ๋ฅผ ๋™์‹œ์— ํ•™์Šตํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ž์ฒด ์ง€๋„ํ•™์Šต(selfโ€‘supervised) ๋ฐฉ์‹์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ์ด๋ฏธ์ง€ ํ‘œํ˜„์ด๋‹ค. ๋Œ€๊ทœ๋ชจ ๋น„๋ผ๋ฒจ ์‹ฌ

Quantifying Uncertainty in Machine Learning-Based Pervasive Systems: Application to Human Activity Recognition

Quantifying Uncertainty in Machine Learning-Based Pervasive Systems: Application to Human Activity Recognition

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ์™€ ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์ธ๊ฐ„ ํ™œ๋™ ์ธ์‹(HAR) ์‹œ์Šคํ…œ์—์„œ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”(UQ)๋ฅผ ํ†ตํ•ด ๋Ÿฐํƒ€์ž„ ์‹ ๋ขฐ์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ตœ๊ทผ ํผ์ŠคํŽœ์‹œ ์ปดํ“จํŒ…๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹(ML)์˜ ๊ฒฐํ•ฉ์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ํ˜์‹ ์ ์ธ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ด์™€ ๋™์‹œ์— ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ํŠนํžˆ, ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋‚˜ ์žก์Œ ๋“ฑ์œผ๋กœ ์ธํ•ด ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค. 2. ์ฃผ์š” ์—ฐ๊ตฌ ๋ฌธ์ œ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”(UQ)์˜ ํ•„์š”์„ฑ: ML ๋ชจ๋ธ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ํ•™์Šต๋˜๋ฏ€๋กœ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

Learning System
Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ •์น˜์ ยท์‚ฌํšŒ์ ์œผ๋กœ ๋ฏผ๊ฐํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•ด โ€œ๊ฑฐ๋ถ€โ€ ํ˜น์€ โ€œ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์ง€ ์•Š์Œโ€์ด๋ผ๋Š” ๋ฐ˜์‘์„ ๋ณด์ด๋Š” ํ˜„์ƒ์„, ๋ชจ๋ธ ์ž์ฒด๋ฅผ ์žฌํ•™์Šตํ•˜๊ฑฐ๋‚˜ ํŒŒ์ธํŠœ๋‹ํ•˜์ง€ ์•Š๊ณ ๋„ ์ธํผ๋Ÿฐ์Šค ๋‹จ๊ณ„์—์„œ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฑฐ๋ถ€ ํƒ์ง€๋Š” ์ •๊ทœํ‘œํ˜„์‹์ด๋‚˜ ํ‚ค์›Œ๋“œ ๋งค์นญ ๋“ฑ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์ƒˆ๋กœ์šด ํ‘œํ˜„์ด๋‚˜ ์€์œ ์  ์งˆ๋ฌธ์— ์ทจ์•ฝํ•˜๊ณ , ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ ์‹œ๋งˆ๋‹ค ์žฌ์กฐ์ •์ด ํ•„์š”ํ–ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด LLM ์ž์ฒด๋ฅผ โ€œํŒ์‚ฌ(judge)โ€ ์—ญํ• ๋กœ ํ™œ์šฉํ•œ๋‹ค. ๊ตฌ

SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks

SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ์˜ ํ•ด์„์„ฑ๊ณผ ์ œ์–ด์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ SALVE๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” โ„“1 ์ •๊ทœํ™” ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋‚ด์—์„œ ์ค‘์š”ํ•œ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ๋ฐœ๊ฒฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ํ–‰๋™์„ ํ•ด์„์ ์ด๊ณ  ์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Grad FAM์ด๋ผ๋Š” ์‹œ๊ฐํ™” ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜๋Š”์ง€ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. SALVE์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด ์ค‘ ํ•˜๋‚˜๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„์—์„œ์˜ ์ •ํ™•ํ•œ ๊ฐœ์ž…์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํŠน์ • ํด๋ž˜์Šค๋ฅผ

Network
No Image

Seismology modeling agent: A smart assistant for geophysical researchers

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋ฃจ์—ˆ๋‹ค. MCP ์„œ๋ฒ„๋Š” SPECFEM์ด๋ผ๋Š” ๊ณ ๊ธ‰ ์ง€์ง„ ๋ชจ๋ธ๋ง ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ†ตํ•ฉ๋˜์–ด, ์ด๋ฅผ ํ˜„๋Œ€์ ์ธ AI ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์— ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ์ž๋™ํ™”๋œ ์ž‘์—…๊ณผ ์ธ๊ฐ„์˜ ์ฐธ์—ฌ๊ฐ€ ํ•„์š”ํ•œ ์ž‘์—…์„ ๋ชจ๋‘ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ ์›Œํฌํ”Œ๋กœ๋ฅผ ๊ฐœ๋ฐœํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ง€์ง„ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ ๋ณต์žกํ•˜๊ณ  ์ „๋ฌธ์ ์ธ ์ง€์‹์ด ์š”๊ตฌ๋˜๋Š” ์ž‘์—…์„ ๋‹จ์ˆœํ™”ํ•จ์œผ๋กœ์จ, ํ•ด๋‹น ๋ถ„์•ผ์— ๋Œ€ํ•œ ์ง„์ž… ์žฅ๋ฒฝ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ”๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค. ๋˜ํ•œ, ์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ž˜์˜ ๊ณผํ•™์  ์—ฐ๊ตฌ๊ฐ€ ์ž๋™ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด๋‘๊ณ  ์žˆ์–ด

Model
SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation

SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation

SpidRโ€‘Adapt ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์˜์•„๊ฐ€ ๊ทนํžˆ ์ œํ•œ๋œ ์ฒญ๊ฐ ์ž…๋ ฅ๋งŒ์œผ๋กœ๋„ ์–ธ์–ด์˜ ๊ธฐ๋ณธ ๋‹จ์œ„๋ฅผ ๋น ๋ฅด๊ฒŒ ์Šต๋“ํ•œ๋‹ค๋Š” ์ธ์ง€๊ณผํ•™์  ๊ด€์ฐฐ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„, ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œ์„ฑ ํ‘œํ˜„ ๋ชจ๋ธ์ด ์ง๋ฉดํ•œ โ€œ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ ๊ฒฉ์ฐจโ€๋ฅผ ๋ฉ”ํƒ€ํ•™์Šต์ด๋ผ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ•ด์†Œํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ์ €์ž์› ์–ธ์–ด ์ ์‘ ๋ฌธ์ œ๋ฅผ โ€œ๋‹ค์ค‘ ๊ณผ์ œ ์ ์‘ ์‚ฌ์ „ํ•™์Šต(MAdaPT)โ€์ด๋ผ๋Š” ํ˜•ํƒœ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ ๊ณผ์ œ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์–ธ์–ด ํ˜น์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋ฐฉ์‹์„ ์˜๋ฏธํ•˜๋ฉฐ, ์ด๋“ค์„ ๋™์‹œ์— ํ•™์Šตํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์–ธ์–ด ๊ฐ„ ๋ณดํŽธ์ ์ธ ์Œ์„ฑ ํŠน์„ฑ์„ ๋‚ด์žฌํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค. ํ•ต์‹ฌ

Model
Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring

Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ์ถ”๋ก  ๋ชจ๋ธ(LRMs)์ด ๊ณผ๋„ํ•˜๊ฒŒ ์ƒ์„ฑํ•˜๋Š” ๊ฒ€์ฆ ๋ฐ ๋ฐ˜์„ฑ ๋‹จ๊ณ„๋กœ ์ธํ•ด ํšจ์œจ์„ฑ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์— ์ฃผ๋ชฉํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ Step Tagging ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ€๋ฒผ์šด ๋ฌธ์žฅ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ LRMs์ด ์ƒ์„ฑํ•˜๋Š” ์ถ”๋ก  ๋‹จ๊ณ„์˜ ์œ ํ˜•์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ถ„๋ฅ˜ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์˜ ๋น„ํšจ์œจ์„ฑ์„ ์ค„์ด๊ณ  ํšจ์œจ์ ์ธ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Rea sonType์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ถ”๋ก  ๋‹จ๊ณ„ ๋ถ„๋ฅ˜๋ฒ•์€ ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด LRMs์˜ ํ–‰๋™์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํ‰๊ฐ€ ๊ฒฐ๊ณผ, Step Tagging

Model
Strategic Self-Improvement for Competitive Agents in AI Labour Markets

Strategic Self-Improvement for Competitive Agents in AI Labour Markets

์ด ๋…ผ๋ฌธ์€ ๊ธ‰์†ํžˆ ํ™•์‚ฐ๋˜๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ์‹ค์ œ ๊ฒฝ์ œ ์‹œ์Šคํ…œ์— ์ง„์ž…ํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋“ค์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € โ€˜์—ญ์„ ํƒ(adverse selection)โ€™๊ณผ โ€˜๋„๋•์  ์œ„ํ—˜(moral hazard)โ€™์ด๋ผ๋Š” ์ „ํ†ต์ ์ธ ์‹œ์žฅ ์‹คํŒจ ์š”์ธ์„ AI ์—์ด์ „ํŠธ์—๊ฒŒ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€, ๊ธฐ์กด ๊ฒฝ์ œํ•™ ์ด๋ก ์ด ์ธ๊ฐ„ ํ–‰์œ„์ž์— ๊ตญํ•œ๋œ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด AI ํ–‰์œ„์ž์—๋„ ๋™์ผํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์ž‘๋™ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์—ญ์„ ํƒ์€ ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ๋Šฅ๋ ฅ์„ ๊ณผ๋Œ€ ํ˜น์€ ๊ณผ์†Œ ํ‰๊ฐ€ํ•ด ์‹œ์žฅ์—

The Dead Salmons of AI Interpretability

The Dead Salmons of AI Interpretability

์ด ๋…ผ๋ฌธ์€ โ€œ์ฃฝ์€ ์—ฐ์–ดโ€ ์‹คํ—˜์„ ๊ณ„๊ธฐ๋กœ ํ†ต๊ณ„์  ์˜ค๋ฅ˜๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ณผํ•™์  ๊ฒฐ๋ก ์„ ์™œ๊ณกํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ๋ณด์—ฌ์ค€๋‹ค. MRI ์‹คํ—˜์—์„œ ์ธ๊ฐ„์˜ ์‚ฌํšŒ์  ์˜์ƒ์ด ์—ฐ์–ด์˜ ๋‡Œ ํ™œ๋™๊ณผ ์—ฐ๊ด€๋œ๋‹ค๋Š” ๊ฒฐ๊ณผ๋Š”, ์‹ค์ œ๋กœ๋Š” ์‹ ํ˜ธโ€‘๋Œ€โ€‘๋…ธ์ด์ฆˆ ๋น„๊ฐ€ ๋‚ฎ์€ ์ƒํ™ฉ์—์„œ ๋‹ค์ค‘ ๋น„๊ต์™€ ๋ถ€์ ์ ˆํ•œ ํ†ต๊ณ„ ๊ฒ€์ •์ด ๊ฒฐํ•ฉ๋œ ์ „ํ˜•์ ์ธ โ€˜pโ€‘ํ•ดํ‚นโ€™ ์‚ฌ๋ก€์ด๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ AI ํ•ด์„ ๋ถ„์•ผ์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•œ๋‹ค. ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ๋Œ€ํ•œ ํ•ด์„ ๊ธฐ๋ฒ•โ€”์˜ˆ๋ฅผ ๋“ค์–ด Gradโ€‘CAM, Integrated Gradients, probing classifiersโ€”์€ ๋Œ€๋ถ€๋ถ„ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋ฅผ ํ†ต๊ณ„์  ์ถ”์ •๋Ÿ‰

Thermal RGB Fusion for Micro-UAV Wildfire Perimeter Tracking with Minimal Comms

Thermal RGB Fusion for Micro-UAV Wildfire Perimeter Tracking with Minimal Comms

๋ณธ ๋…ผ๋ฌธ์€ ์ œํ•œ๋œ ๋Œ€์—ญํญ ํ™˜๊ฒฝ์—์„œ ์‚ผ๋ฆผ ํ™”์žฌ ๊ฐ์‹œ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฏธ์„ธ ๋“œ๋ก  ํŒ€์„ ์œ„ํ•œ ๊ฒฝ๋Ÿ‰ ํ™˜๊ฒฝ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์—ดํ™”์ƒ ์ด๋ฏธ์ง€์™€ RGB ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ™”์žฌ ๋ฐœ์ƒ ์ง€์—ญ์˜ ์˜จ๋„ ๋ถ„ํฌ ๋ฐ ๊ฒฝ๊ณ„์„ ์„ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๊ณ  ์ถ”์ ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ดํ™”์ƒ ์ด๋ฏธ์ง€๋Š” ์ ์‘ํ˜• ์ž„๊ณ„๊ฐ’ ์ฒ˜๋ฆฌ์™€ ํ˜•ํƒœํ•™์  ๋ณด์ • ๋‹จ๊ณ„๋ฅผ ํ†ตํ•ด ๊ฑฐ์นœ ์˜จ๋„ ์˜์—ญ ๋งˆ์Šคํฌ๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋Š” ํ™”์žฌ ๋ฐœ์ƒ ์ง€์—ญ์˜ ์œ„์น˜ ๋ฐ ํฌ๊ธฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. RGB ์ด๋ฏธ์ง€์—์„œ๋Š” ๊ฒฝ์‚ฌ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฝ๊ณ„์„  ํžŒํŠธ๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์กฐ์ง์— ๋”ฐ

ThinkTrap: Denial-of-Service Attacks against Black-box LLM Services via Infinite Thinking

ThinkTrap: Denial-of-Service Attacks against Black-box LLM Services via Infinite Thinking

ThinkTrap ๋…ผ๋ฌธ์€ ํ˜„์žฌ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ LLM ์„œ๋น„์Šค๊ฐ€ ์ง๋ฉดํ•œ ๊ฐ€์žฅ ์‹ฌ๊ฐํ•œ ์ธํ”„๋ผ ๋ณด์•ˆ ์œ„ํ˜‘ ์ค‘ ํ•˜๋‚˜์ธ โ€˜๋ฌดํ•œ ์ถ”๋ก  ๊ธฐ๋ฐ˜ DoS ๊ณต๊ฒฉโ€™์— ๋Œ€ํ•ด ์ฒด๊ณ„์ ์ธ ๊ณต๊ฒฉ ๋ชจ๋ธ๊ณผ ์‹ค์ฆ์  ์ฆ๊ฑฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์ €์ž๋“ค์€ LLM์ด ํ…์ŠคํŠธ ์ƒ์„ฑ ๊ณผ์ •์—์„œ ํ† ํฐ ๋‹จ์œ„๋กœ ์ˆœ์ฐจ์ ์œผ๋กœ ํ™•๋ฅ ์„ ์ƒ˜ํ”Œ๋งํ•œ๋‹ค๋Š” ์ ์„ ์ด์šฉํ•ด, ํŠน์ • ํ”„๋กฌํ”„ํŠธ๊ฐ€ ๋ชจ๋ธ์„ ๋น„์ •์ƒ์ ์œผ๋กœ ๊ธด ์ถœ๋ ฅ์œผ๋กœ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ชจ๋ธ ๋‚ด๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ์— ์ ‘๊ทผํ•˜๊ฑฐ๋‚˜, ํ† ํฐ ์ƒ˜ํ”Œ๋ง ์ „๋žต์„ ์กฐ์ž‘ํ•˜๋Š” ๋ฐฉ์‹์— ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, ThinkTrap์€ ์™„์ „ํ•œ ๋ธ”๋ž™๋ฐ•์Šค ์ƒํ™ฉ์—์„œ๋„ ์„ฑ๊ณต์ ์ธ

TrafficSimAgent: A Hierarchical Agent Framework for Autonomous Traffic Simulation with MCP Control

TrafficSimAgent: A Hierarchical Agent Framework for Autonomous Traffic Simulation with MCP Control

๋ณธ ๋…ผ๋ฌธ์€ ๊ตํ†ต ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•œ ์ž๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ์ธ TrafficSimAgent๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๊ตํ†ต ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์ธ SUMO์™€ MATโ€‘Sim์€ ๊ฐ•๋ ฅํ•œ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ์‚ฌ์šฉ์ž๊ฐ€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •, ์‹œ๋‚˜๋ฆฌ์˜ค ๊ตฌ์„ฑ, ๊ฒฐ๊ณผ ํ•ด์„ ๋“ฑ์„ ์ผ์ผ์ด ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๋†’์€ ์ง„์ž… ์žฅ๋ฒฝ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๋‹จ๊ณ„์˜ ์ „๋ฌธ๊ฐ€ ์—์ด์ „ํŠธ ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. ๊ณ ์ˆ˜์ค€ ์ „๋ฌธ๊ฐ€ ์—์ด์ „ํŠธ๋Š” ์ž์—ฐ์–ด ์ž…๋ ฅ์„ ๋ฐ›์•„ ์‚ฌ์šฉ์ž์˜ ์˜๋„๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ์‹คํ—˜ ๋ชฉํ‘œ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฒ”์œ„, ํ‰๊ฐ€ ์ง€ํ‘œ ๋“ฑ์„ ์ถ”์ถœํ•œ๋‹ค.

Framework
Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion

Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion

๋ณธ ๋…ผ๋ฌธ์€ ๋น„๋””์˜ค ์ฝ˜ํ…์ธ ์˜ ๊ธ‰์†ํ•œ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ํšจ์œจ์ ์ธ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์ˆœ๊ฐ„ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ํ•„์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ํ˜์‹ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ๋กœ, BEiT 3์™€ SigLIP๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์บ์Šค์ผ€์ด๋“œ ๋“€์–ผ ์ž„๋ฒ ๋”ฉ ํŒŒ์ดํ”„๋ผ์ธ์€ ๋‹ค์–‘ํ•œ ๋ชจ๋‹ฌ ๊ฐ„์˜ ์ •๋ณด ์œตํ•ฉ์„ ํ†ตํ•ด ๊ด‘๋ฒ”์œ„ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , BLIP 2 ๊ธฐ๋ฐ˜ ์žฌ์ˆœ์œ„ํ™”๋Š” ํšŒ์ˆ˜์œจ๊ณผ ์ •๋ฐ€๋„๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ์กฐ์ ˆํ•œ๋‹ค. ๋‘˜์งธ๋กœ, ์‹œ๊ฐ„ ์ธ์‹ ์ ์ˆ˜๋ง ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํฐ ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์— ๋Œ€ํ•œ ์ง€์ˆ˜ ๊ฐ์†Œ ์ฒ˜๋ฒŒ์„ ์ ์šฉํ•˜์—ฌ ๋น„ํ˜„์‹ค์ ์ธ ์‚ฌ๊ฑด ์‹œํ€€์Šค๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ์ผ๊ด€๋œ ์‚ฌ๊ฑด ์ˆœ์„œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค.

Universal Hirschberg for Width Bounded Dynamic Programs

Universal Hirschberg for Width Bounded Dynamic Programs

๋ณธ ๋…ผ๋ฌธ์€ Hirschberg์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ๊ณตํ•˜๋Š” ๊ณต๊ฐ„ ๋ณต์žก๋„ ๊ฐ์†Œ ์•„์ด๋””์–ด๋ฅผ ๋‹ค์–‘ํ•œ ๋™์  ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ฌธ์ œ๋กœ ํ™•์žฅ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ํƒ๊ตฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐฉํ–ฅ์„ฑ ๋ฌดACYCLIC ๊ทธ๋ž˜ํ”„(DAG) ์ƒ์—์„œ ๊ตญ์†Œ์ ์ธ ์ข…์†์„ฑ์„ ๊ฐ€์ง„ DP ๋ฌธ์ œ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ฐ˜ํ™”๋œ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์œ„์ƒ์ ์œผ๋กœ ์ˆœ์„œํ™”๋œ DAG๋กœ ๋ชจ๋ธ๋งํ•˜๋ฉฐ, ๊ฒฝ๊ณ„ ํญ ฯ‰์™€ ์ œํ•œ๋œ ์ž…๋„๋ฅผ ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ฒฐ์ •์ ์ธ ํ‹ฐ๋ธŒ๋ ˆ์ดํ‚น(max ํ˜• ์„ธ๋ฏธ๋ง)์„ ์‚ฌ์šฉํ•˜์—ฌ DP์˜ ์—ญ์ถ”์  ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ์ตœ์†Œํ™”ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

VLM in a flash: I/O-Efficient Sparsification of Vision-Language Model via Neuron Chunking

VLM in a flash: I/O-Efficient Sparsification of Vision-Language Model via Neuron Chunking

๋ณธ ๋…ผ๋ฌธ์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์— ๋Œ€๊ทœ๋ชจ VLM์„ ๋ฐฐ์น˜ํ•  ๋•Œ ์ง๋ฉดํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ณ‘๋ชฉ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ฒซ์งธ, ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๋Š” ์ „ํ†ต์ ์ธ DRAM๊ณผ ๋‹ฌ๋ฆฌ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ์‹œ ์—ฐ์†์„ฑ(contiguity)์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ž‘์€ ์กฐ๊ฐ์œผ๋กœ ํฉ์–ด์ง„ ์ฝ๊ธฐ ์š”์ฒญ์€ ํŽ˜์ด์ง€ ๋ ˆ๋ฒจ์˜ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ๋‚ด๋ถ€ ์ •๋ ฌ ๋น„์šฉ์„ ๊ธ‰์ฆ์‹œ์ผœ ์ „์ฒด ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋‘˜์งธ, ๊ธฐ์กด ํ™œ์„ฑํ™” ํฌ์†Œํ™” ๊ธฐ๋ฒ•์€ ๋‰ด๋Ÿฐ์˜ ์ ˆ๋Œ€๊ฐ’ ํฌ๊ธฐ๋งŒ์„ ๊ธฐ์ค€์œผ๋กœ ์ค‘์š”๋„๋ฅผ ํŒ๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ŠคํŒŒ์Šค ๋งˆ์Šคํฌ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธโ€‘์ค‘์‹ฌ ์ ‘๊ทผ์€ ์‹ค์ œ ์ €์žฅ ์žฅ์น˜์˜ I/O ํŠน์„ฑ์„ ๋ฌด์‹œํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํฌ์†Œํ™”๊ฐ€

Model
When to compute in space

When to compute in space

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์šฐ์ฃผ ํ™˜๊ฒฝ์—์„œ ์ปดํ“จํŒ… ์ž์›์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์–‘ํ•œ ์ปดํ“จํŒ… ์œ„์น˜(์šฐ์ฃผ์„  ๋‚ด๋ถ€ ์ปดํ“จํ„ฐ, ๊ถค๋„ ๋ฐ์ดํ„ฐ ์„ผํ„ฐ, ์ง€์ƒ ๊ธฐ์ง€ ์—ฃ์ง€ ๋…ธ๋“œ, ์œก์ง€ ํด๋ผ์šฐ๋“œ ์ธํ”„๋ผ)์—์„œ ์ž‘์—… ๋ถ€ํ•˜๋ฅผ ์‹คํ–‰ํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ์—ฌ๋Ÿฌ ์š”์†Œ๋“ค์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ์ตœ์ ํ™”ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๊ฒƒ ์ด์ƒ์œผ๋กœ, ํ†ต์‹  ์ œ์•ฝ ์กฐ๊ฑด, ๋น„์šฉ, ๊ทธ๋ฆฌ๊ณ  ๊ทœ์ œ ์ ํ•ฉ์„ฑ์„ ํฌํ•จํ•œ ๋ณต์žกํ•œ ์š”์ธ๋“ค๊นŒ์ง€๋„ ํฌ๊ด„์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ์š”์†Œ๋“ค์„ ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ฉ”ํŠธ๋ฆญ์„ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜๊ณ 

No Image

Measuring What Matters: Scenario-Driven Evaluation for Trajectory Predictors in Autonomous Driving

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์—์„œ ์ฃผ๋ณ€ ์—์ด์ „ํŠธ์˜ ๋™์ž‘์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋“ค์€ ์˜ค๋ฅ˜ ๊ธฐ๋ฐ˜ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›„์‹œ์ ์œผ๋กœ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์‹ค์ œ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰(SDV)์ด ๋ณต์žกํ•œ ์ƒํ˜ธ์ž‘์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์•ˆ์ „ํ•˜๊ฒŒ ์šดํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์˜ˆ์ธก์˜ ๋‹ค์–‘์„ฑ๊ณผ ๊ด€๋ จ๋œ ์ •๋ณด๋ฅผ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ •ํ™•์„ฑ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์˜ˆ์ธก์˜ ๋‹ค์–‘์„ฑ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ข…ํ•ฉ์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์šด์ „ ์„ฑ๋Šฅ์— ๋” ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋œ ์˜ˆ์ธก๊ธฐ ์„ฑ๋Šฅ ํ‰

State Space Models for Bioacoustics: A comparative Evaluation with Transformers

State Space Models for Bioacoustics: A comparative Evaluation with Transformers

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” Mamba ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋ฐ”์ด์˜ค์Œํ–ฅ ๋ถ„์•ผ์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๊ณผ์˜ ํšจ์œจ์„ฑ ๋ฐ ์„ฑ๋Šฅ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ ๋ฐฉ๋Œ€ํ•œ ์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•ด ์ž๊ธฐ์ง€๋„ํ•™์Šต(selfโ€‘supervised learning) ๋ฐฉ์‹์œผ๋กœ Mamba ๊ธฐ๋ฐ˜ ์˜ค๋””์˜ค ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ์‚ฌ์ „ํ•™์Šต(preโ€‘training)ํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ Mamba๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ƒํƒœ๊ณต๊ฐ„ ๋ชจ๋ธ(stateโ€‘space model) ๊ธฐ๋ฐ˜์˜ ์žฅ๊ธฐ ์˜์กด์„ฑ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด, ์ „ํ†ต์ ์ธ Transformer๊ฐ€ ๊ฒช๋Š” ๋ฉ”๋ชจ๋ฆฌ

Model
TrajMoE: Scene-Adaptive Trajectory Planning with Mixture of Experts and Reinforcement Learning

TrajMoE: Scene-Adaptive Trajectory Planning with Mixture of Experts and Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ๊ณ„ํš ์˜์—ญ์—์„œ ๊ธฐ์กด ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ฐœ์„ ์ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐœ์„ ์ ์€ โ€˜์ „๋ฌธ๊ฐ€ ๋ชจ๋ธ(๋ชจ๋ธโ€‘์˜ค๋ธŒโ€‘์ „๋ฌธ๊ฐ€, MoE)โ€™์„ ํ™œ์šฉํ•ด ์ƒํ™ฉ๋ณ„ ๋งž์ถคํ˜• ๊ถค์  ์‚ฌ์ „์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ž์œจ์ฃผํ–‰์€ ๋„์‹ฌ, ๊ณ ์†๋„๋กœ, ๊ต์ฐจ๋กœ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ๋™์  ์ œ์•ฝ๊ณผ ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์ด ํ•˜๋‚˜์˜ ๊ณ ์ •๋œ ๊ถค์  ์‚ฌ์ „๋งŒ์„ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด, MoE๋Š” ๊ฐ ์ƒํ™ฉ์— ํŠนํ™”๋œ ์ „๋ฌธ๊ฐ€ ๋„คํŠธ์›Œํฌ๋ฅผ ๋™์ ์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ์‚ฌ์ „ ๋ถ„ํฌ์˜ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ณต์žกํ•œ ๊ต์ฐจ๋กœ๋‚˜ ๊ธ‰๊ฒฉํ•œ ์ฐจ์„  ๋ณ€ํ™˜

Learning
Large Language Models as Discounted Bayesian Filters

Large Language Models as Discounted Bayesian Filters

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ •์ ์ธ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ž‘์—…์—์„œ ๋›ฐ์–ด๋‚œ ์†Œ์ˆ˜ ์ƒท ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด, ์‹ค์ œ ์„ธ๊ณ„์™€ ๊ฐ™์ด ์ง€์†์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ํ™•๋ฅ ์  ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ๋ฏฟ์Œ์„ ์—…๋ฐ์ดํŠธํ•˜๋Š”์ง€๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋ฒ ์ด์ง€์•ˆ ํ•„ํ„ฐ๋ง์ด๋ผ๋Š” ํ†ต๊ณ„์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ฐจ์šฉํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ด€์ธก๋œ ๋ฐ์ดํ„ฐ์™€ ์‚ฌ์ „ ์ง€์‹์„ ๊ฒฐํ•ฉํ•ด ์‚ฌํ›„ ๋ถ„ํฌ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฐฑ์‹ ํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์ด ๋‚ด๋ถ€์ ์œผ๋กœ ๋ฒ ์ด์ง€์•ˆ ์—…๋ฐ์ดํŠธ๋ฅผ ์ •ํ™•ํžˆ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋Š”์ง€๋Š” ์•„์ง ๋ช…ํ™•ํ•˜์ง€ ์•Š์•˜๋‹ค. ์‹คํ—˜ ์„ค๊ณ„๋Š” ๋‘ ๊ฐ€์ง€ ์ถ•์„ ์ค‘์‹ฌ์œผ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋‹ค๋ณ€๋Ÿ‰

Model
Mitigating Gender Bias in Depression Detection via Counterfactual Inference

Mitigating Gender Bias in Depression Detection via Counterfactual Inference

๋ณธ ์—ฐ๊ตฌ๋Š” ์Œ์„ฑ ์‹ ํ˜ธ๋งŒ์„ ์ด์šฉํ•ด ์šฐ์šธ์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” ์‹œ์Šคํ…œ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์„ฑ๋ณ„ ํŽธํ–ฅ ๋ฌธ์ œ๋ฅผ ์ธ๊ณผ๋ก ์  ๊ด€์ ์—์„œ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ ๋‹จ์ˆœํžˆ ์žฌ์ƒ˜ํ”Œ๋งํ•˜๊ฑฐ๋‚˜ ์†์‹ค ํ•จ์ˆ˜์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํŽธํ–ฅ์„ ์™„ํ™”ํ•˜๋ ค ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ํŽธํ–ฅ์˜ ๊ทผ๋ณธ ์›์ธ์ธ โ€˜์„ฑ๋ณ„์ด ์ง์ ‘์ ์œผ๋กœ ์˜ˆ์ธก์— ๋ฏธ์น˜๋Š” ์ธ๊ณผ ํšจ๊ณผโ€™๋ฅผ ์ œ๊ฑฐํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ €์ž๋Š” ๋จผ์ € ์šฐ์šธ์ฆ ์ง„๋‹จ ๊ณผ์ • ์ „์ฒด๋ฅผ ์ธ๊ณผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๋…ธ๋“œ๋“ค์€ ์„ฑ๋ณ„(G), ์Œํ–ฅ ํŠน์ง•(X), ์ž ์žฌ์  ๋ณ‘๋ฆฌ ์š”์ธ(P), ๊ทธ๋ฆฌ๊ณ  ์ตœ์ข… ์˜ˆ์ธก(Y)์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ

Detection
Enabling Conversational Behavior Reasoning Capabilities in Full-Duplex Speech

Enabling Conversational Behavior Reasoning Capabilities in Full-Duplex Speech

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ๋Œ€ํ™”์˜ ๊ทผ๋ณธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ โ€œ์ƒ๊ฐ์˜ ์‚ฌ์Šฌโ€์ด๋ผ๋Š” ๋ฉ”ํƒ€ํฌ๋กœ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์ด๋ก ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋Œ€ํ™” ์‹œ์Šคํ…œ์€ ์ฃผ๋กœ ๋ฐœํ™”โ€‘์‘๋‹ต ๋งคํ•‘์ด๋‚˜ ์‹œํ€€์Šคโ€‘ํˆฌโ€‘์‹œํ€€์Šค ๋ชจ๋ธ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ๋ฐœํ™” ๊ฐ„ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋‹ค๋ฃจ์ง€๋Š” ๋ชปํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋Œ€ํ™”๋ฅผ โ€˜์˜๋„ โ†’ ํ–‰๋™โ€™์ด๋ผ๋Š” ๋‘ ๋‹จ๊ณ„๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ๊ฐ์„ ๊ณ ์ˆ˜์ค€ ๋ผ๋ฒจ(์˜ˆ: ์งˆ๋ฌธ, ์ œ์•ˆ, ํ™•์ธ)๊ณผ ์ €์ˆ˜์ค€ ๋ผ๋ฒจ(์˜ˆ: ๋ฐœํ™” ์‹œ์ž‘, ์ค‘๋‹จ, ์ฒญ์ทจ)๋กœ ๊ณ„์ธตํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ผ๋ฒจ๋ง์€ ์ธ๊ณผ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋…ธ๋“œ์™€ ์—ฃ์ง€๋ฅผ ์ •์˜ํ•˜๋Š”๋ฐ, ๋…ธ๋“œ๋Š” ํŠน์ • ์‹œ์ ์˜ ์‚ฌ๊ณ ยท์˜๋„ ์ƒํƒœ, ์—ฃ์ง€๋Š” ์‹œ๊ฐ„์ ยท์ธ

iOS as Acceleration

iOS as Acceleration

์ด ๋…ผ๋ฌธ์€ ์ œ์•ฝ๋œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์„œ์˜ ๋Œ€๊ทœ๋ชจ ๋จธ์‹ ๋Ÿฌ๋‹ ํ™œ์šฉ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์ด ์ œ๊ณตํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ์ปดํ“จํŒ… ์ž์›์— ๋Œ€ํ•œ ์˜์กด์„ฑ์„ ์ค„์ด๊ณ , ํŠนํžˆ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํฌํ•จํ•˜๊ฑฐ๋‚˜ ํด๋ผ์šฐ๋“œ ์‚ฌ์šฉ ๋น„์šฉ์ด ๋†’์€ ์ƒํ™ฉ์—์„œ ๋กœ์ปฌ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ํƒ์ƒ‰ํ•ฉ๋‹ˆ๋‹ค. ์ตœ๊ทผ iOS ๊ธฐ๊ธฐ์˜ ๊ฐ•๋ ฅํ•œ ํ”„๋กœ์„ธ์„œ์™€ ๊ทธ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ์ฃผ๋ชฉํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ž์›์„ ๋ถ„์‚ฐ ํŒŒ์ดํ”„๋ผ์ธ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ํ™œ์šฉํ•˜๋Š” ์ฆ๋ช…์šฉ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์•ฝํ•œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์„œ ์ค‘๊ฐ„ ํฌ๊ธฐ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ›ˆ๋ จ, ๋ฐฐ

Mechanistic Interpretability of GPT-2: Lexical and Contextual Layers in Sentiment Analysis

Mechanistic Interpretability of GPT-2: Lexical and Contextual Layers in Sentiment Analysis

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋ธ์˜ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ๋ฐํžˆ๋ ค๋Š” โ€˜๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ•ด์„(mechanistic interpretability)โ€™ ํ๋ฆ„์— ์†ํ•œ๋‹ค. ํŠนํžˆ ๊ฐ์„ฑ ๋ถ„์„์ด๋ผ๋Š” ๋น„๊ต์  ๋ช…ํ™•ํ•œ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด, GPTโ€‘2(12์ธต, 124M ํŒŒ๋ผ๋ฏธํ„ฐ)์˜ ๋‚ด๋ถ€ ํ‘œํ˜„์ด ์–ด๋–ป๊ฒŒ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ณ€ํ˜•๋˜๋Š”์ง€๋ฅผ ์ธ๊ณผ์  ์‹คํ—˜โ€”ํ™œ์„ฑํ™” ํŒจ์นญ(activation patching)โ€”์„ ํ†ตํ•ด ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œ์ดˆ๊ธฐ ์–ดํœ˜ ๊ฐ์ง€ โ†’ ์ค‘๊ฐ„ ๋งฅ๋ฝ ํ†ตํ•ฉโ€์ด๋ผ๋Š” ๋‘ ๋‹จ๊ณ„ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ •ํ•˜๊ณ , ๊ฐ ์ธต์„ ์„ธ ๊ฐœ์˜ ๊ฐ€์„ค ์˜์—ญ(์ค‘๊ฐ„ ์ธต ์ง‘์ค‘, ํ˜„์ƒ ํŠน์ด์„ฑ, ๋ถ„์‚ฐ ์ฒ˜๋ฆฌ)์œผ๋กœ ๋‚˜๋ˆ„์–ด

Analysis
Neural Networks for Predicting Permeability Tensors of 2D Porous Media: Comparison of Convolution- and Transformer-based Architectures

Neural Networks for Predicting Permeability Tensors of 2D Porous Media: Comparison of Convolution- and Transformer-based Architectures

์ด ๋…ผ๋ฌธ์€ ๋‹ค๊ณต์„ฑ ๋งค์ฒด์˜ ํˆฌ๊ณผ์„ฑ ํ…์„œ๋ฅผ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ํˆฌ๊ณผ์„ฑ ์ธก์ • ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ง์ ‘์ ์ธ ์‹คํ—˜ ๋ฐฉ๋ฒ•์œผ๋กœ, ์‹ค์ œ ์‹œ๋ฃŒ์— ์œ ์ฒด๋ฅผ ํ๋ฅด๊ฒŒ ํ•˜์—ฌ ์••๋ ฅ ๊ฐ•ํ•˜์™€ ์œ ์†์„ ์ธก์ •ํ•ด ํˆฌ๊ณผ์„ฑ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋ฌผ๋ฆฌ์  ์‹œ๋ฃŒ ์ค€๋น„, ์‹คํ—˜ ์žฅ๋น„ ๊ตฌ์ถ•, ๋ฐ˜๋ณต ์ธก์ • ๋“ฑ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋น„์šฉ์ด ๋“ ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ํŠนํžˆ Latticeโ€‘Boltzmann Method(LBM)์™€ ๊ฐ™์€ ๋ฏธ์„ธ ํ๋ฆ„ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. LBM์€ ๋ณต์žกํ•œ ๊ธฐ๊ณต ๊ตฌ์กฐ๋ฅผ ์ •ํ™•ํžˆ ์žฌํ˜„ํ•  ์ˆ˜

Network
MindFuse: Towards GenAI Explainability in Marketing Strategy Co-Creation

MindFuse: Towards GenAI Explainability in Marketing Strategy Co-Creation

MindFuse๋Š” ๊ธฐ์กด LLM์ด โ€œ๋ฌด์—‡์„โ€ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด โ€œ์™œโ€์™€ โ€œ์–ด๋–ป๊ฒŒโ€๋ฅผ ๊ณ ๋ฏผํ•˜๋„๋ก ์„ค๊ณ„๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์‹œ์Šคํ…œ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ฒฝ์Ÿ ๊ด‘๊ณ ๋ฅผ ํฌ๋กค๋งํ•ด ํ…์ŠคํŠธ, ์ด๋ฏธ์ง€, ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ ์ฝ˜ํ…์ธ  ํ”ผ๋ผ๋ฏธ๋“œ์™€ ๊ณ ๊ฐ ํŽ˜๋ฅด์†Œ๋‚˜๋ฅผ ์ž๋™ ์ถ”์ถœํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ† ํ”ฝ ๋ชจ๋ธ๋ง๊ณผ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ๊ฒฐํ•ฉํ•ด ํ•ต์‹ฌ ๋ฉ”์‹œ์ง€์™€ ๊ฐ์„ฑ ํ†ค์„ ์‹๋ณ„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ถ”์ถœ๋œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ CTR ์˜ˆ์ธก ๋ชจ๋ธ์ด ์ œ์‹œํ•˜๋Š” KPIโ€‘์ค‘์‹ฌ ๊ฐ€์ด๋“œ๋ผ์ธ์„ LLM์— ์ „๋‹ฌํ•œ๋‹ค. LLM์€ ์ด ๊ฐ€์ด๋“œ๋ผ์ธ์„ ํ”„๋กฌํ”„ํŠธ๋กœ ํ™œ์šฉํ•ด ์ดˆ์•ˆ

Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges

Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges

๋ณธ ์„ค๋ฌธ์€ โ€˜๋‡Œโ€‘๋ชธ ๊ณต๋™ ์ง„ํ™”โ€™๋ผ๋Š” ์ƒ๋ฌผํ•™์  ํ˜„์ƒ์„ ์ธ๊ณต์ง€๋Šฅ ๋ฐ ๋กœ๋ณดํ‹ฑ์Šค ์„ค๊ณ„์— ์ ์šฉํ•œ ๊ตฌํ˜„ํ˜• ๊ณต๋™ ์„ค๊ณ„(Embodied Coโ€‘Design, ์ดํ•˜ ECD) ๋ถ„์•ผ์˜ ์ตœ์‹  ํ๋ฆ„์„ ํฌ๊ด„์ ์œผ๋กœ ์ •๋ฆฌํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ ์ €์ž๋Š” ECD๋ฅผ ๊ธฐ์กด์˜ ํ˜•ํƒœโ€‘์ œ์–ด ๊ณต๋™ ์ตœ์ ํ™”, ์ง„ํ™” ๋กœ๋ณดํ‹ฑ์Šค, ์‹ ๊ฒฝโ€‘ํ˜•ํƒœ ๊ณตํ•™ ๋“ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ•™์  ์ •์˜์™€ ๊ฐœ๋…์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ํ•ต์‹ฌ์€ โ€˜๋‡Œ(์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜)โ€™, โ€˜๋ชธ(ํ˜•ํƒœยท๋ฌผ๋ฆฌ์  ์†์„ฑ)โ€™, โ€˜ํ™˜๊ฒฝ(๊ณผ์ œ)โ€™์ด๋ผ๋Š” ์„ธ ์ถ•์„ ๋…๋ฆฝ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋ฉด์„œ๋„ ์ƒํ˜ธ ์˜์กด์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์‚ผ์› ๊ตฌ์กฐ๋Š” ์„ค๊ณ„ ๊ณต๊ฐ„

Evidence-Driven Decision Support for AI Model Selection in Research Software Engineering

Evidence-Driven Decision Support for AI Model Selection in Research Software Engineering

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๋ชจ๋ธ ์„ ํƒ์˜ ๋ณต์žก์„ฑ์„ ๋‹ค๋ฃจ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ์—ฐ๊ตฌ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด(RSEs)์™€ ๊ด€๋ จ๋œ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. AI ๋ชจ๋ธ์˜ ๊ธ‰์†ํ•œ ๋ฐœ์ „๊ณผ ๋‹ค์–‘ํ™”๋กœ ์ธํ•ด RSEs๋Š” ์ ์ ˆํ•œ ๋ชจ๋ธ์„ ์„ ํƒํ•˜๊ณ  ํ†ตํ•ฉํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋˜๋Š”๋ฐ, ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ  ํˆฌ๋ช…ํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ AI ๋ชจ๋ธ ์„ ํƒ์„ ๋‹ค์ค‘ ๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ •(MCDM) ๋ฌธ์ œ๋กœ ๊ฐœ๋…ํ™”ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ModelSelect๋ผ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ž๋™ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ํŒŒ์ดํ”„

Model

< Category Statistics (Total: 2829) >

Electrical Engineering and Systems Science
100
General
731
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut