KOINEU Logo
Radiomics and artificial intelligence analysis of CT data for the   identification of prognostic features in multiple myeloma

Radiomics and artificial intelligence analysis of CT data for the identification of prognostic features in multiple myeloma

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค๋ฐœ์„ฑ ๊ณจ์ˆ˜์ข…(MM)์˜ ๊ณจ๊ฒฉ ์นจ๋ฒ”์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์˜ˆํ›„ ๋ฐ”์ด์˜ค๋งˆ์ปค๋ฅผ ์ž๋™์œผ๋กœ ๋„์ถœํ•˜๋Š” ์ƒˆ๋กœ์šด ์˜์ƒโ€‘๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€ ๊ฐ€์„ค์ด๋‹ค. ์ฒซ์งธ, ๊ธฐ์กด์— CLL(๋งŒ์„ฑ ๋ฆผํ”„๊ตฌ์„ฑ ๋ฐฑํ˜ˆ๋ณ‘)์—์„œ ๊ฒ€์ฆ๋œ โ€˜๊ณจ๋‚ด ๋ถ€ํ”ผ(intraโ€‘osseous volume, IBV)โ€™๊ฐ€ MM์—์„œ๋„ ์งˆ๋ณ‘ ์ง„ํ–‰์„ ํŒ๋‹จํ•˜๋Š” ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ง€ํ‘œ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ; ๋‘˜์งธ, ๊ณจ๋ฐ€๋„ ์กฐ์ง์˜ ๊ตญ์†Œ ๋ณ‘๋ณ€์—์„œ ์ถ”์ถœํ•œ ๋ฐฉ์‚ฌ์„ ํ•™์  ํŠน์ง•์ด ํ™˜์ž ๊ณ„์ธตํ™”์— ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ๋ฐ์ดํ„ฐ ๋ฐ ์ „์ฒ˜๋ฆฌ ํ›„ํ–ฅ์  ์„ค๊ณ„๋กœ 25๋ช…์˜ MM ํ™˜์ž์™€ 102

Data Quantitative Biology Analysis
No Image

RARO: Reliability-aware Conversion with Enhanced Read Performance for QLC SSDs

QLC ํ”Œ๋ž˜์‹œ๋Š” ๋น„์šฉ ํšจ์œจ์„ฑ๊ณผ ๋†’์€ ์šฉ๋Ÿ‰์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›์ง€๋งŒ, ์‹ ๋ขฐ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ฝ๊ธฐ ์žฌ์‹œ๋„๋Š” ์ฝ๊ธฐ ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚ค๋Š” ์ฃผ์š” ์š”์ธ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ €์žฅ์†Œ ๋ฐฉ์‹์€ ๋ฐ์ดํ„ฐ ์˜จ๋„๋งŒ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋“œ ์ „ํ™˜์„ ๊ฒฐ์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ถˆํ•„์š”ํ•œ ๋ณ€ํ™˜๊ณผ ์šฉ๋Ÿ‰ ์†์‹ค์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. RARO๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹ ๋ขฐ์„ฑ๊ณผ ์ฝ๊ธฐ ์„ฑ๋Šฅ์„ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํ•ซ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋Š” QLC ๋ธ”๋ก์˜ ์ฝ๊ธฐ ์žฌ์‹œ๋„ ํšŸ์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜์„ ํŠธ๋ฆฌ๊ฑฐํ•˜์—ฌ ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ฏธ์„ธ ์กฐ์ •๋œ

Reachability Games on Extended Vector Addition Systems with States

Reachability Games on Extended Vector Addition Systems with States

: ํ™•์žฅ๋œ ๋ฒกํ„ฐ ์ถ”๊ฐ€ ์‹œ์Šคํ…œ(EVASS) ๊ฒŒ์ž„์€ ๋ณต์žกํ•œ ๋™์  ์‹œ์Šคํ…œ์„ ๋ชจ๋ธ๋งํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” EVASS์˜ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ™•์žฅ์„ ํ†ตํ•ด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ด์ ์„ ํƒ๊ตฌํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ™•์žฅ์ธ ๊ธฐํ˜ธ์  ๊ตฌ์„ฑ ์š”์†Œ(ฯ‰)๋Š” ์นด์šดํ„ฐ์˜ ๊ฐ’์— ๋Œ€ํ•œ ์ œ์•ฝ ์—†์ด ์ž์›์„ ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ, ํŠนํžˆ ์—ฌ๋Ÿฌ ์ž์›์„ ๋™์‹œ์— ์†Œ๋น„ํ•˜๊ณ  ์ƒ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์œ ์šฉํ•˜๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณต๋ฐฉ์—์„œ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ธํ˜•์„ ์ƒ์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์ž์›(๋‚˜๋ฌด ๋ง‰๋Œ€๊ธฐ, ๋‚˜์‚ฌ ๋“ฑ)์˜ ์–‘์„ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šธ ๋•Œ, ฯ‰๋Š” ์ด๋Ÿฌํ•œ ์ž์›์˜ ์ˆ˜๋ฅผ ์ž„์˜๋กœ

Computer Science System Game Theory
Real-time Robot-assisted Ergonomics

Real-time Robot-assisted Ergonomics

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธฐ์กด HRI ์—ฐ๊ตฌ๋Š” ์ถฉ๋Œ ํšŒํ”ผ์™€ ์ฆ‰๊ฐ์ ์ธ ์•ˆ์ „ ํ™•๋ณด์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์žฅ๊ธฐ์ ์ธ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜(WMSD) ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ์ธ์ฒด๊ณตํ•™์  ์ง€์† ๊ด€๋ฆฌ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ์†Œํ™€ํžˆ ๋‹ค๋ฃจ์–ด์กŒ๋‹ค. ์ž‘์—…์ž์˜ ํŽธ์•ˆํ•จ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ , ํ•„์š” ์‹œ ๋กœ๋ด‡์ด ์ฆ‰๊ฐ์ ์ธ ๋ณด์กฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋ฉด ๊ทผ๊ณจ๊ฒฉ๊ณ„ ๋ถ€์ƒ์˜ ์œ„ํ—˜์„ ์‚ฌ์ „์— ์ฐจ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ โ€˜์žฅ๊ธฐ ์•ˆ์ „โ€™์ด๋ผ๋Š” ๊ด€์ ์„ ๊ธฐ์ˆ ์  ๊ตฌํ˜„์œผ๋กœ ์—ฐ๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด์™€ ์„ค๊ณ„ ์ธ์ฒด๊ณตํ•™ ์ƒํƒœ ์‹ค์‹œ๊ฐ„ ์ธก์ • : RGBโ€‘D ์„ผ์„œ๋ฅผ ํ™œ์šฉํ•ด 3์ฐจ์› ๊ด€์ ˆ ์ขŒํ‘œ๋ฅผ

Robotics Computer Science HCI
Realizable Paths and the NL vs L Problem

Realizable Paths and the NL vs L Problem

์ด ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ STโ€‘CONNECTIVITY ๋ฌธ์ œ๋ฅผ ํ™•์žฅํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ์‹คํ˜„์„ฑ ๋ฌธ์ œ ๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋ฐ€๋ฆฌ๋ฅผ ์ •์˜ํ•จ์œผ๋กœ์จ, ๊ณต๊ฐ„ ๋ณต์žก๋„ ์ด๋ก ์— ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด์— NLโ€‘complete์ธ STโ€‘CONNECTIVITY ๋ฅผ Savitch ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ O(logยฒ n) ๊ณต๊ฐ„์— ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ๊ทธ ํ•œ๊ณ„๊ฐ€ 40๋…„ ๋„˜๊ฒŒ ๊นจ์ง€์ง€ ์•Š์•˜๋‹ค. ์ €์ž๋“ค์€ โ€œNL โІ DSPACE(o(logยฒ n))โ€ ๋ฅผ ์ง์ ‘ ์ฆ๋ช…ํ•˜๋ ค ํ•˜๊ธฐ๋ณด๋‹ค๋Š”, STโ€‘CONNECTIVITY ์˜ ํŠน์ˆ˜ํ™”ยท์ผ๋ฐ˜ํ™”๋ฅผ ํ†ตํ•ด ์ค‘๊ฐ„ ๋‹จ๊ณ„์˜ ๋ณต์žก๋„ ํด๋ž˜์Šค๋ฅผ ํƒ๊ตฌํ•œ๋‹ค

Computer Science Computational Complexity
Reasoning About Knowledge of Unawareness Revisited

Reasoning About Knowledge of Unawareness Revisited

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ์‹(logic of awareness) ๋ถ„์•ผ์—์„œ ์˜ค๋žซ๋™์•ˆ ๋‚จ์•„ ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ๋ฌด์ธ์‹์— ๋Œ€ํ•œ ์ธ์‹(knowledge of unawareness)โ€์„ ์ •ํ˜•ํ™”ํ•˜๋Š” ๊ฒƒ์ด์—ˆ๊ณ , ๋‘ ๋ฒˆ์งธ๋Š” ์—์ด์ „ํŠธ๊ฐ€ ๋ชจ๋“  ๊ณต์‹์— ๋Œ€ํ•ด ์ž์‹ ์ด ์ธ์‹ํ•˜๊ณ  ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ํ™•์‹ ํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹ค. ๊ธฐ์กด์˜ FH ๋ชจ๋ธ์€ ๊ฐ ์„ธ๊ณ„๋งˆ๋‹ค ๋™์ผํ•œ ์–ธ์–ด๋ฅผ ๊ฐ€์ •ํ•˜๊ณ , ์ธ์‹ ์—ฐ์‚ฐ์ž๋ฅผ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์–ด๋–ค ๊ณต์‹์„ โ€˜๋ช…์‹œ์ ์œผ๋กœโ€™ ์•ˆ๋Š”์ง€๋ฅผ ์ •์˜ํ•œ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ์›์‹œ ๋ช…์ œ์— ๋Œ€ํ•œ ์–‘ํ™”๋ฅผ ๋„์ž…ํ•ด โ€œ์–ด๋–ค ์‚ฌ์‹ค์„ ๋ชจ๋ฅธ๋‹คโ€

Computer Science Artificial Intelligence Logic Game Theory
No Image

Reconfigurable Quantum Instruction Set Computers for High Performance Attainable on Hardware

์–‘์ž ์ปดํ“จํŒ… ๋ถ„์•ผ์—์„œ ํ•˜๋“œ์›จ์–ด ์„ฑ๋Šฅ ํ–ฅ์ƒ์€ ์ค‘์š”ํ•œ ๊ณผ์ œ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด CNOT/CZ ๊ฒŒ์ดํŠธ ๊ธฐ๋ฐ˜์˜ ISA๋Š” ๊ฒŒ์ดํŠธ ๊ต์ • ์˜ค๋ฒ„ํ—ค๋“œ์™€ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ReQISC๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด SU(4) ๋ชจ๋“ˆ์„ ํ™œ์šฉํ•˜์—ฌ ์ž„์˜์˜ 2Q ๊ฒŒ์ดํŠธ๋ฅผ ์ง์ ‘ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ด๋ก ์ ์œผ๋กœ ์ตœ์ ์˜ ๊ฒŒ์ดํŠธ ์ง€์† ์‹œ๊ฐ„์„ ๋ณด์žฅํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ์–‘์ž ์ปคํ”Œ๋ง ํ•ด๋ฐ€ํ† ๋‹ˆ์–ธ์— ์ ์šฉ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ReQISC๋Š” ํ”„๋กœ๊ทธ๋žจ ์ธ์‹ ํŒจ์Šค, ํšŒ๋กœ ๋ ˆ๋ฒจ ์ตœ์ ํ™”์šฉ ๋ฌด๊ด€ ํŒจ์Šค, ๊ทธ๋ฆฌ๊ณ  SU(4) ๊ธฐ๋ฐ˜ ๋ผ์šฐํŒ… ํŒจ์Šค๋ฅผ ํฌํ•จํ•œ ์—”

Regularized Risk Minimization by Nesterovs Accelerated Gradient   Methods: Algorithmic Extensions and Empirical Studies

Regularized Risk Minimization by Nesterovs Accelerated Gradient Methods: Algorithmic Extensions and Empirical Studies

๋ณธ ๋…ผ๋ฌธ์€ Nesterov ๊ฐ€์† ๊ฒฝ์‚ฌ๋ฒ•(AGM)์„ ์ •๊ทœํ™” ์œ„ํ—˜ ์ตœ์†Œํ™”(RRM) ๋ฌธ์ œ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ด๋ก ์ ยท์‹คํ—˜์  ํ† ๋Œ€๋ฅผ ์ƒˆ๋กญ๊ฒŒ ๊ตฌ์ถ•ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” AGM์ด ์ผ๋ฐ˜์ ์ธ ๋ณผ๋ก ์ตœ์ ํ™”์—์„œ๋Š” (O(1/sqrt{varepsilon})) ์˜ ๋ณต์žก๋„๋กœ ๋›ฐ์–ด๋‚œ ์ˆ˜๋ ด ์†๋„๋ฅผ ๋ณด์˜€์ง€๋งŒ, SVM๊ณผ ๊ฐ™์€ ์ตœ๋Œ€โ€‘๋งˆ์ง„ ๋ชจ๋ธ์—์„œ๋Š” ๊ตฌ์กฐ์  ์ œ์•ฝ(์˜ˆ: ์ง€์› ๋ฒกํ„ฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„ ๊ฒฝ๊ณ„์— ์œ„์น˜) ๋•Œ๋ฌธ์— ํšจ์œจ์„ฑ์ด ์ €ํ•˜๋˜๋Š” ๊ฒƒ์ด ์‹ค์ฆ๋˜์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๊ฒฝํ—˜ ์œ„ํ—˜ (R {

Computer Science Machine Learning
Relating timed and register automata

Relating timed and register automata

์ด ๋…ผ๋ฌธ์€ ์‹œ๊ฐ„ ์ž๋™์ž์™€ ๋ ˆ์ง€์Šคํ„ฐ ์ž๋™์ž๋ผ๋Š” ๋‘ ์ „ํ†ต์ ์ธ ๋ชจ๋ธ ์‚ฌ์ด์— ์กด์žฌํ•˜๋Š” ๊นŠ์€ ๊ตฌ์กฐ์  ์œ ์‚ฌ์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ฐํ˜€๋‚ธ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ ๊ฐ ๋ชจ๋ธ์ด โ€œ์ €์žฅ ์žฅ์น˜โ€๋ผ๋Š” ๊ณตํ†ต๋œ ํ™•์žฅ ์š”์†Œ๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์‹œ๊ฐ„ ์ž๋™์ž๋Š” ๋ฆฌ์…‹ ์‹œ์ ๋ถ€ํ„ฐ ํ๋ฅธ ์‹œ๊ฐ„์„ ์ธก์ •ํ•˜๋Š” ์‹œ๊ณ„๋ฅผ, ๋ ˆ์ง€์Šคํ„ฐ ์ž๋™์ž๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๊ณ  ์ดํ›„ ๋น„๊ต์— ํ™œ์šฉํ•˜๋Š” ๋ ˆ์ง€์Šคํ„ฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ฒ‰๋ณด๊ธฐ ์ฐจ์ด๋Š” ํฌ์ง€๋งŒ, ๋‘ ๋ชจ๋ธ์ด ํ•ด๊ฒฐํ•ด์•ผ ํ•˜๋Š” ํ•ต์‹ฌ ๊ฒฐ์ • ๋ฌธ์ œโ€”๊ณต์ง‘ํ•ฉ์„ฑ, ์ „์—ญ์„ฑ, ํฌํ•จ์„ฑโ€”๋Š” ๋™์ผํ•œ ๋ณต์žก๋„ ๊ตฌ๋„๋ฅผ ๊ณต์œ ํ•œ๋‹ค๋Š” ์ ์ด ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค(์˜ˆ: PSPACEโ€‘complete, ๋น„์›์‹œ ์žฌ

Computer Science Logic Formal Languages
Reliable Mining of Automatically Generated Test Cases from Software   Requirements Specification (SRS)

Reliable Mining of Automatically Generated Test Cases from Software Requirements Specification (SRS)

: ๋ณธ ๋…ผ๋ฌธ์€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ์˜ ์š”๊ตฌ ์‚ฌํ•ญ ๋ถ„๋ฅ˜์™€ ํ…Œ์ŠคํŠธ ์‚ฌ๋ก€ ์ƒ์„ฑ์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ์š”๊ตฌ ์‚ฌํ•ญ ์‚ฌ์–‘์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ๊ธฐ๋Šฅ์  ๋ฐ ๋น„๊ธฐ๋Šฅ์  ์š”๊ตฌ ์‚ฌํ•ญ์„ ๊ตฌ๋ถ„ํ•˜๊ณ , ์ด๋ฅผ ์ƒํƒœ ์ฐจํŠธ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์€ ์†Œํ”„ํŠธ์›จ์–ด ํ’ˆ์งˆ ํ–ฅ์ƒ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ž๋™์œผ๋กœ ์ƒ์„ฑ๋œ ํ…Œ์ŠคํŠธ ์‚ฌ๋ก€๋Š” ๊ฐœ๋ฐœ ๊ณผ์ •์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์†Œํ”„ํŠธ์›จ์–ด์˜ ํ’ˆ์งˆ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ™œ์šฉ์€ ๊ธฐ์กด ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋กœ๋ถ€ํ„ฐ ์˜๋ฏธ ์žˆ๋Š” ํŒจํ„ด์„ ์ถ”์ถœํ•˜์—ฌ ํ”„๋กœ์ ํŠธ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ , ํšจ์œจ์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

Software Engineering Computer Science
Reputation-based Telecommunication Network Selection

Reputation-based Telecommunication Network Selection

: ๋ชจ๋ฐ”์ผ ๋„คํŠธ์›Œํฌ ์„ ํƒ์€ ์‚ฌ์šฉ์ž์˜ ๊ฒฝํ—˜๊ณผ ๋งŒ์กฑ๋„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”ํ•œ ์š”์†Œ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ†ต์‹ ์‚ฌ ๋ฐ ๋„คํŠธ์›Œํฌ ์ œ๊ณต์ž์˜ ์„œ๋น„์Šค ํ’ˆ์งˆ(QoS) ์ •๋ณด๊ฐ€ ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ํˆฌ๋ช…ํ•˜๊ฒŒ ๊ณต์œ ๋˜์ง€ ์•Š๋Š” ๋ฌธ์ œ๋ฅผ ์ œ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ†ต์‹ ์‚ฌ๊ฐ€ ์ง์ ‘์ ์ธ ์ด์ต์„ ์–ป์ง€ ๋ชปํ•  ๊ฒฝ์šฐ, QoS ์ •๋ณด๋ฅผ ์ˆจ๊น€์œผ๋กœ์จ ์‚ฌ์šฉ์ž ์œ ์น˜์— ์†Œ๊ทน์ ์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์˜ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‚ฌ์šฉ์ž๋“ค์ด ๋„คํŠธ์›Œํฌ์— ๋Œ€ํ•œ ๊ด€์ฐฐ ๊ฒฐ๊ณผ๋ฅผ ๊ณต์œ ํ•จ์œผ๋กœ์จ ๋ณด๋‹ค ๋‚˜์€ ์„ ํƒ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๋ถ„์‚ฐ๋œ ํ”ผ์–ด ํˆฌ ํ”ผ์–ด ๋ฐฉ์‹์œผ๋กœ QoE ์ •๋ณด๋ฅผ ๊ณต์œ ํ•˜๋Š” ๊ฒƒ์€ ํ†ต์‹  ์‚ฌ

Computer Science Network Networking Cryptography and Security
No Image

Research impact evaluation based on effective authorship contribution sensitivity: h-leadership index

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์— ์‚ฌ์šฉ๋˜์–ด ์˜จ ๋‹ค์–‘ํ•œ ํ•™์ˆ ์  ๊ธฐ์—ฌ๋„ ํ‰๊ฐ€ ์ฒ™๋„๋ฅผ ๋ฉด๋ฐ€ํžˆ ๊ฒ€ํ† ํ•˜๊ณ , ๊ทธ ํ•œ๊ณ„์ ์„ ์ง€์ ํ•œ๋‹ค. ํŠนํžˆ h index๋Š” ์ €์ž์˜ ์œ„์น˜๋‚˜ ๊ธฐ์—ฌ๋„์— ๋Œ€ํ•œ ๊ณ ๋ ค ์—†์ด ๋‹จ์ˆœ ์ธ์šฉ ํšŸ์ˆ˜๋งŒ์„ ๋ฐ”ํƒ•์œผ๋กœ ์—ฐ๊ตฌ ์„ฑ๊ณผ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ ์—ฐ๊ตฌ์— ๊ธฐ์—ฌํ•˜์ง€ ์•Š์€ ์ €์ž๊ฐ€ ํฌํ•จ๋˜๋Š” ๋“ฑ ๊ณต์ •์„ฑ ๋ฌธ์ œ์— ์ง๋ฉดํ•ด ์žˆ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” h ๋ฆฌ๋”์‹ญ ์ง€์ˆ˜๋ฅผ ์ œ์•ˆํ•˜์—ฌ, ์ €์ž ์œ„์น˜์™€ ๊ธฐ์—ฌ๋„๋ฅผ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ ๋ณด๋‹ค ์ •ํ™•ํ•œ ํ•™์ˆ ์  ๊ธฐ์—ฌ๋„ ํ‰๊ฐ€๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋˜ํ•œ, ๊ฐ€์ค‘์น˜ ์ธ์šฉ์„ ํ†ตํ•ด ์ค‘์œ„ ์ €์ž์˜ ๊ธฐ์—ฌ๋„๋ฅผ ์ธ์ •ํ•˜๊ณ , ์ƒ์œ„ 2% ๊ณผํ•™์ž ์ˆœ์œ„๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ถ„์„

Reverse Engineering Financial Markets with Majority and Minority Games   using Genetic Algorithms

Reverse Engineering Financial Markets with Majority and Minority Games using Genetic Algorithms

: ๊ธˆ์œต ์‹œ์žฅ์˜ ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ๊ณผ ํšจ์œจ์„ฑ์— ๋Œ€ํ•œ ์˜ค๋žœ ๋…ผ์Ÿ์€ ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ์ฃผ์ œ์ด๋‹ค. ํšจ์œจ์  ์‹œ์žฅ ๊ฐ€์„ค(EMH)์€ ์‹œ์žฅ์ด ๋ณธ์งˆ์ ์œผ๋กœ ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ด€์ ์„ ์ œ์‹œํ•˜์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ๊ฐ€๊ฒฉ ๋น„ํšจ์œจ์„ฑ์ด ์กด์žฌํ•˜๋ฉฐ ์ด๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ฆ๊ฑฐ๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์„ ์‹ค์šฉ์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜์—ฌ ์ˆ˜์ต์„ ์ฐฝ์ถœํ•˜๋ ค๋Š” ์‹œ๋„๋“ค์ด ์žˆ์ง€๋งŒ, ์ตœ๊ทผ์˜ ์—ฐ๊ตฌ๋“ค์€ ๊ทธ ํ˜„์‹ค์„ฑ์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ธˆ์œต ์‹œ์žฅ์˜ ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ๊ณผ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์ฐพ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณต์žกํ•œ ์‹œ์Šคํ…œ ์ด๋ก ์˜ ๊ด€์ ์—์„œ ๊ธˆ์œต ์‹œ์žฅ์„ ๋ฐ”๋ผ๋ณธ๋‹ค. ์‹œ์žฅ์€ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ๊ฐœ์ฒด๋“ค์˜ ์ง‘

Computer Science Multiagent Systems Machine Learning Quantitative Finance
Rewriting Logic Semantics of a Plan Execution Language

Rewriting Logic Semantics of a Plan Execution Language

: ์šฐ์ฃผ ์ž„๋ฌด ์šด์˜์—์„œ ๊ณ„ํš ์‹คํ–‰์˜ ์ค‘์š”์„ฑ์€ ๋งค์šฐ ๋†’์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ž์œจ ์šฐ์ฃผ์„  ์šด์˜์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ๋™๊ธฐ์‹ ์–ธ์–ด์ธ PLEXIL์€ ํšจ์œจ์ ์ด๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์‹คํ–‰์„ ๋ณด์žฅํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ PLEXIL์˜ ์„ธ๋งˆํ‹ฑ์Šค๋ฅผ ํ˜•์‹์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๊ฒƒ์€ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์— ๊ธฐ๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆ๋œ ์†Œ๊ทœ๋ชจ ๋‹จ๊ณ„๋ณ„ ๊ตฌ์กฐ์  ์ž‘๋™ ์„ธ๋งˆํ‹ฑ์Šค์™€๋Š” ๋ณ„๊ฐœ๋กœ, ์žฌ์ž‘์„ฑ ๋…ผ๋ฆฌ ์„ธ๋งˆํ‹ฑ์Šค๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ ์–ธ์–ด์˜ ํ•ด์„๊ธฐ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์–ด PLEXIL ์‹คํ–‰๊ธฐ์˜ ๊ตฌํ˜„์„ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ๋ž˜ํ”ฝ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ

Computer Science Logic Programming Languages
RGE-GCN: Recursive Gene Elimination with Graph Convolutional Networks for RNA-seq based Early Cancer Detection

RGE-GCN: Recursive Gene Elimination with Graph Convolutional Networks for RNA-seq based Early Cancer Detection

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ์ฐจ์›์ ์ธ RNA seq ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…”๋„ ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ์ธ RGE GCN์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์œ ์ „์ž ๋ฐœํ˜„ ํ”„๋กœํŒŒ์ผ๋กœ๋ถ€ํ„ฐ ์ƒ˜ํ”Œ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์•” ๋Œ€ ์ •์ƒ ์ƒ˜ํ”Œ์„ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ Integrated Gradients๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ ์œ ์ „์ž์˜ ์ค‘์š”๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์žฌ๊ท€์ ์ธ ์ œ๊ฑฐ ๊ณผ์ •์„ ํ†ตํ•ด ๊ฐ€์žฅ ์ •๋ณด๊ฐ€ ๋งŽ์€ ์œ ์ „์ž๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์˜ˆ์ธก ์ •ํ™•๋„ ๋ชจ๋‘์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, RGE GCN์€

Network Detection
Risk Factors Associated with Mortality in Game of Thrones: A   Longitudinal Cohort Study

Risk Factors Associated with Mortality in Game of Thrones: A Longitudinal Cohort Study

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ€์ƒ์˜ ํ…”๋ ˆ๋น„์ „ ๋“œ๋ผ๋งˆ๋ฅผ ์—ญํ•™์  ๊ด€์ ์—์„œ ๋ถ„์„ํ•œ ๋…ํŠนํ•œ ์‹œ๋„์ด๋‹ค. ์ฝ”ํ˜ธํŠธ ์ •์˜๋Š” โ€œ์ฒซ ํšŒ ๋ฐฉ์˜ ์ดํ›„ ํ™”๋ฉด ์‹œ๊ฐ„ 5๋ถ„ ์ด์ƒโ€์ด๋ผ๋Š” ๊ฐ๊ด€์  ๊ธฐ์ค€์„ ๋‘์–ด, ์ฃผ์š” ๋“ฑ์žฅ์ธ๋ฌผ์„ ํฌ๊ด„ํ•˜๋ ค๋Š” ์˜๋„๊ฐ€ ์—ฟ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๊ธฐ์ค€์€ ํ™”๋ฉด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ธ๋ฌผ ์„ ํƒ์ด ํŽธํ–ฅ๋  ๊ฐ€๋Šฅ์„ฑ์„ ๋‚ดํฌํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ดˆ๊ธฐ ์‹œ์ฆŒ์— ์งง๊ฒŒ ๋“ฑ์žฅํ–ˆ์ง€๋งŒ ํ›„๋ฐ˜์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋งก์€ ์ธ๋ฌผ์€ ์ œ์™ธ๋  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ โ€œ5๋ถ„ ์ด์ƒโ€์ด๋ผ๋Š” ์ ˆ๋Œ€๊ฐ’์€ ์‹œ์ฆŒ๋งˆ๋‹ค ์—ํ”ผ์†Œ๋“œ ๊ธธ์ด์™€ ํŽธ์ง‘ ๋ฐฉ์‹์ด ๋‹ค๋ฅด๋ฏ€๋กœ, ์‹ค์ œ โ€˜๋…ธ์ถœโ€™ ์ •๋„๋ฅผ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ „์ฒด 132๋ช…

Statistics
Robust OFDM integrated radar and communications waveform design based on   information theory

Robust OFDM integrated radar and communications waveform design based on information theory

: ํ†ตํ•ฉ ๋ ˆ์ด๋” ๋ฐ ํ†ต์‹  ์‹œ์Šคํ…œ(IRCS)์€ ์ƒ์—…์šฉ๊ณผ ๊ตญ๋ฐฉ์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ ์ ˆ๊ฐ๊ณผ ์ŠคํŽ™ํŠธ๋Ÿผ ํšจ์œจ์„ฑ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. IRCS๋Š” ๋ ˆ์ด๋”์™€ ํ†ต์‹ ์˜ ๊ธฐ๋Šฅ์„ ๋‹จ์ผ ์ „์†ก ํŒŒํ˜•์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ด๋Š” ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ง€๋Šฅํ˜• ๊ตํ†ต ์‹œ์Šคํ…œ(ITS)์€ ๋ ˆ์ด๋”์™€ ํ†ต์‹  ํ†ตํ•ฉ์˜ ์ค‘์š”์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ชจ๋…ธ์Šคํƒ€ํ‹ฑ ๋ ˆ์ด๋” ์†ก์ˆ˜์‹ ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” IRCS๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์—์„œ ๋ ˆ์ด๋”์™€ ํ†ต์‹ ์˜ ์ฑ„๋„ ์‘๋‹ต์€ ์ฃผํŒŒ์ˆ˜ ์„ ํƒ์ ์ด์ง€๋งŒ, ์ •ํ™•ํ•œ ์ฃผํŒŒ์ˆ˜ ์‘๋‹ต ํ•จ์ˆ˜๋Š” ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ

Electrical Engineering and Systems Science
Role of line-of-sight cosmic ray interactions in forming the spectra of   distant blazars in TeV gamma rays and high-energy neutrinos

Role of line-of-sight cosmic ray interactions in forming the spectra of distant blazars in TeV gamma rays and high-energy neutrinos

์ด ๋…ผ๋ฌธ์€ ์›๊ฑฐ๋ฆฌ ๋ธ”๋ ˆ์ด์ €์—์„œ ๊ด€์ธก๋˜๋Š” TeV ๊ฐ๋งˆ์„  ์ŠคํŽ™ํŠธ๋Ÿผ์ด ์ „ํ†ต์ ์ธ โ€œ1์ฐจ ๊ฐ๋งˆ์„  + EBL ํก์ˆ˜โ€ ์‹œ๋‚˜๋ฆฌ์˜ค๋งŒ์œผ๋กœ๋Š” ์„ค๋ช…๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ์€ ๊ฐ๋งˆ์„ ์ด ์€ํ•˜๊ฐ„ ๊ณต๊ฐ„์„ ํ†ต๊ณผํ•˜๋ฉด์„œ EBL์™€์˜ ์Œ์ƒ์„ฑ์— ์˜ํ•ด ๊ธ‰๊ฒฉํžˆ ๊ฐ์‡ ๋˜๋ฉฐ, ํŠนํžˆ 1 TeV ๊ทผ์ฒ˜์—์„œ ๋šœ๋ ทํ•œ ์ปท์˜คํ”„๊ฐ€ ๋‚˜ํƒ€๋‚˜์•ผ ํ•œ๋‹ค๊ณ  ์˜ˆ์ธกํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ๊ด€์ธก๋œ ์ŠคํŽ™ํŠธ๋Ÿผ์€ ์ด๋Ÿฌํ•œ ์ปท์˜คํ”„๊ฐ€ ๊ฑฐ์˜ ๋ณด์ด์ง€ ์•Š์œผ๋ฉฐ, ์ด๋Š” ๋‘ ๊ฐ€์ง€ ํ•ด์„(EBL๊ฐ€ ๋งค์šฐ ๋‚ฎ๋‹ค, ํ˜น์€ ์†Œ์Šค๊ฐ€ ๋น„์ •์ƒ์ ์œผ๋กœ ๊ฐ•๊ฒฝํ•œ ๋‚ด์žฌ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๊ฐ€์ง„๋‹ค)์œผ๋กœ๋งŒ ์„ค๋ช…ํ•˜๋ ค ํ•˜๋ฉด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๋น„ํ˜„์‹ค์ ์ธ ๊ฐ€์ •

Astrophysics HEP-PH
Scalable photonic reinforcement learning by time-division multiplexing   of laser chaos

Scalable photonic reinforcement learning by time-division multiplexing of laser chaos

๋ณธ ์—ฐ๊ตฌ๋Š” โ€œ๊ด‘โ€‘ํ˜ผ๋ˆ โ†’ ๊ณ ์† ์ƒ˜ํ”Œ๋ง โ†’ ๋””์ง€ํ„ธ ์ž„๊ณ„๊ฐ’ โ†’ TDMโ€์ด๋ผ๋Š” ๋„ค ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ๊ฐ•ํ™” ํ•™์Šต์˜ ํ™•์žฅ์„ฑ์„ ๋ฌผ๋ฆฌ ์ˆ˜์ค€์—์„œ ๊ตฌํ˜„ํ•œ ์ ์ด ๊ฐ€์žฅ ํ˜์‹ ์ ์ด๋‹ค. 1. ๊ด‘โ€‘ํ˜ผ๋ˆ ์‹ ํ˜ธ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ ๋ฐ˜๋„์ฒด ๋ ˆ์ด์ €์— ์ง€์—ฐ ํ”ผ๋“œ๋ฐฑ์„ ๊ฐ€ํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•˜๋Š” ํ˜ผ๋ˆ ์ง„๋™์€ 100 GSample/s ์ด์ƒ์˜ ์ƒ˜ํ”Œ๋ง ์†๋„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๊ณ„์—ด์€ ์Œ์˜ ์ž๊ธฐ์ƒ๊ด€(negative autocorrelation)๊ณผ ๋†’์€ ํ™•์‚ฐ์„ฑ์„ ์ง€๋‹ˆ๋ฉฐ, ์ด๋Š” ์ƒ˜ํ”Œ ๊ฐ„์— ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ โ€˜ํƒ์ƒ‰โ€™ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด์˜ ์˜์‚ฌ๋‚œ์ˆ˜(pseudorandom)๋‚˜ ์ปฌ๋Ÿฌ ๋…ธ์ด์ฆˆ์™€ ๋‹ฌ๋ฆฌ,

Physics Emerging Technologies Learning Artificial Intelligence Computer Science
Science through Wikipedia: A novel representation of open knowledge   through co-citation networks

Science through Wikipedia: A novel representation of open knowledge through co-citation networks

์ด ๋…ผ๋ฌธ์€ ์œ„ํ‚ค๋ฐฑ๊ณผ๋ผ๋Š” โ€˜์˜คํ”ˆ ๋ฐฑ๊ณผ์‚ฌ์ „โ€™์ด ๊ณผํ•™ ์ง€์‹์˜ ์†Œ๋น„์™€ ์žฌ์ƒ์‚ฐ์— ์–ด๋–ค ์—ญํ• ์„ ํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ์—ฐ๊ตฌ์ž๋Š” Altmetric.com์—์„œ ์ œ๊ณตํ•˜๋Š” 1 433 457๊ฐœ์˜ ์ฐธ๊ณ ๋ฌธํ—Œ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„, ๋ฐ์ดํ„ฐ ์ •์ œ ๊ณผ์ •์—์„œ ์ค‘๋ณต ์ œ๊ฑฐ, DOI ๋งคํ•‘, Elsevier CiteScore Metrics์™€์˜ ์—ฐ๊ณ„ ๋“ฑ์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ์‹ ๋ขฐ์„ฑ ๋†’์€ ๋ฐ์ดํ„ฐ์…‹(847 512๊ฐœ์˜ ์ธ์šฉ ๊ด€๊ณ„)์œผ๋กœ ์ถ•์†Œํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ „์ฒ˜๋ฆฌ ์ ˆ์ฐจ๋Š” ๋Œ€๊ทœ๋ชจ ์„œ์ง€ ๋ฐ์ดํ„ฐ ๋ถ„์„์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฅ˜(์˜ˆ: ์ž˜๋ชป๋œ DOI, ์ค‘๋ณต ๊ธฐ

Computer Science Network Digital Libraries
Scientific Realism and Classical Physics

Scientific Realism and Classical Physics

๋ณธ ๋…ผ๋ฌธ์€ ๊ณผํ•™ ์‹ค์žฌ์ฃผ์˜๋ผ๋Š” ์ฒ ํ•™์  ์ž…์žฅ์„ ์‹œ๊ฐ„์ถ•์— ๋”ฐ๋ผ ๊ตฌ์ฒด์ ์ธ ์กด์žฌ๋ก ์  ๊ตฌ์„ฑ์š”์†Œ์™€ ์—ฐ๊ฒฐ์‹œํ‚ด์œผ๋กœ์จ, ๊ณ ์ „ ๋ฌผ๋ฆฌํ•™์˜ ์—ญ์‚ฌ๋ฅผ โ€˜์‹ค์ฒด์˜ ์ง„ํ™”โ€™๋ผ๋Š” ๊ด€์ ์—์„œ ์žฌ์กฐ๋ช…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋‰ดํ„ด์ด ์ œ์‹œํ•œ ๋„ค ๊ฐ€์ง€ ๊ธฐ๋ณธ ์‹ค์ฒด์ด๋‹ค. ๋‰ดํ„ด์€ ๋ฌผ์งˆ์„ โ€˜์ ˆ๋Œ€์ ์œผ๋กœ ๋‹จ๋‹จํ•˜๊ณ  ํŒŒ๊ดด๋˜์ง€ ์•Š๋Š” ์ž…์žโ€™๋กœ ๊ฐ€์ •ํ•˜๊ณ , ์ด ์ž…์ž๋“ค์ด ๋ณ€ํ•˜์ง€ ์•Š๋Š” 3์ฐจ์› ๊ณต๊ฐ„๊ณผ ์ ˆ๋Œ€์ ์ธ ์‹œ๊ฐ„์ด๋ผ๋Š” ๋ฐฐ๊ฒฝ ์œ„์—์„œ ํž˜์— ์˜ํ•ด ์›€์ง์ธ๋‹ค๊ณ  ๋ณด์•˜๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ ˆ๋Œ€ ๊ณต๊ฐ„ยท์‹œ๊ฐ„โ€™์€ ๊ด€์ธก์ž์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ์กด์žฌํ•˜๋Š” ๋…๋ฆฝ์  ์‹ค์žฌ์ด๋ฉฐ, ์ด๋Š” ์‹ค์žฌ์ฃผ์˜๊ฐ€ ์š”๊ตฌํ•˜๋Š” โ€˜๊ด€์ธก ๊ฐ€๋Šฅํ•œ ์„ธ๊ณ„

Physics Quantum Physics
No Image

Seam360GS: Seamless 360ยฐ Gaussian Splatting from Real-World Omnidirectional Images

Seam360GS๋Š” ๋“€์–ผ ํ”ผ์‰ฌ์•„์ด ์นด๋ฉ”๋ผ ์‹œ์Šคํ…œ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ Œ์ฆˆ ๊ฐ„๊ฒฉ๊ณผ ๊ฐ๋„ ์™œ๊ณก์„ ๊ณ ๋ คํ•˜์—ฌ 3D ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ˜„์‹ค์ ์ธ ์‹œ๊ฐ์  ํšจ๊ณผ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ณ , ๋งค๋„๋Ÿฌ์šด 360๋„ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Seam360GS์˜ ํ•ต์‹ฌ์€ ๊ต์ • ๋ณ€์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๊ฒฐ์ ์„ ๋ณด์™„ํ•˜๊ณ  ์™„๋ฒฝํ•œ ์‹ ๊ทœ ๋ทฐ๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด ๋ชจ๋ธ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ํŠนํžˆ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๊ทธ ํšจ๊ณผ๊ฐ€ ๋‘๋“œ๋Ÿฌ์ง‘๋‹ˆ๋‹ค.

Search for gamma-ray emission from magnetars with the Fermi Large Area   Telescope

Search for gamma-ray emission from magnetars with the Fermi Large Area Telescope

๋ณธ ์—ฐ๊ตฌ๋Š” Fermiโ€‘LAT์ด ์ œ๊ณตํ•˜๋Š” ๋†’์€ ๊ฐ๋„์™€ ๋„“์€ ์‹œ์•ผ๋ฅผ ํ™œ์šฉํ•ด ๋งˆ๊ทธ๋„คํ„ฐ๋ผ๋Š” ํŠน์ˆ˜ํ•œ ๊ณ ์ž๊ธฐ์žฅ ์ค‘์„ฑ์ž๋ณ„ ์ง‘๋‹จ์˜ GeV ฮณโ€‘์„  ๋ฐฉ์ถœ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์ดˆ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ๋Š” โ€œPass 6 Diffuseโ€ ์ด๋ฒคํŠธ ํด๋ž˜์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ฐฐ๊ฒฝ์„ ์ตœ๋Œ€ํ•œ ์–ต์ œํ–ˆ์œผ๋ฉฐ, 20 MeVโ€“300 GeV ๊ตฌ๊ฐ„ ์ „์ฒด๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์†Œ์Šค๋ณ„๋กœ ์ˆ˜ํ–‰ํ•œ ์ตœ๋Œ€์šฐ๋„(โ€œTSโ€) ๊ฒ€์ •์—์„œ๋Š” ๋ชจ๋“  ๋Œ€์ƒ์— ๋Œ€ํ•ด TS < 25(ํ†ต๊ณ„์  ์œ ์˜๋ฏธ์„ฑ ๊ธฐ์ค€)๋กœ, ์‹ค์ œ ์‹ ํ˜ธ๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์Œ์„ ํ™•์ธํ–ˆ๋‹ค. ์ƒํ•œ์„  ์ถ”์ •์€ ๊ฐ ๋งˆ๊ทธ๋„คํ„ฐ์˜ ์œ„์น˜์™€ ๊ฑฐ๋ฆฌ, ๊ทธ๋ฆฌ๊ณ  ์•Œ๋ ค์ง„ Xโ€‘rayยท์†Œํ”„ํŠธ

Astrophysics
Secondary photons and neutrinos from cosmic rays produced by distant   blazars

Secondary photons and neutrinos from cosmic rays produced by distant blazars

๋ณธ ๋…ผ๋ฌธ์€ โ€œ๋ฉ€๋ฆฌ ์žˆ๋Š” ๋ธ”๋ ˆ์ด์ €์—์„œ ๋ฐฉ์ถœ๋œ ์šฐ์ฃผ์„ ์ด ๋งŒ๋“  2์ฐจ ฮณโ€‘๊ด‘์ž์™€ ์ค‘์„ฑ๋ฏธ์žโ€๋ผ๋Š” ์ฃผ์ œ๋กœ, ๊ธฐ์กด์— ์ฃผ๋กœ 1์ฐจ ฮณโ€‘๊ด‘์ž(AGN ๋‚ด๋ถ€์—์„œ ์ง์ ‘ ๋ฐฉ์ถœ๋œ ๊ด‘์ž)๋งŒ์„ ๊ณ ๋ คํ•ด ์˜จ ๊ณ ์—๋„ˆ์ง€ ์ฒœ๋ฌธํ•™์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํ™•์žฅํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์–‘์„ฑ์ž๊ฐ€ ์šฐ์ฃผ๋ฐฐ๊ฒฝ๋ณต์‚ฌ(CMB)์™€ ์ถฉ๋Œํ•ด ์ „์žโ€‘์–‘์ „์ž ์Œ์„ ์ƒ์„ฑํ•˜๋Š” โ€˜์–‘์„ฑ์žโ€‘์Œ์ƒ์„ฑ(PPP)โ€™ ๊ณผ์ •์ด๋‹ค. ์ด ๊ณผ์ •์€ ์ „์ž๊ธฐ ์บ์Šค์ผ€์ด๋“œ๋ฅผ ์ผ์œผ์ผœ ๋‹ค์ˆ˜์˜ 2์ฐจ ฮณโ€‘๊ด‘์ž๋ฅผ ๋งŒ๋“ค์ง€๋งŒ, ์ค‘์„ฑ๋ฏธ์ž๋Š” ๋™๋ฐ˜๋˜์ง€ ์•Š๋Š”๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์–‘์„ฑ์ž๊ฐ€ ์€ํ•˜์™ธ ๋ฐฐ๊ฒฝ๊ด‘(EBL)๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•ด ์ค‘์„ฑ ํŒŒ์ด

Astrophysics HEP-PH
Security Through Entertainment: Experiences Using a Memory Game for   Secure Device Pairing

Security Through Entertainment: Experiences Using a Memory Game for Secure Device Pairing

: ์ด ๋…ผ๋ฌธ์€ ๋ฌด์„  ํ†ต์‹  ๋ณด์•ˆ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ํŽ˜์–ด๋ง ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ์ธ์‹ํ•˜๊ณ , ์—”ํ„ฐํ…Œ์ธ๋จผํŠธ ์š”์†Œ๋ฅผ ๋„์ž…ํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ๊ฒฝํ—˜๊ณผ ๋ณด์•ˆ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๋Š” ์‹œ๋„๋Š” ๋งค์šฐ ํฅ๋ฏธ๋กญ๋‹ค. ํŠนํžˆ, ๊ฒŒ์ž„์„ ํ†ตํ•ด ํŽ˜์–ด๋ง ๊ณผ์ •์„ ์ฆ๊ฒ๊ฒŒ ๋งŒ๋“ค๊ณ , ์‚ฌ์šฉ์ž๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ณด์•ˆ ํ”„๋กœํ† ์ฝœ์„ ์ค€์ˆ˜ํ•˜๋„๋ก ์œ ๋„ํ•˜๋Š” ๊ฒƒ์€ ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด๋‹ค. Alice Says ๊ฒŒ์ž„์€ ๊ธฐ์–ต๋ ฅ ํ…Œ์ŠคํŠธ์™€ ๊ฐ™์€ ์š”์†Œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ๊ณผ ํ˜‘๋ ฅ์„ ์žฅ๋ คํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ๋น„๋ฐ€๋ฒˆํ˜ธ๋ฅผ ์ž…๋ ฅํ•˜๊ฑฐ๋‚˜ ๋ณต์žกํ•œ ์ ˆ์ฐจ๋ฅผ ๋”ฐ๋ฅด๋Š” ๊ฒƒ๋ณด๋‹ค ๋” ์ง๊ด€์ ์ด๊ณ  ์žฌ๋ฏธ์žˆ๋Š” ๊ฒฝํ—˜์„ ์ œ๊ณตํ•œ๋‹ค.

Computer Science Cryptography and Security HCI
Selecting Best Software Reliability Growth Models: A Social Spider   Algorithm based Approach

Selecting Best Software Reliability Growth Models: A Social Spider Algorithm based Approach

์ด ๋…ผ๋ฌธ์€ ์†Œํ”„ํŠธ์›จ์–ด ์‹ ๋ขฐ์„ฑ ์„ฑ์žฅ ๋ชจ๋ธ(SRGM)์˜ ์„ ํƒ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ๊ด€์ ์—์„œ ์žฌ๊ตฌ์„ฑํ•˜๊ณ , ์ตœ์‹  ๊ตฐ์ง‘ ์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ ์‚ฌํšŒ๊ฑฐ๋ฏธ ์•Œ๊ณ ๋ฆฌ์ฆ˜(SSA) ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, SRGM ์„ ํƒ์˜ ์–ด๋ ค์›€์€ ๋ชจ๋ธ๋งˆ๋‹ค ๊ฐ€์ •์ด ๋‹ค๋ฅด๊ณ , ๋ฐ์ดํ„ฐ ํŠน์„ฑ์— ๋”ฐ๋ผ ์ ํ•ฉ๋„๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ•œ๋‹ค๋Š” ์ ์— ์žˆ๋‹ค. ์ €์ž๋Š” Lyu์˜ โ€œ๋ณดํŽธ์  ๋ชจ๋ธ์€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹คโ€๋Š” ๋…ผ์ ์„ ์ธ์šฉํ•ด, ๋ฐ์ดํ„ฐโ€‘๋ชจ๋ธ ์ ํ•ฉ์„ฑ ์„ ์ •๋Ÿ‰ํ™”ํ•  ํ•„์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 7๊ฐ€์ง€ ๊ธฐ์กด ๊ธฐ์ค€์— ์ถ”๊ฐ€๋กœ 3๊ฐ€์ง€ ์ƒˆ๋กœ์šด ๊ธฐ์ค€์„ ๋„์ž…ํ•ด ์ด 10๊ฐ€์ง€ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ตฌ

Software Engineering Computer Science Model
Selective Call Out and Real Time Bidding

Selective Call Out and Real Time Bidding

: ์ธํ„ฐ๋„ท ๊ด‘๊ณ  ์‚ฐ์—…์—์„œ ๊ด‘๊ณ  ๊ฑฐ๋ž˜์†Œ์˜ ์—ญํ• ์€ ์ ์  ๋” ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ์‹ค์‹œ๊ฐ„ ์ž…์ฐฐ๊ณผ ์„ ํƒ์  ํ˜ธ์ถœ ์ธก๋ฉด์€ ๊ด‘๊ณ  ๋„คํŠธ์›Œํฌ์™€ ๋ฐœํ–‰์ธ ๊ฐ„์˜ ํšจ์œจ์ ์ธ ์ƒํ˜ธ ์ž‘์šฉ์— ํ•ต์‹ฌ์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ธก๋ฉด์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•œ๋‹ค. ์šฐ์„ , ์—ฐ๊ตฌ์ง„์€ ์„ ํƒ์  ํ˜ธ์ถœ์„ ๋Œ€์—ญํญ ์œ ํ˜• ์ œ์•ฝ ์กฐ๊ฑด์œผ๋กœ ๋ชจ๋ธ๋งํ•˜์—ฌ ์ด๋ฅผ ์˜จ๋ผ์ธ ์žฌ๊ท€ ๋ฒ ์ด์ฆˆ ๊ฒฐ์ • ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์ ‘๊ทผํ•œ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฌธํ—Œ์—์„œ ๋‹ค๋ฃจ์ง€ ์•Š์•˜๋˜ ์ƒˆ๋กœ์šด ๊ด€์ ์ด๋ฉฐ, ์ž์—ฐ์Šค๋Ÿฌ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์„ฑ๋Šฅ ๋ณด์žฅ์„ ํ†ตํ•ด ํšจ์œจ์ ์ธ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ์ผ๋ฐ˜ํ™”๋œ ๋‘ ๋ฒˆ์งธ ๊ฐ€๊ฒฉ ๊ฒฝ๋งค

Computer Science Data Structures Game Theory
Sensitivity analysis of a computational model of the   IKK-NF-{kappa}B-I{kappa}B{alpha}-A20 signal transduction network

Sensitivity analysis of a computational model of the IKK-NF-{kappa}B-I{kappa}B{alpha}-A20 signal transduction network

๋ณธ ๋…ผ๋ฌธ์€ NFโ€‘ฮบB ์‹ ํ˜ธ ์ „๋‹ฌ ๋„คํŠธ์›Œํฌ์˜ ๋ณตํ•ฉ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•ด โ€˜๋ฏผ๊ฐ๋„ ๋ถ„์„โ€™์ด๋ผ๋Š” ์‹œ์Šคํ…œ ์ƒ๋ฌผํ•™์  ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ ์šฉํ•œ ์ ์ด ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์ด๋‹ค. ๋จผ์ € ๋ชจ๋ธ ์„ ํƒ์— ์žˆ์–ด Lipniacki ๋“ฑ(2010, 2011)์ด ์ œ์‹œํ•œ IKKโ€‘NFโ€‘ฮบBโ€‘IฮบBฮฑโ€‘A20 ๋„คํŠธ์›Œํฌ๋ฅผ ์ฑ„ํƒํ–ˆ๋Š”๋ฐ, ์ด๋Š” ๊ธฐ์กด Hoffmann ๋ชจ๋ธ์— ๋น„ํ•ด ๋‘ ๊ฐœ์˜ ์Œ์„ฑ ํ”ผ๋“œ๋ฐฑ( IฮบBฮฑ, A20 )์„ ๋ช…์‹œ์ ์œผ๋กœ ํฌํ•จํ•จ์œผ๋กœ์จ ์‹ค์ œ ์„ธํฌ ๋‚ด ์‹ ํ˜ธ ์–ต์ œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ณด๋‹ค ํ˜„์‹ค์ ์œผ๋กœ ์žฌํ˜„ํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์„ธ ๊ฐ€์ง€ ์ƒ˜ํ”Œ๋ง ๋ฐฉ๋ฒ•์€ ๊ฐ๊ฐ ์žฅ๋‹จ์ ์ด ๋šœ๋ ทํ•˜๋‹ค. ๋‹จ์ผ

Network Quantitative Biology Analysis Model
Sentiment Analysis of Code-Mixed Languages leveraging Resource Rich   Languages

Sentiment Analysis of Code-Mixed Languages leveraging Resource Rich Languages

๋ณธ ์—ฐ๊ตฌ๋Š” ์ฝ”๋“œโ€‘๋ฏน์Šค ํ…์ŠคํŠธ ๊ฐ์„ฑ ๋ถ„์„์ด๋ผ๋Š” ์•„์ง ์ถฉ๋ถ„ํžˆ ํƒ๊ตฌ๋˜์ง€ ์•Š์€ ๋ถ„์•ผ์— ๋Œ€์กฐ ํ•™์Šต์ด๋ผ๋Š” ์ตœ์‹  ๊ธฐ๋ฒ•์„ ์ ์šฉํ•จ์œผ๋กœ์จ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ˜์‹ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต์œ  ์Œ๋‘ฅ์ด Biโ€‘LSTM ์„ ์ด์šฉํ•ด ๋‘ ๋ฌธ์žฅ์„ ๋™์‹œ์— ์ธ์ฝ”๋”ฉํ•˜๊ณ , ์ด๋“ค์˜ ์ถœ๋ ฅ ๋ฒกํ„ฐ ๊ฐ„ ์œ ์‚ฌ๋„๋ฅผ ์—๋„ˆ์ง€ ๊ธฐ๋ฐ˜ ์†์‹ค ํ•จ์ˆ˜๋กœ ์ตœ์†Œํ™”ํ•œ๋‹ค๋Š” ์„ค๊ณ„๋Š”, ๋™์ผ ๊ฐ์„ฑ์„ ๊ฐ€์ง„ ๋ฌธ์žฅ์€ ๊ฐ์„ฑ ๊ณต๊ฐ„์—์„œ ๊ฐ€๊น๊ฒŒ, ๋‹ค๋ฅธ ๊ฐ์„ฑ์„ ๊ฐ€์ง„ ๋ฌธ์žฅ์€ ๋ฉ€๋ฆฌ ๋ฐฐ์น˜๋˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๋‹จ์ผ ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์™€ ๋‹ฌ๋ฆฌ ๊ฐ์„ฑ ๊ฐ„ ์ƒ๋Œ€์  ๊ฑฐ๋ฆฌ ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ฒŒ ํ•˜์—ฌ, ๋ผ๋ฒจ์ด ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ๋„

Computer Science Analysis NLP
Server Consolidation: An Approach to make Data Centers Energy Efficient   and Green

Server Consolidation: An Approach to make Data Centers Energy Efficient and Green

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ์„ผํ„ฐ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์  ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์„œ๋ฒ„ ํ†ตํ•ฉ ์„ ์ค‘์‹ฌ์— ๋‘๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐ•์ ์€ ํ˜„ํ™ฉ ํŒŒ์•…์ด ๊ตฌ์ฒด์ ์ด๋ผ๋Š” ์ ์ด๋‹ค. โ€˜์ฃฝ์€ ์„œ๋ฒ„โ€™ ๋น„์œจ์ด 30 %ยทํ™œ์šฉ๋„ 5 ~ 10 %๋ผ๋Š” ํ†ต๊ณ„๋Š” ๋ฌธ์ œ์˜ ์‹ฌ๊ฐ์„ฑ์„ ๋ช…ํ™•ํžˆ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๋…์ž๊ฐ€ ์—ฐ๊ตฌ ํ•„์š”์„ฑ์„ ์ฆ‰์‹œ ์ธ์‹ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ฐ€์ƒํ™” ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•œ ์„œ๋ฒ„ ํ†ตํ•ฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•œ๋‹ค. ํ•˜์ดํผ๋ฐ”์ด์ € ๊ธฐ๋ฐ˜์˜ ๋‹ค์ค‘ OS ์‹คํ–‰, ์ž์› ํŒŒํ‹ฐ์…”๋‹ยท์ง‘ํ•ฉ ๋“ฑ์˜ ๊ฐœ๋…์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌํ•จ์œผ๋กœ์จ, ๊ธฐ์ˆ ์  ๋ฐฐ๊ฒฝ์ด ๋ถ€์กฑํ•œ ๋…์ž๋„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ์ฃผ์žฅ

Other CS Computer Science Data
Should one compute the Temporal Difference fix point or minimize the   Bellman Residual? The unified oblique projection view

Should one compute the Temporal Difference fix point or minimize the Bellman Residual? The unified oblique projection view

: MDP์˜ ๊ฐ€์น˜ ํ•จ์ˆ˜ ๊ทผ์‚ฌ์— ๋Œ€ํ•œ ํˆฌ์˜ ๋ฐฉ๋ฒ•์€ ์ •์ฑ… ํ‰๊ฐ€ ๋ฐ ๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„์— ์žˆ์–ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” TD(0)์™€ BR์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, ๊ฐ ๋ฐฉ๋ฒ•์ด ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์„ ๋Šฅ๊ฐ€ํ•˜๋Š” ์ž‘์€ MDP ์˜ˆ์‹œ๋ฅผ ํ†ตํ•ด ๊ทธ ์ฐจ์ด์ ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. TD(0)๋Š” ์‹œ๊ฐ„์ฐจ์ด ๊ณ ์ •์  ๊ณ„์‚ฐ๋ฒ•์œผ๋กœ, ๋ฒจ๋งŒ ๋ฐฉ์ •์‹์˜ ๊ทผ์‚ฌ ํ•ด๋ฅผ ์ฐพ๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, BR์€ ํ‰๊ท ์ œ๊ณฑ ๋ฒจ๋งŒ ์ž”์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜์—ฌ ๊ฐ€์น˜ ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•ฉ๋‹ˆ๋‹ค. TD์™€ BR์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ๋ถ„์„์„ ํ†ตํ•ด, ๋‘ ๋ฐฉ๋ฒ•์ด ์ตœ์ ํ™”ํ•˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜ ์‚ฌ์ด์˜ ๊ฐ„

Computer Science Artificial Intelligence
SICStus Prolog -- the first 25 years

SICStus Prolog -- the first 25 years

SICStus Prolog์˜ 25๋…„ ์—ญ์‚ฌ๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด ์„ค๊ณ„๊ฐ€ ๊ธฐ์ˆ ์  ์š”๊ตฌ์™€ ์ปค๋ฎค๋‹ˆํ‹ฐ ์ •์น˜ ์‚ฌ์ด์—์„œ ์–ด๋–ป๊ฒŒ ๊ท ํ˜•์„ ์žก์•„์•ผ ํ•˜๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์ข‹์€ ์‚ฌ๋ก€์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ €์ž๋Š” DECsystemโ€‘10 Prolog(์—๋“ ๋ฒ„๋Ÿฌ ์ „ํ†ต)์„ ์ ‘ํ•˜๋ฉด์„œ ๋ฐฉ์–ธ ์„ ํƒ์— ๋Œ€ํ•œ ๊ณ ๋ฏผ์ด ์—†์—ˆ๊ณ , ์ดํ›„ Quintus Prolog๊ฐ€ ์‚ฌ์‹ค์ƒ์˜ ํ‘œ์ค€์œผ๋กœ ์ž๋ฆฌ ์žก์ž โ€œ๋ชจ๋ฐฉ์€ ์ตœ๊ณ ์˜ ์•„์ฒจ์ด๋‹คโ€๋ผ๋Š” ์›์น™์— ๋”ฐ๋ผ Quintus์˜ ์„ค๊ณ„๋ฅผ ๊ทธ๋Œ€๋กœ ๋„์ž…ํ–ˆ๋‹ค. ์ด๋Š” ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ๊ฒ€์ฆ๋œ ์„ค๊ณ„ ์š”์†Œโ€”์™ธ๋ถ€ ์–ธ์–ด ์ธํ„ฐํŽ˜์ด์Šค, ์ž„๋ฒ ๋””๋“œ ๊ฐ€๋Šฅ์„ฑ, ํ›… ํ”„๋ ˆ๋””์ผ€์ดํŠธยทํ•จ์ˆ˜, ๋ชจ๋“ˆ ์‹œ์Šคํ…œโ€”๋ฅผ

Computer Science Programming Languages
Significance of Classification Techniques in Prediction of Learning   Disabilities

Significance of Classification Techniques in Prediction of Learning Disabilities

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก ํ˜„์žฅ์—์„œ ํ•™์Šต ์žฅ์• (LD) ์กฐ๊ธฐ ํƒ์ง€๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ์—ฐ๊ตฌ๋Š” LD๊ฐ€ ์ „์ฒด ์•„๋™์˜ ์•ฝ 10 %์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ํ†ต๊ณ„์  ๊ทผ๊ฑฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋ฌธ์ œ์˜ ๊ทœ๋ชจ์™€ ์‚ฌํšŒ์  ํŒŒ๊ธ‰ ํšจ๊ณผ๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Š” ์ •์ฑ… ์ž…์•ˆ์ž์™€ ๊ต์œก ๊ธฐ๊ด€์ด LD์— ๋Œ€ํ•œ ์ฒด๊ณ„์  ๊ฒ€์‚ฌ๋ฅผ ๋„์ž…ํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์„ ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์ œ์‹œํ•œ๋‹ค. ๋‘˜์งธ, ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๊ธฐ์ˆ ์„ ๊ต์œก ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•œ ๊ตฌ์ฒด์  ๋ฐฉ๋ฒ•๋ก ์„ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•œ๋‹ค. ์˜์‚ฌ๊ฒฐ์ • ํŠธ๋ฆฌ(J48)๋Š” โ€˜ํ™”์ดํŠธ ๋ฐ•์Šคโ€™ ๋ชจ๋ธ๋กœ, ๊ฐ ๋ฆฌํ”„ ๋…ธ๋“œ๊นŒ์ง€์˜ ๊ฒฝ๋กœ๋ฅผ ์ถ”์ ํ•˜๋ฉด

Computer Science Learning Artificial Intelligence
No Image

Simplifying LTL Model Checking Given Prior Knowledge

: ์ œ์•ˆ๋œ ์ ‘๊ทผ๋ฒ•์€ ์‚ฌ์ „ ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ LTL ๋ชจ๋ธ ์ฒดํ‚น ๊ณผ์ •์„ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ง€์‹ ์˜คํ† ๋งˆํƒ€ $A K$๋ฅผ ํ†ตํ•ด ์†์„ฑ ๋ถ€์ • $lnotvarphi$์— ๋Œ€ํ•œ ์˜คํ† ๋งˆํ†ค์„ ๋‹จ์ˆœํ™”ํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ ์ฒดํ‚น์˜ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์ด๋‚˜ ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ์—์„œ ๊ทธ ํšจ๊ณผ๊ฐ€ ๋‘๋“œ๋Ÿฌ์ง‘๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ์—ฐ์‚ฐ์€ ๋ฌธ์ œ์˜ ๋‹ต์„ ํ™•์‹คํžˆ ์ œ๊ณตํ•˜๊ฑฐ๋‚˜, ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ๋‹จ์ˆœํ™”ํ•˜์—ฌ ๋ชจ๋ธ ์ฒดํ‚น์˜ ์ •ํ™•์„ฑ๊ณผ ์†๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.

Model
Skin Tone Emoji and Sentiment on Twitter

Skin Tone Emoji and Sentiment on Twitter

์ด ๋…ผ๋ฌธ์€ 2015๋…„ ์œ ๋‹ˆ์ฝ”๋“œ๊ฐ€ ๋„์ž…ํ•œ ํ”ผ๋ถ€ํ†ค ์ˆ˜์ •์ž(Fitzpatrick type 1โ€‘6)๋ฅผ ํŠธ์œ„ํ„ฐ๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ์‹ค์‹œ๊ฐ„ ์†Œ์…œ ๋ฏธ๋””์–ด์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๋””์ง€ํ„ธ ์ƒ์—์„œ โ€˜ํ”ผ๋ถ€์ƒ‰โ€™์ด๋ผ๋Š” ์‹œ๊ฐ์  ์ •์ฒด์„ฑ์ด ์–ด๋–ป๊ฒŒ ํ‘œํ˜„๋˜๊ณ  ์‚ฌํšŒ์  ์˜๋ฏธ๋ฅผ ์ƒ์„ฑํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ฒฐ๊ณผ๋Š” ๊ตญ๊ฐ€๋ณ„ ํ”ผ๋ถ€ํ†ค ์ด๋ชจ์ง€ ์‚ฌ์šฉ ๋น„์œจ์ด ์‹ค์ œ ์ธ๊ตฌ์˜ ํ”ผ๋ถ€ํ†ค ๋ถ„ํฌ์™€ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ž์‹ ์˜ ์™ธ๋ชจ๋ฅผ ๋””์ง€ํ„ธ ์•„๋ฐ”ํƒ€์ฒ˜๋Ÿผ ๋ฐ˜์˜ํ•˜๋ ค๋Š” ๊ฒฝํ–ฅ์ด ๊ฐ•ํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค. ํŠนํžˆ ๋ฏธ๊ตญยท์บ๋‚˜๋‹คยทํ˜ธ์ฃผ์™€ ๊ฐ™์ด ๋‹ค์ธ์ข… ์‚ฌํšŒ์—์„œ๋Š” ๋ฐ์€ ํ†ค(1โ€‘2)๊ณผ ์ค‘๊ฐ„ ํ†ค(3โ€‘4)์˜ ์‚ฌ

Computer Science Computers and Society NLP
SLAM : Solutions lexicales automatique pour metaphores

SLAM : Solutions lexicales automatique pour metaphores

: SLAM์€ ์–ดํœ˜์  ์€์œ ์˜ ์ž๋™ ํ•ด๊ฒฐ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, ๊ฐœ๋…์  ์œ ์‚ฌ์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์–ธ์–ด์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์€์œ ๊ฐ€ ์–ด๋–ป๊ฒŒ ํ˜•์„ฑ๋˜๊ณ , ํ™”์ž๊ฐ€ ์™œ ์€์œ ์  ํ‘œํ˜„์„ ์‚ฌ์šฉํ•˜๋Š”์ง€ ๊ทธ ๊ณผ์ •์„ ๋ถ„์„ํ•œ๋‹ค. ์•„๋ฆฌ์Šคํ† ํ…”๋ ˆ์Šค์˜ ์‹œํ•™์—์„œ ์ œ์‹œ๋œ 4์ค‘ ๊ตฌ์กฐ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, SLAM์€ ์†Œ์Šค ์˜์—ญ๊ณผ ๋ชฉํ‘œ ์˜์—ญ ๊ฐ„์˜ ๊ตฌ์กฐ์  ์œ ์‚ฌ์„ฑ์„ ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ™”์ž๋Š” ์‚ฌ๊ฑด์ด๋‚˜ ํ–‰๋™์„ ์ „๋‹ฌํ•  ๋•Œ ์ „ํ†ต์ ์ธ ํ‘œํ˜„ ๋˜๋Š” ์€์œ ์  ํ‘œํ˜„์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์–ด๋ฆฐ์•„์ด๋“ค์€ ์•„์ง ํ™•๋ฆฝ๋˜์ง€ ์•Š์€ ๋™์‚ฌ ๋ฒ”์ฃผ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ์—, ๊ธฐ์–ต๋œ ์‚ฌ๊ฑด์— ๊ธฐ

Computer Science NLP
Sneak into Devils Colony- A study of Fake Profiles in Online Social   Networks and the Cyber Law

Sneak into Devils Colony- A study of Fake Profiles in Online Social Networks and the Cyber Law

: ์˜จ๋ผ์ธ ์†Œ์…œ ๋„คํŠธ์›Œํฌ๋Š” ํ˜„๋Œ€ ์‚ฌํšŒ์—์„œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ๋žŒ๋“ค์€ SNS๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ํ™œ๋™์„ ํ•˜๊ณ , ์ž์‹ ์˜ ์ •๋ณด๋ฅผ ๊ณต์œ ํ•˜๋ฉฐ, ์„œ๋กœ ์—ฐ๊ฒฐ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ํ”Œ๋žซํผ์˜ ๋ณดํŽธ์„ฑ์€ ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„์ž๋“ค์—๊ฒŒ๋„ ๋งค๋ ฅ์ ์œผ๋กœ ๋‹ค๊ฐ€์˜ต๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ OSN์˜ ์ทจ์•ฝ์ ์„ ์•…์šฉํ•˜์—ฌ ๋ถˆ๋ฒ•์ ์ธ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ€์งœ ํ”„๋กœํ•„์€ ์˜จ๋ผ์ธ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์—์„œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋กœ ๋Œ€๋‘๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ€์งœ ํ”„๋กœํ•„์„ ํ†ตํ•ด ์‚ฌ์ด๋ฒ„ ๋ฒ”์ฃ„์ž๋“ค์€ ๋‹ค์–‘ํ•œ ๋ฒ”์ฃ„๋ฅผ ์ €์ง€๋ฅด๊ณ , ์‚ฌ์šฉ์ž๋“ค์˜ ๊ฐœ์ธ ์ •๋ณด๋ฅผ ํ›”์น˜๊ฑฐ๋‚˜ ์˜ค๋„์„ฑ ํ™œ๋™์„ ๋ฒŒ์ž…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฐ€์งœ ํ”„๋กœํ•„์˜ ์œ ํ˜•๊ณผ

Computer Science Social Networks Network Computers and Society
Solutions of matrix NLS systems and their discretisations: A unified   treatment

Solutions of matrix NLS systems and their discretisations: A unified treatment

๋ณธ ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ํŒŒ๋™ ๋ฐฉ์ •์‹ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ํ™œ์šฉ๋˜๋Š” ๋น„์„ ํ˜• ์Šˆ๋ขฐ๋”ฉ๊ฑฐ(NLS) ๋ฐฉ์ •์‹์˜ ํ–‰๋ ฌ ์ผ๋ฐ˜ํ™”์™€ ๊ทธ ์ด์‚ฐํ™” ๋ชจ๋ธ์„ ํ•˜๋‚˜์˜ ๋Œ€์ˆ˜์  ๊ตฌ์กฐ ์•ˆ์— ํ†ตํ•ฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์—ฐ์† NLS์™€ Ablowitzโ€‘Ladik(AL) ๋ฐฉ์ •์‹, ํ˜น์€ ์™„์ „ ์ด์‚ฐ NLS๋ฅผ ๊ฐ๊ฐ ๋ณ„๊ฐœ์˜ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ๋‹ค๋ฃจ์–ด ์™”์œผ๋ฉฐ, ํŠนํžˆ ํ–‰๋ ฌ(๋˜๋Š” ๋ฒกํ„ฐ) ํ˜•ํƒœ์˜ ํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ Lax ์Œ ๊ตฌ์„ฑ์ด๋‚˜ ์—ญ๋ณ€ํ™˜ ๋ณ€ํ™˜๋ฒ•์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ์ ์šฉํ•ด์•ผ ํ–ˆ๋‹ค. ์ €์ž๋“ค์€ โ€˜๋ฐ”์ด๋””ํผ๋ Œ์…œ ๊ทธ๋ ˆ์ด๋””๋“œ ๋Œ€์ˆ˜โ€™๋ผ๋Š” ํ˜„๋Œ€ ๋Œ€์ˆ˜ํ•™์  ๋„๊ตฌ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ, ๋‘ ๊ฐœ์˜ ๋ฏธ

System Nonlinear Sciences
No Image

Solvable vector nonlinear Riemann problems, exact implicit solutions of dispersionless PDEs and wave breaking

๋ณธ ๋…ผ๋ฌธ์€ โ€œ๋ฒกํ„ฐ ๋น„์„ ํ˜• ๋ฆฌ๋งŒโ€‘ํžˆ๋ฃจ์ธ (NRH) ๋ฌธ์ œ โ†’ ๋ฌด๋ถ„์‚ฐ(PDE) โ†’ ํŒŒ๋™ ๋ถ•๊ดดโ€๋ผ๋Š” ์‚ผ๊ฐ๊ด€๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฝํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ ฮปโ€‘ํŒŒ๋ผ๋ฏธํ„ฐ์— ์˜์กดํ•˜๋Š” ๋‹ค๋ณ€๋Ÿ‰ ๋ฒกํ„ฐ์žฅ Lโ‚(ฮป), Lโ‚‚(ฮป) ์‚ฌ์ด์˜ ๊ตํ™˜ ์กฐ๊ฑด (

Nonlinear Sciences
Spectral properties of the Google matrix of the World Wide Web and other   directed networks

Spectral properties of the Google matrix of the World Wide Web and other directed networks

: ์›”๋“œ ์™€์ด๋“œ ์›น(WWW)์€ ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํšจ์œจ์ ์ธ ์ •๋ณด ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. PageRank ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ๋„คํŠธ์›Œํฌ ๋…ธ๋“œ์˜ ์ค‘์š”๋„๋ฅผ ๋žญํ‚นํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Google ๋งคํŠธ๋ฆญ์Šค์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ํŠน์„ฑ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•˜์—ฌ WWW์™€ ๊ฐ™์€ ๋ฐฉํ–ฅ์„ฑ ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. Google ๋งคํŠธ๋ฆญ์Šค๋Š” Perron Frobenius ์—ฐ์‚ฐ์ž ํด๋ž˜์Šค์— ์†ํ•˜๋ฉฐ, ๊ณ ์œ ๋ฒกํ„ฐ ์ค‘ ํ•˜๋‚˜์ธ PageRank ๋ฒกํ„ฐ๋Š” ๋…ธ๋“œ ๊ฐ„์˜ ์ค‘์š”๋„๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ

Computer Science Information Retrieval Network
No Image

Spin and spin-isospin instabilities in asymmetric nuclear matter at zero and finite temperatures using Skyrme functionals

์ด ๋…ผ๋ฌธ์€ Skyrmeโ€‘ํ˜• EDF๊ฐ€ ๊ณ ๋ฐ€๋„ยท๊ณ ์˜จ ํ•ต๋ฌผ์งˆ์„ ๊ธฐ์ˆ ํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” โ€œ์ธ์œ„์ โ€ ์Šคํ•€ยท์Šคํ•€โ€‘๋™๋“ฑ์„ฑ ๋ถˆ์•ˆ์ •์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค

NUCL-TH Astrophysics
No Image

SplArt: Articulation Estimation and Part-Level Reconstruction with 3D Gaussian Splatting

SplArt๋Š” ๊ด€์ ˆํ˜• ๋ฌผ์ฒด์˜ ์žฌ๊ตฌ์„ฑ ๋ฐ ์ถ”์ •์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” 3D ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ…์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ํฌํ† ๋ฆฌ์–ผ๋ฆฌ์Šคํ‹ฑ ๋ Œ๋”๋ง์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ํŠนํžˆ ์†๋„์™€ ์ •ํ™•๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค. SplArt์˜ ํ•ต์‹ฌ์€ ๊ฐ ๊ฐ€์šฐ์‹œ์•ˆ๋งˆ๋‹ค ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์ด๋™์„ฑ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํŒŒํŠธ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜์ด ์ •๊ตํ•ด์ง€๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑ ๋ฐ ๊ด€์ ˆ ์ถ”์ • ๊ณผ์ •์ด ํฌ๊ฒŒ ๊ฐœ์„ ๋ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค๋‹จ๊ณ„ ์ตœ์ ํ™” ์ „๋žต์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ์ ์ง„์ ์œผ๋กœ ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ ๋‚ด

Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications

Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: [๋ถˆํ™•์‹ค์„ฑ ํ”„๋กœ์ ํŠธ: ๊ผฌ๋ฆฌ ํ™•๋ฅ ๊ณผ ๊ทน๋‹จ์น˜์˜ ์„ธ๊ณ„] ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ์ด ์ฑ…์€ ํ†ต๊ณ„ ๊ธฐ๋ฒ•์˜ ์ž˜๋ชป๋œ ์ ์šฉ๊ณผ ๊ทธ ํ•ด๊ฒฐ์ฑ…์„ ํƒ๊ตฌํ•˜๋Š” ๋‹จํ–‰๋ณธ์œผ๋กœ, ํŠนํžˆ ์–‡์€ ๊ผฌ๋ฆฌ์—์„œ ๋‘๊บผ์šด ๊ผฌ๋ฆฌ๋กœ์˜ ์ „ํ™˜์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ๊ทนํ•œ๊ฐ’ ์ด๋ก ์€ ์ฃผ๋กœ n 1 ๋˜๋Š” ๋ฌดํ•œ๋Œ€๋ฅผ ๋‹ค๋ฃจ์ง€๋งŒ, ์‹ค์ œ ์„ธ๊ณ„๋Š” ๊ทธ ์ค‘๊ฐ„์— ์กด์žฌํ•˜๋ฉฐ, ์ด๋ฅผ '์ค‘๊ฐ„ ์ˆซ์ž์˜ ๋ฒ•์น™'์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ์ด ๋ฒ•์น™์€ ๋ถ„ํฌ๋งˆ๋‹ค ํฌ๊ฒŒ ๋‹ค๋ฅด๋ฉฐ, ๋Œ€์ˆ˜์˜ ๋ฒ•์น™๊ณผ ์ผ๋ฐ˜ํ™”๋œ ์ค‘์‹ฌ๊ทนํ•œ ์ •๋ฆฌ๋Š” ํ‘œ์ค€ ๊ฐ€์šฐ์Šค๋‚˜ Levy Stable ์ˆ˜๋ ด ๋ฒ”์œ„ ๋ฐ–์—์„œ ๋…ํŠนํ•˜๊ฒŒ ์ž‘๋™ํ•œ๋‹ค. ํ‘œ๋ณธ ํ‰๊ท ์ด ๋ชจ์ง‘๋‹จ ํ‰

Statistics Applications Quantitative Finance
No Image

Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics

: ๊ทธ๋ž˜ํ”„ ์žฌ๋ฐฐ์„ ์€ GNN์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ๊ตฌ์กฐ์  ์™œ๊ณก์˜ ์œ„ํ—˜์„ฑ์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์žฌ๋ฐฐ์„ ์ด ๊ทธ๋ž˜ํ”„์˜ ์ง€์—ญ ๋ฐ ๊ธ€๋กœ๋ฒŒ ์†์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์žฌ๋ฐฐ์„  ์ „๋žต์„ ํ‰๊ฐ€ํ•˜๊ณ , ๊ฐ ์ „๋žต์ด ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ ์ž‘์—… ์„ฑ๋Šฅ์— ์–ด๋–ค ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€ ์กฐ์‚ฌํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์„ฑ๊ณต์ ์ธ ์žฌ๋ฐฐ์„ ์€ ์ง€์—ญ ๊ตฌ์กฐ๋ฅผ ๋ณด์กดํ•˜๋Š” ๋™์‹œ์— ๊ธ€๋กœ๋ฒŒ ์—ฐ๊ฒฐ์„ฑ์„ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ค€๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” GNN์˜ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๊ตฌ์กฐ์  ๋ถˆ๋ณ€์„ฑ์ด ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•˜๋ฉฐ, ์ด๋ก ๊ณผ ์‹ค์šฉ์„ฑ ๊ฐ„์˜ ๊ท ํ˜•์„ ๋งž

No Image

Structured Interfaces for Automated Reasoning with 3D Scene Graphs

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LLM๊ณผ 3DSG์˜ ํ†ตํ•ฉ์„ ํ†ตํ•ด ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์˜ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ์šฐ๋ฆฌ๋Š” ์žฅ๋ฉด ๊ทธ๋ž˜ํ”„๋ฅผ ์ง๋ ฌํ™”๋œ ํ…์ŠคํŠธ๋กœ ์ธ์ฝ”๋”ฉํ•˜๋Š” ๋Œ€์‹ , ๊ทธ๋ž˜ํ”„ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์ €์žฅํ•˜๊ณ  Cypher ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋„๋ก ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํฐ ๊ทœ๋ชจ์˜ ๋ณต์žกํ•œ 3DSG์—๋„ ํ™•์žฅ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ† ํฐ ์ˆ˜๋ฅผ ์ค„์—ฌ ํšจ์œจ์ ์ธ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ์˜ ์ ‘๊ทผ๋ฒ•์€ ์ ‘์ง€๋œ ์–ธ์–ด ์ž‘์—…์—์„œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๋กœ๋ด‡์ด ์ž์—ฐ์–ด ์ž…๋ ฅ์„ ์ดํ•ดํ•˜๊ณ  ๋ฐ˜์‘ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค.

No Image

Subcoloring of (Unit) Disk Graphs

์ด ๋…ผ๋ฌธ์€ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์˜ ์„œ๋ธŒ ์ปฌ๋Ÿฌ๋ง์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ํŠนํžˆ unit disk ๊ทธ๋ž˜ํ”„์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ €์ž๋“ค์€ ์„œ๋ธŒ์ปฌ๋Ÿฌ๋ง์ด ์˜ฌ๋ฐ”๋ฅธ ์ฑ„์ƒ‰๊ณผ ์–ด๋–ป๊ฒŒ ๊ด€๋ จ๋˜์–ด ์žˆ๋Š”์ง€ ์„ค๋ช…ํ•˜๊ณ , subchromatic number๋ฅผ ๊ทผ์‚ฌํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋˜ํ•œ ์—ฌ๋Ÿฌ ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ์˜ NP hard ๋ฌธ์ œ๋ฅผ ์ฆ๋ช…ํ•จ์œผ๋กœ์จ ๋ฌธ์ œ์˜ ๋ณต์žก์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, triangle free unit disk ๊ทธ๋ž˜ํ”„์™€ ์ œํ•œ๋œ ๋†’์ด์˜ ์ŠคํŠธ๋ฆฝ ๋‚ด์—์„œ ํ‘œํ˜„ ๊ฐ€๋Šฅํ•œ ๊ทธ๋ž˜ํ”„์˜ ์„œ๋ธŒ ์ปฌ๋Ÿฌ๋ง์ด ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋˜ํ•œ co comparabil

No Image

Sublinear Data Structures for Nearest Neighbor in Ultra High Dimensions

๋ณธ ๋…ผ๋ฌธ์€ ์ดˆ๊ณ ์ฐจ์› ์˜์—ญ์—์„œ ๊ธฐํ•˜ํ•™์  ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ์˜ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ทผ์ ‘ ์ด์›ƒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ถ„์•ผ์—์„œ ๋†’์€ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ์ง„์ „์ž…๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋Š” ๊ณต๊ฐ„๊ณผ ์‹œ๊ฐ„ ๋ณต์žก๋„๋ฅผ ์ค„์—ฌ, ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ์ฟผ๋ฆฌ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ๊ธฐํ•˜ํ•™์  ๋ฌธ์ œ์™€ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ์˜ ํ™•์žฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

Data
Submodular problems - approximations and algorithms

Submodular problems - approximations and algorithms

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ถ€๋ถ„๋ชจ๋“ˆ๋ผ ์ตœ์ ํ™” ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์–ด๋ ค์šด ์ œ์•ฝ ํ˜•ํƒœ ์ค‘ ํ•˜๋‚˜์ธ ๋‘ ๋ณ€์ˆ˜ ์„ ํ˜• ์ œ์•ฝ (SM2) ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ๋ณต์žก๋„ ๊ฒฝ๊ณ„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์—๋Š” ๋ถ€๋ถ„๋ชจ๋“ˆ๋ผ ์ตœ์†Œํ™”๊ฐ€ ์ผ๋ฐ˜์ ์ธ ์„ ํ˜• ์ œ์•ฝ(ํŠนํžˆ ์ „์—ญ ์ผ๋ณ€๋Ÿ‰ ํ–‰๋ ฌ(TU) ์ œ์•ฝ) ํ•˜์—์„œ NPโ€‘hard์ž„์ด ์•Œ๋ ค์ ธ ์žˆ์—ˆ์œผ๋ฉฐ, ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋„ 2โ€‘๊ทผ์‚ฌ ์ดํ•˜๋กœ๋Š” ์•Œ๋ ค์ง€์ง€ ์•Š์•˜๋‹ค. ์ €์ž๋“ค์€ ์ œ์•ฝ์‹์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ โ€”ํŠนํžˆ ๊ณ„์ˆ˜ ๋ถ€ํ˜ธ๊ฐ€ ๋ฐ˜๋Œ€์ธ ๊ฒฝ์šฐ(๋‹จ์กฐ ์ œ์•ฝ)โ€”์„ ์ด์šฉํ•ด ๋ฌธ์ œ๋ฅผ ๋ถ€๋ถ„๋ชจ๋“ˆ๋ผ sโ€‘tโ€‘์ปท ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ๋ณ€ํ™˜์€ ๋‘ ๋ณ€์ˆ˜ ์ œ์•ฝ์„ ๊ทธ๋ž˜ํ”„์˜ ๊ฐ„์„  ์šฉ๋Ÿ‰์œผ๋กœ ํ•ด์„ํ•˜๊ณ , ๋ถ€๋ถ„๋ชจ๋“ˆ๋ผ ํ•จ์ˆ˜

Computer Science Discrete Mathematics Data Structures
Super Resolution Convolutional Neural Network for Feature Extraction in   Spectroscopic Data

Super Resolution Convolutional Neural Network for Feature Extraction in Spectroscopic Data

๋ณธ ๋…ผ๋ฌธ์€ โ€œํ”ผํฌ ํƒ์ง€ โ†’ ์—ญ๋ฌธ์ œ โ†’ CNNโ€์ด๋ผ๋Š” ์„ธ ๋‹จ๊ณ„์˜ ๋…ผ๋ฆฌ์  ํ๋ฆ„์„ ํ†ตํ•ด ๊ธฐ์กด ๋ฏธ๋ถ„ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ 2์ฐจ์› ์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ์ดํ„ฐ(ํŠนํžˆ ARPES)์˜ ํ”ผํฌ ํƒ์ง€๊ฐ€ ๊ตญ๋ถ€ ๊ณก๋ฅ ์ด๋‚˜ ํ‰๊ท  ๊ธฐ์šธ๊ธฐ์™€ ๊ฐ™์€ ๋ฏธ๋ถ„ ์—ฐ์‚ฐ์— ์˜์กดํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ช…ํ™•ํžˆ ์ง€์ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณ ํ•ด์ƒ๋„์ด๊ณ  SNR์ด ์ถฉ๋ถ„ํžˆ ๋†’์„ ๋•Œ๋Š” ์œ ํšจํ•˜์ง€๋งŒ, ์‹ค์ œ ์‹คํ—˜์—์„œ๋Š” ์ „์ž ์ƒ๊ด€, ๊ฒฐ์ • ๊ฒฐํ•จ, ์žฅ๋น„ ํ•ด์ƒ๋„ ์ œํ•œ ๋“ฑ์œผ๋กœ ์ธํ•ด ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ๋ธ”๋Ÿฌ๋ง๋œ๋‹ค. ๋ธ”๋Ÿฌ๋ง์ด ์‹ฌํ•ด์ง€๋ฉด ๋ฏธ๋ถ„๊ฐ’์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€๋™ํ•˜๊ณ , ๋…ธ์ด์ฆˆ๊ฐ€

Physics Network Image Processing Condensed Matter Data Electrical Engineering and Systems Science
No Image

Supervised Fine-Tuning or In-Context Learning? Evaluating LLMs for Clinical NER

์ž„์ƒ NER ๊ณผ์—…์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” CADEC ์ฝ”ํผ์Šค๋ฅผ ํ™œ์šฉํ•œ๋‹ค. BERT ์Šคํƒ€์ผ ์ธ์ฝ”๋”๋Š” ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์–ธ์–ด ๋ชจ๋ธ์ด์ง€๋งŒ, RoBERTa large์™€ BioClinicalBERT๋Š” BERT Base ๋Œ€๋น„ ์ œํ•œ์ ์ธ ๊ฐœ์„ ๋งŒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Š” ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์ด ์ž„์ƒ NER ๊ณผ์—…์—์„œ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ฐ˜๋ฉด, GPT 4o๋ฅผ ์‚ฌ์šฉํ•œ ICL๊ณผ SFT๋Š” ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ํŠนํžˆ, ๊ฐ„๋‹จํ•œ ํ”„๋กฌํ”„ํŠธ ํ•˜์˜ ICL์€ ๋ณต์žกํ•œ ํ”„๋กฌํ”„ํŠธ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๋ฉฐ, ์ด๋Š” ๋‹จ์ˆœํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์ง€์‹œ๊ฐ€ ๋ชจ๋ธ์— ๋” ํšจ๊ณผ์ ์ž„์„

Learning

< Category Statistics (Total: 2829) >

Electrical Engineering and Systems Science
100
General
731
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut