KOINEU Logo
Computational Power and the Social Impact of Artificial Intelligence

Computational Power and the Social Impact of Artificial Intelligence

์ด ๋…ผ๋ฌธ์€ AI ํ˜์‹ ์„ ๊ธฐ์ˆ ์ ยท์‚ฌํšŒ์  ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•˜๋ฉด์„œ, ํŠนํžˆ โ€˜ํ•˜๋“œ์›จ์–ดโ€™๋ผ๋Š” ๋ฌผ๋ฆฌ์  ๊ธฐ๋ฐ˜์„ ๊ฐ„๊ณผํ•˜๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์˜ ํ•œ๊ณ„๋ฅผ ์งš๋Š”๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ณ„์‚ฐ ๋Šฅ๋ ฅ๊ณผ ์ปดํ“จํŒ… ์•„ํ‚คํ…์ฒ˜๊ฐ€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šตยท์ถ”๋ก  ์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰์ ยท์ •์„ฑ์ ์œผ๋กœ ์—ฐ๊ฒฐ์‹œํ‚จ ์ ์ด ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. GPUยทTPU์™€ ๊ฐ™์€ ํŠน์ˆ˜ ๋ชฉ์  ํ”„๋กœ์„ธ์„œ๋Š” ๋ชจ๋ธ ๊ทœ๋ชจ์™€ ๋ณต์žก์„ฑ์„ ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€์‹œ์ผฐ์œผ๋ฉฐ, ์ด๋Š” ๊ณง ๋ฐ์ดํ„ฐ ์š”๊ตฌ๋Ÿ‰๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„์˜ ๊ธ‰์ฆ์œผ๋กœ ์ด์–ด์ง„๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์  ์ง„๋ณด๊ฐ€ ๋‹จ์ˆœํžˆ โ€˜์†๋„ ํ–ฅ์ƒโ€™์— ๊ทธ์น˜์ง€ ์•Š๊ณ , ์—ฐ๊ตฌ์ž๋“ค์ด ์„ค๊ณ„ํ•˜๋Š” ๋ชจ๋ธ์˜ ๊ตฌ์กฐ์  ์„ ํƒ(์˜ˆ:

Computer Science Artificial Intelligence Computers and Society
No Image

Conditional Clifford-Steerable CNNs with Complete Kernel Basis for PDE Modeling

ํด๋ฆฌํฌ๋“œ ์Šคํ‹ฐ์–ด๋ธ” CNN์€ ๋“ฑ๋ณ€์„ฑ ํŠน์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„ ๋ณ€ํ™˜์— ๋Œ€ํ•œ ๋ถˆ๋ณ€์„ฑ์„ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„๊ณผ ๋ฏผ์ฝ”ํ”„์Šคํ‚ค ์‹œ๊ณต๊ฐ„์—์„œ ํŠนํžˆ ์ค‘์š”ํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ณ€ํ™˜๋“ค์€ ์ž์—ฐ ํ˜„์ƒ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด CSCNN์˜ ์ปค๋„ ๊ธฐ๋ฐ˜์€ ์™„์ „ํ•œ ๊ฒƒ์ด ์•„๋‹ˆ๋ฉฐ, ์ด๋Š” ํ‘œํ˜„๋ ฅ์˜ ์ œํ•œ์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์กฐ๊ฑด๋ถ€ ํด๋ฆฌํฌ๋“œ ์Šคํ‹ฐ์–ด๋ธ” ์ปค๋„์„ ์ œ์•ˆํ•˜์—ฌ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ์ž…๋ ฅ ํŠน์ง• ํ•„๋“œ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ๋“ฑ๋ณ€์„ฑ ํ‘œํ˜„์„ ์ปค๋„์— ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ, ์šฐ๋ฆฌ๋Š” ๋ชจ๋ธ์˜ ํ‘œํ˜„๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๋‹ค์–‘ํ•œ ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ ์˜ˆ์ธก ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž…

Model
No Image

ConfEviSurrogate: A Conformalized Evidential Surrogate Model for Uncertainty Quantification

๋Œ€๋ฆฌ ๋ชจ๋ธ์€ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ทผ์‚ฌํ™”ํ•˜๋Š” ๋ฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋ฉฐ, ํŠนํžˆ ๊ณผํ•™ ๋ฐ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ๋‚ด์žฌ์ ์ธ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์˜ˆ์ธก์˜ ์‹ ๋ขฐ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ , ๋ถˆํ™•์‹ค์„ฑ์˜ ์œ ํ˜•์„ ๋ช…ํ™•ํ•˜๊ฒŒ ๋ถ„๋ฆฌํ•˜์ง€ ๋ชปํ•˜๋ฉฐ, ์˜ˆ์ธก ๊ฐ„๊ฒฉ์— ๋Œ€ํ•œ ๋ณด์žฅ๋œ ์ปค๋ฒ„๋ฆฌ์ง€๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ConfEviSurrogate๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์œผ๋กœ, Conformalized Evidential Surrogate ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด

Model
Confirmation of the Supergiant Fast X-ray Transient nature of AX   J1841.0-0536 from Swift outburst observations

Confirmation of the Supergiant Fast X-ray Transient nature of AX J1841.0-0536 from Swift outburst observations

: ์ดˆ๊ฑฐ๋Œ€ ๋น ๋ฅธ X ์„  ์ผ์‹œ์  ํ˜„์ƒ(SFXT)์€ ๊ณ ์งˆ๋Ÿ‰ X ์„  ์Œ์„ฑ๊ณ„ ์ค‘ ๋…ํŠนํ•œ ํด๋ž˜์Šค๋กœ, ์งง์€ ํญ๋ฐœ๊ณผ ํœด์ง€ ์ƒํƒœ๋ฅผ ํŠน์ง•์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. AX J1841.0 0536์€ ์ด๋Ÿฌํ•œ SFXT์˜ ํ•˜๋‚˜๋กœ, Swift ๋ง์›๊ฒฝ์˜ ๊ด€์ธก์„ ํ†ตํ•ด ๊ทธ ํŠน์„ฑ์„ ๋”์šฑ ์ž์„ธํžˆ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์—ฐ๊ตฌ์ง„์€ AX J1841.0 0536์˜ ํญ๋ฐœ ๋™์•ˆ ๊ด€์ฐฐ๋œ ๋‹ค์–‘ํ•œ ํŠน์„ฑ์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, X ์„  ๊ด‘๋„ ๊ณก์„ ์˜ ํŒจํ„ด์ด ๋‹ค๋ฅธ SFXT์™€ ์œ ์‚ฌํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ดˆ๊ธฐ ์„ฌ๊ด‘ ์ดํ›„ ๊ฐ์†Œ์™€ ์ฆ๊ฐ€๋ฅผ ๋ณด์ด๋Š” ์ „ํ˜•์ ์ธ SFXT์˜ ํ–‰๋™ ์–‘์‹๊ณผ ์ผ์น˜ํ•˜

Astrophysics
Confluence Reduction for Probabilistic Systems (extended version)

Confluence Reduction for Probabilistic Systems (extended version)

์ด ์—ฐ๊ตฌ๋Š” ํ™•๋ฅ ์  ๋ชจ๋ธ ๊ฒ€์ฆ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ ์ƒํƒœ๊ณต๊ฐ„ ํญ๋ฐœ(stateโ€‘space explosion)์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ํ™•๋ฅ ์  ๋ถ€๋ถ„ ์ˆœ์„œ ์ถ•์†Œ(POR) ๊ธฐ๋ฒ•๋“ค์€ ๋น„๋™์‹œ์  ์ „์ด์˜ ์ˆœ์„œ๋ฅผ ๋ฌด์‹œํ•จ์œผ๋กœ์จ ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ์ค„์ด๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ „์ด ๊ฐ„์˜ ํ™•๋ฅ ์  ์ƒํ˜ธ์ž‘์šฉ์„ ์ถฉ๋ถ„ํžˆ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•ด, ๋ณด์กดํ•ด์•ผ ํ•  ํ–‰๋™ ํŠน์„ฑ์ด ์†์‹ค๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜๋™์‹œ์„ฑ(confluence)โ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ํ™•๋ฅ  ์ž๋™์ž

Logic Formal Languages System Discrete Mathematics Computer Science
Connecting Distant Entities with Induction through Conditional Random   Fields for Named Entity Recognition: Precursor-Induced CRF

Connecting Distant Entities with Induction through Conditional Random Fields for Named Entity Recognition: Precursor-Induced CRF

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ CRF๋Š” ์‹œํ€€์Šค ๋ผ๋ฒจ๋ง ๋ถ„์•ผ์—์„œ ๋ผ๋ฒจ ๊ฐ„ ์ „์ด ์ธ์ž๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ NER์—์„œ๋Š” ๊ฐœ์ฒด๊ฐ€ โ€˜Oโ€™(outside) ํ† ํฐ์œผ๋กœ ๋‘˜๋Ÿฌ์‹ธ์—ฌ ๋ฉ€๋ฆฌ ๋–จ์–ด์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•ด, ์ธ์ ‘ ๋ผ๋ฒจ ์ „์ด๋งŒ์„ ์ด์šฉํ•˜๋Š” 1์ฐจ CRF๋Š” ์ด๋Ÿฌํ•œ ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ๋†“์นœ๋‹ค. 2์ฐจ CRF๋ฅผ ๋„์ž…ํ•˜๋ฉด ์ผ๋ถ€ ๊ณ ์ฐจ ์ „์ด๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ƒํƒœ ๊ณต๊ฐ„์ด ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋ผ ํ•™์Šตยท์ถ”๋ก  ๋น„์šฉ์ด ๋น„ํ˜„์‹ค์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ์„ ํ–‰ ์œ ๋„ CRF์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€˜outsideโ€™ ๋ผ๋ฒจ์˜ ์žฌํ™œ์šฉ : ๊ธฐ์กด ๋ชจ๋ธ์—์„œ๋Š” โ€˜Oโ€™ ๋ผ๋ฒจ

Computer Science NLP
Conservation laws for strings in the Abelian Sandpile Model

Conservation laws for strings in the Abelian Sandpile Model

: ์•„๋ฒจ ์ƒŒ๋“œํŒŒ์ผ ๋ชจ๋ธ์€ ๋ณต์žกํ•œ ํŒจํ„ด ํ˜•์„ฑ๊ณผ ์ž๊ธฐ ์กฐ์ง์  ์ž„๊ณ„์„ฑ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜๋Š” ๋‹จ์ˆœํ•œ ์…€๋ฃฐ๋Ÿฌ ์˜คํ† ๋งˆํƒ€์ž…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํŠนํžˆ ์ŠคํŠธ๋ง์ด๋ผ๋Š” ๋…ํŠนํ•œ ๊ตฌ์กฐ์— ์ฃผ๋ชฉํ•ฉ๋‹ˆ๋‹ค. ์ŠคํŠธ๋ง์€ ํ•œ ์ฐจ์› ์ฃผ๊ธฐ์ ์ธ ํ˜•ํƒœ๋กœ, ๋ฏธ์‹œ์  ๊ฒฉ์ž ๊ฐ„๊ฒฉ๋ถ€ํ„ฐ ๊ฑฐ์‹œ์  ๋ถ€ํ”ผ ํฌ๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์—์„œ ์กด์žฌํ•˜๋ฉฐ, ํŒจํ„ด ํ˜•์„ฑ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ์ŠคํŠธ๋ง์˜ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์šด๋™๋Ÿ‰์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ์ด๋ฅผ ์ž…์ž ๋ฐ€๋„์™€ ์—ฐ๊ด€ ์ง“๋Š” ๋ฒ•์น™์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ด€๊ณ„๋Š” ๋ถ„์‚ฐ ๊ด€๊ณ„ E k^2์™€ ์œ ์‚ฌํ•˜์—ฌ, ์ŠคํŠธ๋ง์˜ ์šด๋™๋Ÿ‰๊ณผ ์ž…์ž ๋ฐ€๋„ ์‚ฌ์ด์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด๋Š” ์…€๋ฃฐ

Mathematics Condensed Matter Model HEP-LAT Nonlinear Sciences
Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle   from Fermi gamma-ray Observations of the Third Galactic Quadrant

Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi gamma-ray Observations of the Third Galactic Quadrant

๋ณธ ์—ฐ๊ตฌ๋Š” Fermi LAT์˜ ๋›ฐ์–ด๋‚œ ๊ฐ๋„์™€ ๊ฐ๋„ ํ•ด์ƒ๋„๋ฅผ ํ™œ์šฉํ•ด ์ œ3 ์€ํ•˜ ์‚ฌ๋ถ„๋ฉด์˜ ํ™•์‚ฐ ฮณโ€‘์„ ์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๋ถ„๋ฆฌยท๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ, ์€ํ•˜ ์™ธ๊ณฝ(ํƒœ์–‘๊ณ„์—์„œ 8 kpc ์ด์ƒ)์—์„œ์˜ ์šฐ์ฃผ์„ (CR) ๋ฐ€๋„์™€ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ง์ ‘ ์ถ”์ •ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด COSโ€‘BยทEGRET ์‹œ์ ˆ์—๋Š” ๊ด€์ธก ์žฅ๋น„์˜ ์ œํ•œ์œผ๋กœ ์€ํ•˜ ์ค‘์‹ฌ์—์„œ ๋ฉ€๋ฆฌ ๋–จ์–ด์ง„ ์˜์—ญ์˜ CR ๋ถ„ํฌ๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋ฒˆ ๋ถ„์„์—์„œ๋Š” ion{H}{I}์™€ CO(๋ถ„์ž์ˆ˜์†Œ) ํŠธ๋ ˆ์ด์„œ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์ปฌ๋Ÿผ ๋งต์„ ์ตœ์‹  Leiden/Argentine/Bonn ์„œ๋ฒ ์ด์™€ CO ์ „์ด์„  ๋ฐ

Astrophysics
No Image

Context-Aware Initialization for Reducing Generative Path Length in Diffusion Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ์€ ๋งˆ์Šคํฌ๋œ ํ† ํฐ์„ ์ ์ง„์ ์œผ๋กœ ๋ณต์›ํ•˜๋ฉด์„œ ์™„์ „ ๋ณ‘๋ ฌ ๋””์ฝ”๋”ฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์ง€๋งŒ, ์ˆ˜๋ฐฑ ๋ฒˆ์— ๋‹ฌํ•˜๋Š” ๋””๋…ธ์ด์ง• ์Šคํ…์ด ํ•„์š”ํ•ด ์ถ”๋ก  ๋น„์šฉ์ด ํฌ๊ฒŒ ๋Š˜์–ด๋‚œ๋‹ค. ๊ธฐ์กด ๊ฐ€์†ํ™” ์—ฐ๊ตฌ๋Š” ์ƒ˜ํ”Œ๋ง ์Šค์ผ€์ค„ (e.g., DDIM, DPMSolver)์ด๋‚˜ ์ˆ˜์น˜ ํ•ด์„ ๊ฐœ์„  ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์ดˆ๊ธฐ ์ƒํƒœ ์ž์ฒด๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ์ ‘๊ทผ์€ ์ƒ๋Œ€์ ์œผ๋กœ ์ ์—ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€œ ์ปจํ…์ŠคํŠธ ์ธ์‹ ์ดˆ๊ธฐํ™” โ€๋Š” ๋ชฉํ‘œ ํ…์ŠคํŠธ์™€ ๋” ๊ฐ€๊นŒ์šด ์ดˆ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์ „์ฒด ๋””๋…ธ์ด์ง• ๊ฒฝ๋กœ๋ฅผ ๋‹จ์ถ•ํ•œ๋‹ค๋Š” ์ง๊ด€์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ์ด ์•„์ด๋””์–ด๋Š” ํ•™์Šตโ€‘ํ”„๋ฆฌ ๋ผ๋Š” ์ 

Model
No Image

Continual Error Correction on Low-Resource Devices

: ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์€ ์„œ๋ฒ„ ์ธก์—์„œ ๊ธฐ์ดˆ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ทธ ์ง€์‹์„ ๊ธฐ๊ธฐ ์ธก์œผ๋กœ ์ „์ดํ•˜๋Š” ์ง€์‹ ์ฆ๋ฅ˜ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ž์› ์ œ์•ฝ์ด ์žˆ๋Š” ๊ธฐ๊ธฐ์—์„œ๋„ ํšจ์œจ์ ์ธ ์˜ค๋ฅ˜ ์ˆ˜์ •์ด ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๋Š” ๊ธฐ์กด ๋ชจ๋ธ ์žฌํ›ˆ๋ จ์— ๋น„ํ•ด ํ›จ์”ฌ ์ ์€ ๋ฆฌ์†Œ์Šค๋ฅผ ์š”๊ตฌํ•˜๋ฉฐ, ๋น ๋ฅธ ์ˆ˜์ •๊ณผ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์žฅํ•œ๋‹ค. ๋˜ํ•œ, ์„œ๋ฒ„ ์ธก ํŒŒ์ดํ”„๋ผ์ธ์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ดˆ ๋ชจ๋ธ์„ ์ง€์›ํ•˜์—ฌ ์œ ์—ฐ์„ฑ์„ ๋†’์ด๊ณ , ๊ธฐ๊ธฐ ์ธก ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

No Image

Continual Knowledge Consolidation LORA for Domain Incremental Learning

๋„๋ฉ”์ธ ์ฆ๋ถ„ ํ•™์Šต์€ ์ƒˆ๋กœ์šด ๋„๋ฉ”์ธ์˜ ์ง€์†์ ์ธ ๋„์ฐฉ๊ณผ ์žฌํ•ด ๋ฐฉ์ง€๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ž‘์—…๋“ค์€ ๊ณต์œ  ์ง€์‹์„ ๊ฐ„๊ณผํ•˜๊ณ , ์ž‘์—…๋ณ„ LoRAs์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ถ”๋ก  ์ค‘ ์ •ํ™•๋„์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด ๋ถ„๋ฅ˜๊ธฐ๋“ค์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ๋ฌธ์ œ๋„ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” CONEC LoRA๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ž‘์—… ๊ณต์œ  LoRA์™€ ์ž‘์—…๋ณ„ LoRA ๊ฐ„์˜ ํ†ตํ•ฉ์„ ํ†ตํ•ด ๊ณตํ†ต ์ง€์‹์„ ์ถ”์ถœํ•˜๊ณ  ๋„๋ฉ”์ธ ํŠน์ • ์ง€์‹์„ ํฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ํ™•๋ฅ ์  ๋ถ„๋ฅ˜์ž์˜ ๊ฐœ๋…์„

Learning
No Image

Contrastive Decoding Mitigates Score Range Bias in LLM-as-a-Judge

๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ฐ ๊ธฐํƒ€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋‹ด๋‹นํ•˜๋ฉฐ, ๊ทธ์ค‘์—์„œ๋„ LLM as a Judge๋Š” ์ง์ ‘ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ํ‰๊ฐ€ ๋ฐฉ์‹์€ ์ ์ˆ˜ ๋ฒ”์œ„ ํŽธํ–ฅ์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” LLM์ด ๋ฏธ๋ฆฌ ์ •์˜๋œ ์ ์ˆ˜ ๋ฒ”์œ„์— ๋”ฐ๋ผ ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๋ฉฐ, ์ตœ์ ์˜ ์ ์ˆ˜ ๋ฒ”์œ„๋ฅผ ์ฐพ๋Š” ๊ฒƒ์„ ๋ฐฉํ•ดํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ๋Œ€์กฐ์  ๋””์ฝ”๋”ฉ(Contrastive Decoding)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” LLM์˜ ์ถœ๋ ฅ์„ ๋ถ„์„ํ•˜์—ฌ ํŽธํ–ฅ๋œ ์ ์ˆ˜ ๋ฒ”์œ„๋กœ๋ถ€ํ„ฐ ๋ฒ—์–ด๋‚ 

No Image

Copenhagen Survey on Black Holes and Fundamental Physics

์ด ์„ค๋ฌธ์กฐ์‚ฌ๋Š” ๋ฌผ๋ฆฌํ•™๊ณ„์˜ ํ˜„์žฌ ์‚ฌ๊ณ ๋ฐฉ์‹์„ ์ดํ•ดํ•˜๊ณ , ํŠนํžˆ ๋ธ”๋ž™ํ™€๊ณผ ์•”ํ‘ ์—๋„ˆ์ง€์™€ ๊ฐ™์€ ๋‚œํ•ดํ•œ ์ฃผ์ œ์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌํ•™์ž๋“ค์˜ ๊ฒฌํ•ด๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ๊ท€์ค‘ํ•œ ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ฒฐ๊ณผ๋Š” ๊ณผํ•™์  ํ•ฉ์˜์— ๋Œ€ํ•œ ์ผ๋ฐ˜์ ์ธ ์ธ์‹์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜๋ฉฐ, ๊ณผํ•™์ž๋“ค ์‚ฌ์ด์—์„œ๋„ ๋‹ค์–‘ํ•œ ๊ด€์ ๊ณผ ํ•ด์„์ด ์กด์žฌํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Š” ๊ณผํ•™ ์ง€์‹์˜ ๋ฐœ์ „ ๊ณผ์ •์— ๋Œ€ํ•œ ๋” ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜๊ณ , ๋ฌผ๋ฆฌํ•™์˜ ์—ญ์‚ฌ์™€ ์‚ฌํšŒํ•™ ์—ฐ๊ตฌ์— ์ค‘์š”ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค.

Core Collapse Supernovae using CHIMERA: Gravitational Radiation from   Non-Rotating Progenitors

Core Collapse Supernovae using CHIMERA: Gravitational Radiation from Non-Rotating Progenitors

๋ณธ ๋…ผ๋ฌธ์€ CHIMERA ์ฝ”๋“œ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ณ ํ•ด์ƒ๋„ ๋‹ค๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•ด, ๋น„ํšŒ์ „ ์ „๊ตฌ์ฒด๊ฐ€ ํ•ต ๋ถ•๊ดด ํ›„ ๋ฐฉ์ถœํ•˜๋Š” ์ค‘๋ ฅํŒŒ์˜ ์‹œ๊ฐ„ยท์ฃผํŒŒ์ˆ˜ ํŠน์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋„ค ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„๋œ ํŒŒํ˜• ๊ตฌ์กฐ๋Š” CCSN ๋‚ด๋ถ€์—์„œ ์ผ์–ด๋‚˜๋Š” ๋ฌผ๋ฆฌ์  ๊ณผ์ •๋“ค์„ ์ง์ ‘์ ์œผ๋กœ โ€˜์ฒญ๊ฐํ™”โ€™ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฆ‰์‹œ ๋ฐœ์ƒ ๋‹จ๊ณ„๋Š” PNS ๋‚ด๋ถ€์˜ ๊ณ ์ฃผํŒŒ ์ง„๋™๊ณผ ์ถฉ๊ฒฉํŒŒ ์ „ํŒŒ์— ์˜ํ•œ ์ €์ฃผํŒŒ ๋ณ€์กฐ๊ฐ€ ๋™์‹œ์— ๋‚˜ํƒ€๋‚˜๋Š” ๋ณตํ•ฉ ์‹ ํ˜ธ๋กœ, ์ด์ „ ์—ฐ๊ตฌ๊ฐ€ PNS ๋Œ€๋ฅ˜๋งŒ์„ ์›์ธ์œผ๋กœ ์ œ์‹œํ–ˆ๋˜ ํ•ด์„์„ ํ™•์žฅํ•œ๋‹ค. ์ด๋Š” ํ•ต ๋ฐ˜๋™ ์งํ›„ ๋ฌผ์งˆ์ด ๊ธ‰๊ฒฉํžˆ ์žฌ๋ฐฐ์—ด

Astrophysics
Corporate Governance, Noise Trading and Liquidity of Stocks

Corporate Governance, Noise Trading and Liquidity of Stocks

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์—… ์ง€๋ฐฐ๊ตฌ์กฐ์™€ ์ฃผ์‹ ์œ ๋™์„ฑ ์‚ฌ์ด์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋‹จ์ˆœ ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ๋„˜์–ด, โ€˜์กฐ๊ฑด๋ถ€ ๋ฉ”์ปค๋‹ˆ์ฆ˜โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์‹œ๊ฐ์œผ๋กœ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ์ €์ž๋Š” Shleifer์™€ Vishny(1997)์˜ ์ง€๋ฐฐ๊ตฌ์กฐ ์ •์˜๋ฅผ ํ† ๋Œ€๋กœ, ๊ธฐ์—… ๋‚ด๋ถ€(๊ฒฝ์˜์ง„)์™€ ์™ธ๋ถ€(๋Œ€์ฃผ์ฃผ) ํ–‰์œ„์ž๋ฅผ ํ•ต์‹ฌ ์ฃผ์ฒด๋กœ ์„ค์ •ํ•œ๋‹ค. ์ด๋“ค ํ–‰์œ„์ž๋Š” ๊ธฐ์—…์˜ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์—์„œ ์ •๋ณด ๋น„๋Œ€์นญ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ํˆฌ์ž์ž ๋ณดํ˜ธ๋ฅผ ๊ฐ•ํ™”ํ•จ์œผ๋กœ์จ ์‹œ์žฅ ์ „๋ฐ˜์˜ ๊ฑฐ๋ž˜ ๋น„์šฉ์„ ๋‚ฎ์ถ˜๋‹ค. ํŠนํžˆ, ๋…ผ๋ฌธ์€ โ€˜์†Œ์Œ ํŠธ๋ ˆ์ด๋”โ€™๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ๊ณต๋ฐฑ์„ ๋ฉ”์šด๋‹ค. ์†Œ์Œ ํŠธ๋ ˆ์ด๋”๋Š”

Quantitative Finance
Corruption-free scheme of entering into contract: mathematical model

Corruption-free scheme of entering into contract: mathematical model

์ด ์—ฐ๊ตฌ๋Š” ์ „ํ†ต์ ์ธ ์ฃผ์ฒดโ€‘๋Œ€๋ฆฌ์ธ ๋ชจํ˜•์— ๋ถ€ํŒจ๋ผ๋Š” ๋น„์ •ํ˜•์  ์š”์†Œ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ, ๊ณ„์•ฝ ์ด๋ก ๊ณผ ๋ถ€ํŒจ ์—ฐ๊ตฌ ์‚ฌ์ด์˜ ํ•™์ œ์  ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ๋งŒ๋“  ์ ์ด ๊ฐ€์žฅ ํฐ ํ˜์‹ ์ด๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ์—์„œ๋Š” ์ฃผ๋กœ ๋น„๋Œ€์นญ ์ •๋ณด์™€ ์ธ์„ผํ‹ฐ๋ธŒ ์„ค๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์€ ์ค‘๊ฐœ์ธ(F)์˜ ๋‡Œ๋ฌผ(z i) ์ œ๊ณต ํ–‰์œ„๊นŒ์ง€ ํฌํ•จ์‹œ์ผœ โ€˜์ •๋ณด ์€ํโ€™์™€ โ€˜์ •๋ณด ์™œ๊ณกโ€™์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๋ถ€ํŒจ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•œ๋‹ค. 1. ๋ชจ๋ธ ๊ตฌ์กฐ์™€ ๊ฐ€์ • ์ฃผ์ฒดโ€‘๋Œ€๋ฆฌ์ธ(0)์€ ์ƒ์‚ฐ์ž i์—๊ฒŒ ์ผ์ • ๊ธˆ์•ก(s i)์„ ์ง€๊ธ‰ํ•˜๊ณ , ์ƒ์‚ฐ์ž๋Š” ์ž๊ธˆ ๊ทœ๋ชจ์— ๋”ฐ๋ผ ์ƒ์‚ฐ ์ˆ˜์ค€ ๋ณ€ํ™” ฮฒ๋ฅผ ๊ฒฝํ—˜ํ•œ๋‹ค. ฮฒ>0์ด๋ฉด ์ƒ์‚ฐ์ž

Model Quantitative Finance
Cosmic ray event generator Sibyll 2.1

Cosmic ray event generator Sibyll 2.1

: Sibyll 2.1์€ ์šฐ์ฃผ์„  ์ƒํ˜ธ์ž‘์šฉ ์‚ฌ๊ฑด ๋ฐœ์ƒ๊ธฐ์˜ ์ตœ์‹  ๋ฒ„์ „์œผ๋กœ, ๋Œ€๊ธฐ๊ถŒ ๋‚ด ๊ณ ์—๋„ˆ์ง€ ์ž…์ž ์—ฐ๊ตฌ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” Sibyll์˜ ๊ตฌ์กฐ์  ๊ฐœ์„  ์‚ฌํ•ญ๊ณผ ๊ทธ ํšจ๊ณผ๋ฅผ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, ์—ฌ๋Ÿฌ ๋ถ€๋“œ๋Ÿฌ์šด ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ ๊ฒƒ์ด ์ฃผ๋ชฉํ•  ๋งŒํ•œ ๋ณ€ํ™”์ž…๋‹ˆ๋‹ค. ๊ณผ๊ฑฐ ๋ฒ„์ „์—์„œ๋Š” ์—๋„ˆ์ง€ ๋…๋ฆฝ์ ์ธ ๋ถ€๋“œ๋Ÿฌ์šด ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ–ˆ์ง€๋งŒ, 2.1 ๋ฒ„์ „์—์„œ๋Š” ๋ ˆ๊ฒŒ ์ด๋ก ์— ๊ธฐ๋ฐ˜ํ•œ ์•„์ด์ฝ”๋‚  ๋ชจ๋ธ์„ ๋„์ž…ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ถ€๋“œ๋Ÿฌ์šด ์ƒํ˜ธ์ž‘์šฉ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ณ ์—๋„ˆ์ง€ ์˜์—ญ์—์„œ ๋”์šฑ ์ •ํ™•ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ƒˆ๋กœ์šด

Astrophysics HEP-PH HEP-EX
Cosmic ray propagation time scales: lessons from radioactive nuclei and   positron data

Cosmic ray propagation time scales: lessons from radioactive nuclei and positron data

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ โ€˜๋ฆฌํ‚ค ๋ฐ•์Šคโ€™๋‚˜ ํ™•์‚ฐ ๋ชจ๋ธ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ , ๊ด€์ธก๋œ ๋ฐฉ์‚ฌ์„ฑ ํ•ต ๋น„์œจ๊ณผ ์–‘์ „์ž ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ง์ ‘ ๋น„๊ตํ•จ์œผ๋กœ์จ ์€ํ•˜ ๋‚ด ์šฐ์ฃผ์„ ์˜ ํ‰๊ท  ์ฒด๋ฅ˜ ์‹œ๊ฐ„์„ ๋ชจ๋ธโ€‘๋…๋ฆฝ์ ์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ €์ž๋“ค์€ ๊ณ ์—๋„ˆ์ง€ ์˜์—ญ(๊ฐ•์„ฑ โ‰ณ 10 GV)์—์„œ ์—๋„ˆ์ง€ ์†์‹คยทํš๋“์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ „์ œ ํ•˜์—, CR grammage (X {rm esc})์™€ ์ƒ์‚ฐ๋Ÿ‰ (Q i) ์‚ฌ์ด์˜ ๊ฒฝํ—˜์  ๊ด€๊ณ„ (J i X {rm esc} Q i / m {rm ISM}) ๋ฅผ ํ™œ์šฉํ•œ๋‹ค. ์ด ์‹์€ ๋ชจ๋“  ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ „ํŒŒ ๋ชจ๋ธ์ด ๋งŒ์กฑํ•ด์•ผ ํ•˜๋Š”

Data Astrophysics HEP-PH
No Image

Counting Abstraction for the Verification of Structured Parameterized Networks

๋งค๊ฐœ๋ณ€์ˆ˜ํ™”๋œ ๋„คํŠธ์›Œํฌ์˜ ๊ฒ€์ฆ์€ ๋ณต์žกํ•˜๊ณ  ๋„์ „์ ์ธ ๊ณผ์ œ์ด๋‹ค. ํŠนํžˆ, ๊ฐ ํ”„๋กœ์„ธ์Šค์˜ ๋กœ์ปฌ ์ƒํƒœ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋ณต์ œ๋ณธ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฌธ์ œ๋Š” ๊ฒฐ์ • ๋ถˆ๊ฐ€๋Šฅํ•œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฒ€์ฆ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ๋ฒ•์€ ์นด์šดํŒ… ์ถ”์ƒํ™”๋กœ์„œ, ๊ทธ๋ž˜ํ”„ ๋ฌธ๋ฒ•์œผ๋กœ ๊ธฐ์ˆ ๋œ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”๋œ ์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ์›๋ณธ ์‹œ์Šคํ…œ์˜ ํ–‰๋™์„ ๊ณผ๋Œ€ ์ถ”์ •ํ•˜๋Š” ์œ ํ•œํ•œ Petri ๋„ท์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋Š” ๋ณต์žกํ•œ ๋„คํŠธ์›Œํฌ๋ฅผ ๋” ๋‹จ์ˆœํ•˜๊ณ  ๋‹ค๋ฃจ๊ธฐ ์‰ฌ์šด ๋ชจ๋ธ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ฒ€์ฆ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ๋˜ํ•œ ํ”„๋กœํ† ํƒ€์ž… ๋„๊ตฌ๋ฅผ ํ†ตํ•ด ์ด ๊ธฐ๋ฒ•์˜ ํšจ์œจ์„ฑ๊ณผ

Network
No Image

CPU-Limits kill Performance: Time to rethink Resource Control

: ์ด ๋…ผ๋ฌธ์€ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์„œ ์ž์› ๊ด€๋ฆฌ์˜ ํ•ต์‹ฌ ์š”์†Œ์ธ CPU ์ œํ•œ์— ๋Œ€ํ•œ ์žฌ๊ณ ์™€ ๋น„ํŒ์  ๋ถ„์„์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์‚ฐ์—…๊ณ„์˜ ๋ฒ ์ŠคํŠธ ํ”„๋ž™ํ‹ฐ์Šค๋Š” CPU ์ œํ•œ์˜ ํ•„์š”์„ฑ๊ณผ ์œ ์šฉ์„ฑ์„ ๊ฐ•์กฐํ•ด ์™”์ง€๋งŒ, ์‹ค๋ฌด ๊ฒฝํ—˜๊ณผ ์ €ํฌ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๊ทธ ๋ฐ˜๋Œ€์ž„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. CPU ์ œํ•œ์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์„ฑ๋Šฅ์„ ์ €ํ•˜ํ•˜๊ณ  ๋น„์šฉ์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ, ํŠนํžˆ ์ง€์—ฐ ๋ฏผ๊ฐ๋„๊ฐ€ ๋†’์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ๊ทธ ์˜ํ–ฅ์ด ๋‘๋“œ๋Ÿฌ์ง‘๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ์ˆœ์€ CPU ์ œํ•œ์— ๋Œ€ํ•œ ์ž˜๋ชป๋œ ๋ฏฟ์Œ๊ณผ ๊ฐ€์ •์— ๊ธฐ์ธํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” CPU ์ œํ•œ์˜ ๋ฌด๋ถ„๋ณ„ํ•œ ์‚ฌ์šฉ์„ ์žฌ๊ณ ํ•˜๊ณ , ์ž๋™ ํ™•์žฅ ๋ฐ ์ฒญ๊ตฌ ํŒจ

Critical Test of Simulations of Charge-Exchange-Induced X-Ray Emission   in the Solar System

Critical Test of Simulations of Charge-Exchange-Induced X-Ray Emission in the Solar System

: ์ด ๋…ผ๋ฌธ์€ ํƒœ์–‘๊ณ„ ๋‚ด ์ถฉ์ „ ๊ตํ™˜(CX) ๋ฐ˜์‘์œผ๋กœ ์ธํ•œ X ์„  ๋ฐฉ์ถœ์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ•ฉ๋‹ˆ๋‹ค. CX ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํ˜œ์„ฑ, ํ–‰์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํƒœ์–‘๊ถŒ์—์„œ ๋ฐœ์ƒํ•˜๋Š” X ์„  ๋ฐฉ์ถœ์˜ ์ฃผ์š” ์›์ธ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๊ณ ์—๋„ˆ์ง€ ํƒœ์–‘ํ’ ์ด์˜จ๊ณผ ํ˜œ์„ฑ ์ค‘์„ฑ ์ž…์ž์˜ ์ƒํ˜ธ์ž‘์šฉ์€ ๊ด€์ธก๋œ ๋ฐฉ์ถœ์˜ ์ฃผ๋œ ์›์ธ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์ดํ•ดํ•˜๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹คํ—˜์  ์ฆ๊ฑฐ์™€ ์ด๋ก ์  ๋ถ„์„์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Ne^10+ ์ด์˜จ๊ณผ He, Ne, Ar ์›์ž ๊ฐ„์˜ ์ถฉ๋Œ์„ ์—ฐ๊ตฌํ•˜์—ฌ CX ๋ฐ˜์‘์˜ ์ƒํƒœ ์„ ํƒ์  X ์„  ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด

Physics System Astrophysics
No Image

Custom Algorithm-based Fault Tolerance for Attention Layers in Transformers

ํ”Œ๋ž˜์‹œ ABFT๋Š” ๊ธฐ์กด์˜ ABFT ๊ธฐ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ, ์ฃผ์˜์ธต์˜ ์ „์ฒด ๊ณผ์ •์„ ๋‹จ์ผ ์ฒดํฌ์„ฌ ๊ณ„์‚ฐ์œผ๋กœ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์†Œํ”„ํŠธ๋งฅ์Šค ์—ฐ์‚ฐ์„ ํฌํ•จํ•œ ๋ณต์žกํ•œ ๊ณผ์ •์„ ํ•˜๋‚˜์˜ ๊ฒ€์‚ฌ๋กœ ๊ฐ„์†Œํ™”ํ•˜์—ฌ ํšจ์œจ์„ฑ์„ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ค‘๋ณต๋œ ๊ฒ€์‚ฌ๋ฅผ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ด๊ณ , ํ•˜๋“œ์›จ์–ด์™€ ์—๋„ˆ์ง€ ์ธก๋ฉด์—์„œ ๋น„์šฉ ํšจ์œจ์ ์ธ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Cyber-Physical Testbed for Power System Wide-Area Measurement-Based   Control Using Open-Source Software

Cyber-Physical Testbed for Power System Wide-Area Measurement-Based Control Using Open-Source Software

๋ณธ ๋…ผ๋ฌธ์€ ์ „๋ ฅ๊ณ„ํ†ต์„ ์‚ฌ์ด๋ฒ„โ€‘๋ฌผ๋ฆฌ ์‹œ์Šคํ…œ(CPS)์œผ๋กœ ์ธ์‹ํ•˜๊ณ , ๋ฌผ๋ฆฌโ€‘์‚ฌ์ด๋ฒ„ ์–‘์ธก์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€๊ทœ๋ชจ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ(Largeโ€‘Scale Testbed, LTB) ๋ฅผ ์ตœ์ดˆ๋กœ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. 1. ํ†ตํ•ฉ ์•„ํ‚คํ…์ฒ˜์˜ ํ˜์‹ ์„ฑ ๋ฌผ๋ฆฌ๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋Š” ์ „ํ†ต์ ์ธ DAE ๊ธฐ๋ฐ˜ ์ „๋ ฅ๋™์—ญํ•™ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋ฉด์„œ๋„, PMU์™€ ๊ฐ™์€ ๊ณ ์† ๋™๊ธฐ ์œ„์ƒ ์ธก์ • ์žฅ์น˜์˜ ๋ฐ์ดํ„ฐ ํ๋ฆ„์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ›์•„๋“ค์ธ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ์ œ์–ด๊ธฐ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์ธก์ • ์ง€์—ฐ์ด๋‚˜ ๋ฐ์ดํ„ฐ ์†์‹ค์„ ๋ฌด์‹œํ–ˆ๋˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ์‚ฌ์ด๋ฒ„๊ณ„๋Š” SDN๊ณผ NSโ€‘3/Min

Software Engineering Computer Science Systems and Control System
Cybersecurity Information Sharing Governance Structures: An Ecosystem of   Diversity, Trust, and Tradeoffs

Cybersecurity Information Sharing Governance Structures: An Ecosystem of Diversity, Trust, and Tradeoffs

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ด๋ฒ„๋ณด์•ˆ ์ •๋ณด ๊ณต์œ ๋ผ๋Š” ๋ณตํ•ฉ ํ˜„์ƒ์„ ๋‹จ์ˆœํžˆ โ€œ๋” ๋งŽ์€ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•˜๋‹คโ€๋Š” ์ฃผ์žฅ์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ , ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ œ๋„์ ยท์กฐ์ง์  ๋‹ค์–‘์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํŒŒ์•…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ 2009 โˆผ 2015๋…„ ์‚ฌ์ด ์›Œ์‹ฑํ„ด์—์„œ ๋ฒŒ์–ด์ง„ ์ •์ฑ… ๋…ผ์Ÿ์„ ์—ฐ๋Œ€๊ธฐ์ ์œผ๋กœ ์ •๋ฆฌํ•˜๋ฉด์„œ, โ€œ์ ๋“ค์„ ์—ฐ๊ฒฐํ•œ๋‹ค(connecting the dots)โ€๋ผ๋Š” 9ยท11 ์ดํ›„์˜ ๊ตฌํ˜ธ๊ฐ€ ์ •๋ณด ๊ณต์œ  ํ™•๋Œ€์˜ ์‚ฌ์ƒ์  ๋ฐฐ๊ฒฝ์ด ๋˜์—ˆ์Œ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Š” ์‚ฌ์ด๋ฒ„ ์œ„ํ˜‘ ๋Œ€์‘์ด ๋‹จ์ผ ๊ธฐ๊ด€์ด ์•„๋‹Œ ๋‹ค์ค‘ ์ฃผ์ฒด ๊ฐ„ ํ˜‘๋ ฅ์œผ๋กœ ์ „ํ™˜๋˜๋Š” ๊ณผ์ •์„ ๋ณด์—ฌ์ค€๋‹ค.

Computer Science System Computers and Society Cryptography and Security
No Image

DAMBench: A Multi-Modal Benchmark for Deep Learning-based Atmospheric Data Assimilation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐ์ดํ„ฐ ๋™ํ™”์˜ ์ค‘์š”์„ฑ : ๋Œ€๊ธฐ ์˜ˆ๋ณดยท๊ธฐํ›„ ๋ชจ๋ธ๋ง์—์„œ ๊ด€์ธก๊ณผ ๋ชจ๋ธ์˜ ๊ฒฐํ•ฉ์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ์ขŒ์šฐํ•œ๋‹ค. ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ๋ฌผ๋ฆฌโ€‘์ˆ˜ํ•™์  ๋ชจ๋ธ์— ํฌ๊ฒŒ ์˜์กดํ•˜์ง€๋งŒ, ๊ด€์ธก๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ณ  ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๊ฐ€ ๋‹ค์–‘ํ•ด์ง€๋ฉด์„œ ํ•œ๊ณ„๊ฐ€ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ DA์˜ ๋ถ€์ƒ : ์ž๋™ ํŠน์ง• ์ถ”์ถœ, ๋น„์„ ํ˜• ๊ด€๊ณ„ ํ•™์Šต, GPU ๊ฐ€์† ๋“ฑ์œผ๋กœ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ๊ฐ•์ ์„ ๋ณด์ธ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํ•ฉ์„ฑ ๊ด€์ธก (์˜ˆ: ๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ ์ถ”๊ฐ€)๋งŒ์„ ์‚ฌ์šฉํ•ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ๊ณผ ๊ดด๋ฆฌ๋„๊ฐ€ ํฌ๋‹ค. 2. DAMBench์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ | D

Data Learning
No Image

DE3S: Dual-Enhanced Soft-Sparse-Shape Learning for Medical Early Time-Series Classification

: ์กฐ๊ธฐ ์‹œ๊ฐ„ ์‹œ๋ฆฌ์ฆˆ ๋ถ„๋ฅ˜๋Š” ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•˜๋ฉฐ, ํŠนํžˆ ํŒจํ˜ˆ์ฆ๊ณผ ๊ฐ™์€ ์‘๊ธ‰ ์ƒํ™ฉ์—์„œ๋Š” ๋”์šฑ ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ์ •ํ™•๋„์™€ ์กฐ๊ธฐ ์ง„๋‹จ ์‚ฌ์ด์˜ ์ƒ์ถฉ๋˜๋Š” ๋ชฉํ‘œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ด๋Ÿฌํ•œ ๊ณผ์ œ์— ์ง๋ฉดํ•˜์—ฌ ํƒ€ํ˜‘์„ ํ•ด์•ผ ํ–ˆ๋Š”๋ฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์•ฝํ•˜๊ณ  ์ดˆ๊ธฐ ๋‹จ๊ณ„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ง€์—ญ์  ๋ฐ ์ฃผ์ฒด๋ณ„ ๋ณ€๋™์„ฑ๊ณผ ๊ธ€๋กœ๋ฒŒ ์‹œ๊ฐ„ ํŒจํ„ด์„ ๋™์‹œ์— ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. DE3S๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋œ ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ์ด์ค‘ ๊ฐ•ํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ดˆ๊ธฐ ๋‹จ๊ณ„์˜ ์•ฝํ•œ

Learning
No Image

Debiasing Reward Models by Representation Learning with Guarantees

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŽธํ–ฅ๋œ ๋ณด์ƒ ๋ชจ๋ธ์„ ์ œ๊ฑฐํ•˜๊ณ  ๋ณด์žฅํ•˜๋Š” ํ‘œํ˜„ ํ•™์Šต์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๊ณผ์ •์„ ๊ณต์‹ํ™”ํ•˜์—ฌ, ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์ ์ ˆํ•œ ์ž ์žฌ ๋ณ€์ˆ˜์™€ ๋น„๋ถ€์ ์ ˆํ•œ ์ž ์žฌ ๋ณ€์ˆ˜๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋œ๋‹ค๋Š” ๊ฐ€์ •์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ์ด๋ก ์ ์œผ๋กœ ๋น„๋ถ€์ ์ ˆํ•œ ์š”์†Œ๋ฅผ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด๋Š” ๋ถ€์ ์ ˆํ•œ ์ƒ๊ด€ ๊ด€๊ณ„์˜ ์˜ํ–ฅ์„ ์ค„์ด๊ณ , ์˜๋„๋œ ์„ ํ˜ธ๋„๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ๊ธฐ๋ณธ์ ์ธ ์š”์†Œ๋ฅผ ๋ณด์กดํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฐ˜์ด ๋ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ์ด๋Ÿฌํ•œ ์ž ์žฌ ๋ณ€์ˆ˜๋ฅผ ๋ณต๊ตฌํ•˜๊ณ  ๋ณด์ƒ ๋ชจ๋ธ ํ›ˆ๋ จ์— ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ ๋ณ€๋ถ„

Learning Model
No Image

Dedelayed: Deleting remote inference delay via on-device correction

: Dedelayed ์‹œ์Šคํ…œ์€ ๋กœ์ปฌ ๋ฐ ์›๊ฒฉ ๋ชจ๋ธ ๊ฐ„์˜ ํšจ์œจ์ ์ธ ํ˜‘์—…์„ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ๋น„๋””์˜ค ์ดํ•ด๋ฅผ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค. ์›๊ฒฉ ๋ชจ๋ธ์€ ๋ฏธ๋ž˜์˜ ํ”„๋ ˆ์ž„์— ๋Œ€ํ•œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ง€์—ฐ๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ , ๋กœ์ปฌ ๋ชจ๋ธ์€ ํ˜„์žฌ ํ”„๋ ˆ์ž„์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ๋งฅ๋ฝ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ปดํ“จํŒ… ๋ฐ ์ „๋ ฅ ๋น„์šฉ์„ ์ค„์ด๋ฉด์„œ๋„ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๋˜ํ•œ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ†ต์‹  ์ฑ„๋„์˜ ์ œํ•œ๋œ ๋Œ€์—ญํญ ๋‚ด์—์„œ ์ตœ์ ์˜ ๋น„ํŠธ ์ „์†ก๋ฅ ์„ ๋‹ฌ์„ฑํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. Dedelayed๋Š” ์‹ค์‹œ๊ฐ„ ๋น„๋””์˜ค ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜๊ณผ ๊ฐ™์€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ํŠนํžˆ ์œ ์šฉํ•˜๋ฉฐ, ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ

Delay-Based Back-Pressure Scheduling in Multihop Wireless Networks

Delay-Based Back-Pressure Scheduling in Multihop Wireless Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค์ค‘ ํ™‰ ๋ฌด์„  ๋„คํŠธ์›Œํฌ์—์„œ ์ฒ˜๋ฆฌ๋Ÿ‰ ์ตœ์ ์„ฑ ๊ณผ ์ง€์—ฐ ๊ฐ์†Œ ๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ƒ์ถฉ๋˜๋Š” ๋ชฉํ‘œ๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด์˜ ํโ€‘๊ธธ์ด ๊ธฐ๋ฐ˜ ๋ฐฑํ”„๋ ˆ์…”(Qโ€‘BP)๋Š” ๋„คํŠธ์›Œํฌ ์•ˆ์ •์„ฑ์„ ๋ณด์žฅํ•˜๊ณ , ๋ชจ๋“  ์‹คํ˜„ ๊ฐ€๋Šฅํ•œ ํŠธ๋ž˜ํ”ฝ์— ๋Œ€ํ•ด ์ตœ๋Œ€ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ๋‹ฌ์„ฑํ•œ๋‹ค๋Š” ๊ฐ•๋ ฅํ•œ ์ด๋ก ์  ๊ทผ๊ฑฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Qโ€‘BP๋Š” โ€œ๋งˆ์ง€๋ง‰ ํŒจํ‚ท ๋ฌธ์ œโ€์— ์˜ํ•ด ์‹ค์ œ ์„œ๋น„์Šค ํ’ˆ์งˆ(QoS)์ด ํฌ๊ฒŒ ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰ ํŒจํ‚ท์ด ๋‚จ์•„ ์žˆ๋Š” ํ๋ฆ„์€ ํ ๊ธธ์ด๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๊ฒŒ ์œ ์ง€๋˜๋ฏ€๋กœ, ๋ฐฑํ”„๋ ˆ์…” ๊ฐ€์ค‘์น˜๊ฐ€ ์ž‘์•„์ ธ ์Šค์ผ€์ค„๋ง ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์•„์ง„๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ•ด๋‹น ๋งํฌ

Computer Science Network Networking Performance
Dendroidal Segal spaces and infinity-operads

Dendroidal Segal spaces and infinity-operads

: ๋ณธ๋ฌธ ๋ฐœ์ทŒ๋ฅผ ํ†ตํ•ด ์‚ดํŽด๋ณด๋ฉด, ์ด ๋…ผ๋ฌธ์€ ํ˜ธ๋ชจํ† ํ”ผ ์ด๋ก ์˜ ๋‹ค์–‘ํ•œ ๊ฐœ๋…์„ ํ†ตํ•ฉํ•˜๊ณ  ํ™•์žฅํ•˜๋ ค๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค. ๋ฐ์ด๋“œ๋กœ์ด๋“œ ์ง‘ํ•ฉ ๋ฒ”์ฃผ๋Š” ๊ณ ์ฐจ ๋ฒ”์ฃผ์˜ ์ •์˜๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ๋„์ž…๋˜์—ˆ์œผ๋ฉฐ, ๋ชจ๋…ธ์ด๋“œ ํ€ด๋ Œ ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฌดํ•œ๋Œ€ ์˜คํผ๋“œ๋ฅผ ์œ„ํ•œ ์กฐํ•ฉ์  ๋ชจ๋ธ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์„ธ๊ฐˆ ๊ณต๊ฐ„๊ณผ ์„ธ๊ฐˆ ๋ฒ”์ฃผ์˜ ๊ฐœ๋…์„ ๋ฐ์ด๋“œ๋กœ์ด๋“œ ์•„๋‚ ๋กœ๊ทธ๋กœ ํ™•์žฅํ•˜์—ฌ, ์ƒˆ๋กœ์šด ๋ชจ๋ธ ๋ฒ”์ฃผ๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ์„œ๋กœ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ฆ๋ช…ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์Šฌ๋ผ์ด์‹ฑ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์กฐ์–„์˜ ์ค€๋ฒ”์ฃผ, ๋ ˆ์ฆˆํฌ์˜ ์™„์ „ํ•œ ์„ธ๊ฐˆ ๊ณต๊ฐ„, ์„ธ๊ฐˆ ๋ฒ”์ฃผ ๊ฐ„์˜ ๋น„๊ต ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜๋Š” ๊ฒƒ์ด

Mathematics
No Image

Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฐ์‚ฌํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•œ 3D ๋ณ€์œ„ ์ถ”์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ RGB ์ด๋ฏธ์ง€๋ฅผ ์œตํ•ฉํ•˜์—ฌ ๋ฐ€๋„ ๋†’์€ 3D ๋ณ€์œ„ ๋ฒกํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ํ•ต์‹ฌ์€ ๊ณ„์ธต์  ๋ถ„ํ•  ๊ธฐ๋ฐ˜์˜ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, ๊ฑฐ์นœ ๋‹จ๊ณ„์—์„œ ์„ธ๋ฐ€ํ•œ ๋‹จ๊ณ„๋กœ ์ง„ํ–‰ํ•˜๋ฉฐ, 3D ๊ธฐํ•˜ํ•™๊ณผ 2D ์ด๋ฏธ์ง€ ํŠน์ง•์„ ๋ชจ๋‘ ํ™œ์šฉํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ๋†’์€ ๊ณต๊ฐ„ ๋ฒ”์œ„์™€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ์™ธ๋ถ€ ์ธก์ •๊ฐ’๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋งค์šฐ ์ •ํ™•ํ•œ ๋ณ€์œ„ ์ถ”์ •์น˜๋ฅผ ์ œ๊ณตํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ์ˆ˜๋™์ ์œผ๋กœ ์œ ๋„๋œ ์ฐธ์กฐ ๊ฐ’๊ณผ

Design and Analysis of E2RC Codes

Design and Analysis of E2RC Codes

๋ณธ ์—ฐ๊ตฌ๋Š” ๋น„์œจโ€‘ํ˜ธํ™˜ LDPC ์ฝ”๋“œ ์„ค๊ณ„๋ผ๋Š” ์‹ค์šฉ์  ๊ณผ์ œ์— ๋‘ ์ฐจ์›์˜ ํ˜์‹ ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ˜์‹ ์€ ๋ฐ˜๊ตฌ์กฐํ™”๋œ EยฒRCโ€‘์œ ์‚ฌ ์ฝ”๋“œ ์˜ ์„ค๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ์ด๋‹ค. ๊ธฐ์กด EยฒRC ์ฝ”๋“œ๋Š” ํŒจ๋ฆฌํ‹ฐ ํ–‰๋ ฌ (H {2}) ๋งŒ์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ , ์ •๋ณด ๋ถ€๋ถ„ (H {1}) ์€ ์ „ํ†ต์ ์ธ ๋ถˆ๊ทœ์น™ ์ฝ”๋“œ ์ฐจ์ˆ˜ ๋ถ„ํฌ๋ฅผ ๊ทธ๋Œ€๋กœ ์ ์šฉํ–ˆ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด (H {1}) ์— ๋Œ€ํ•œ ์ตœ์  ์ฐจ์ˆ˜ ๋ถ„ํฌ๋ฅผ EXIT ์ฐจํŠธ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ํƒ์ƒ‰ํ•œ๋‹ค. EXIT ์ฐจํŠธ๋Š” ๋””์ฝ”๋”์™€ ์ฑ„๋„ ์‚ฌ์ด์˜ ์ƒํ˜ธ ์ •๋ณด๋ฅผ ์‹œ๊ฐํ™”ํ•จ์œผ๋กœ์จ, ํŠน์ • ํŽ€์นญ ์ „์†ก๋ฅ ์—์„œ์˜

Analysis Mathematics Discrete Mathematics Computer Science Information Theory
Design of Current Controller for Two Quadrant DC Motor Drive by Using   Model Order Reduction Technique

Design of Current Controller for Two Quadrant DC Motor Drive by Using Model Order Reduction Technique

: DC ๋ชจํ„ฐ ๋“œ๋ผ์ด๋ธŒ์˜ ์ „๋ฅ˜ ์ œ์–ด๊ธฐ ์„ค๊ณ„๋Š” ์ค‘์š”ํ•œ ๊ณผ์ œ์ด๋ฉฐ, ๋น„์„ ํ˜• ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๋ชจ๋ธ ์ˆœ์„œ ๊ฐ์†Œ ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๊ธฐ๋ฒ•์€ ๋Œ€๊ทœ๋ชจ ์‹œ์Šคํ…œ์„ ์ €์ฐจ์›์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ถ„์„๊ณผ ์„ค๊ณ„๋ฅผ ์šฉ์ดํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ ์ˆœ์„œ ๊ฐ์†Œ์˜ ๊ธฐ๋ณธ ์•„์ด๋””์–ด๋Š” ์›๋ž˜ ์‹œ์Šคํ…œ ๋ฐฉ์ •์‹์„ ๋” ์ž‘์€ ์ฐจ์›์˜ ๋ชจ๋ธ๋กœ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ณ ์ฐจ ์‹œ์Šคํ…œ์˜ ๋ณต์žก์„ฑ์„ ์ค„์ด๊ณ , ์ œ์–ด๊ธฐ ์„ค๊ณ„์— ํ•„์š”ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ฐ’์„ ์–ป๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์•ˆ์ •์„ฑ ๊ธฐ๋ฐ˜ ๊ฐ์†Œ ๋ฐฉ๋ฒ•์€ ์•ˆ์ •๋œ ์‹œ์Šคํ…œ์„ ์œ 

Other CS Computer Science Model
Designing Interaction for Multi-agent Cooperative System in an Office   Environment

Designing Interaction for Multi-agent Cooperative System in an Office Environment

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ๋‹จ์ผ ๋กœ๋ด‡ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด, ๋‹ค์ค‘ ๋กœ๋ด‡ยท์Šค๋งˆํŠธ ๋””๋ฐ”์ด์Šค๊ฐ€ ๊ณต๋™์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” Intelligent Cyberโ€‘Physical System (ICPS) ์„ ์‚ฌ๋ฌด์‹ค์ด๋ผ๋Š” ์ œํ•œ๋œ ์‹ค๋‚ด ํ™˜๊ฒฝ์— ์ ์šฉํ•œ ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ์ €์ž๋Š” ์ธ๊ฐ„์„ โ€˜ํ†ต์ œ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ œ์•ฝโ€™์ด ์•„๋‹ˆ๋ผ โ€˜์‹œ์Šคํ…œ ํ–‰๋™์— ์ ๊ทน ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ์ž์›โ€™์œผ๋กœ ์žฌ์ •์˜ํ•จ์œผ๋กœ์จ, ์ธ๊ฐ„โ€‘๋กœ๋ด‡ ํ˜‘์—…์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ „ํ™˜ํ•œ๋‹ค. ์ด๋Š” ์ธ๊ฐ„์ด ํ•„์š”ํ•  ๋•Œ ๋กœ๋ด‡์—๊ฒŒ ๋„์›€์„ ์š”์ฒญํ•˜๊ฑฐ๋‚˜, ์ธ๊ฐ„์˜ ํ˜„์žฌ ์ƒํƒœ(์„œ ์žˆ์Œยท์•‰์•„ ์žˆ์Œ ๋“ฑ)๋ฅผ ๋กœ๋ด‡์˜ ์›€์ง์ž„ ๊ณ„ํš

HCI Robotics Multiagent Systems System Artificial Intelligence Computer Science
Detection of Fraudulent Sellers in Online Marketplaces using Support   Vector Machine Approach

Detection of Fraudulent Sellers in Online Marketplaces using Support Vector Machine Approach

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋˜๋Š” ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‹œ์žฅ์—์„œ ํŠนํžˆ ์˜จ๋ผ์ธ ๋งˆ์ผ“ํ”Œ๋ ˆ์ด์Šค๊ฐ€ ์ง๋ฉดํ•œ โ€˜๋จธ์ฒœํŠธ ์‚ฌ๊ธฐโ€™ ๋ฌธ์ œ๋ฅผ ๋จธ์‹ ๋Ÿฌ๋‹, ํŠนํžˆ ์ง€์› ๋ฒกํ„ฐ ๋จธ์‹ (SVM)์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๋จผ์ € ์ €์ž๋Š” ์ „์ž์ƒ๊ฑฐ๋ž˜ ๋งค์ถœ์ด ์ „์ฒด ์†Œ๋งค ๋งค์ถœ์˜ 14.6 %์— ๋‹ฌํ•  ์ •๋„๋กœ ์„ฑ์žฅํ–ˆ์œผ๋ฉฐ, ์ด์— ๋”ฐ๋ผ ์‚ฌ๊ธฐ ๊ฑด์ˆ˜๋„ ์—ฐ๊ฐ„ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์Œ์„ ํ†ต๊ณ„ ์ž๋ฃŒ์™€ ๋„ํ‘œ(๊ทธ๋ฆผ 1, ๊ทธ๋ฆผ 2)๋ฅผ ํ†ตํ•ด ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์ œ์‹œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ ์„ค๋ช…์€ ์‚ฌ๊ธฐ ํƒ์ง€ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์„ ์ •๋‹นํ™”ํ•˜๋Š” ๋ฐ ์ถฉ๋ถ„ํžˆ ์„ค๋“๋ ฅ ์žˆ๋‹ค. ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜๊ณผ๊ฑฐ ๊ฑฐ๋ž˜ ๋ฐ์ดํ„ฐโ€™๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํŒ๋งค์ž์˜ ํ–‰๋™

Computer Science Detection Computers and Society
Detection of Structural Change in Geographic Regions of Interest by Self   Organized Mapping: Las Vegas City and Lake Mead across the Years

Detection of Structural Change in Geographic Regions of Interest by Self Organized Mapping: Las Vegas City and Lake Mead across the Years

(800์ž ์ด์ƒ) ๋ณธ ๋…ผ๋ฌธ์€ ์œ„์„ฑ์˜์ƒ ์‹œ๊ณ„์—ด ๋ถ„์„์— ์žˆ์–ด ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฒ•์ธ ์ž๊ธฐ์กฐ์งํ™”์ง€๋„(SOM)๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ๋ณ€๋™ ํƒ์ง€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ณ€๋™ ํƒ์ง€ ๋ฐฉ๋ฒ•๋“ค์€ Otsu, Kapur ๋“ฑ ์ž„๊ณ„๊ฐ’ ๊ธฐ๋ฐ˜ ํ˜น์€ ํ”ฝ์…€โ€‘๋ ˆ๋ฒจ ์ฐจ๋ถ„ ๋“ฑ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ์„ ์‚ฌ์šฉํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„ ์‚ฌ์ „ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์ด๋‚˜ ๋ณต์žกํ•œ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ๋ฐ˜๋ฉด, ์ €์ž๋“ค์€ SOM์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ตฐ์ง‘ํ™” ํŠน์„ฑ์„ ์ด์šฉํ•ด ์ด๋ฏธ์ง€ ์ „์ฒด๋ฅผ ํ•œ ๋ฒˆ์— ๋งคํ•‘ํ•˜๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์–‘์žํ™”์˜ค์ฐจ(QE) ๋ฅผ ๋ณ€๋™ ์ง€ํ‘œ๋กœ ์‚ผ๋Š”๋‹ค. QE๋Š” ๊ฐ ์ž…๋ ฅ ๋ฒกํ„ฐ(์ด๋ฏธ์ง€ ํ”ฝ์…€ ๋˜๋Š” ํŠน์ง•)์™€ ํ•ด๋‹น

Computer Science Detection Computer Vision Computers and Society
Determining a rotation of a tetrahedron from a projection

Determining a rotation of a tetrahedron from a projection

๋ณธ ์—ฐ๊ตฌ๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ๊ณ ์ „์ ์ธ PnP(์ โ€‘๋Œ€โ€‘์ ) ๋ฌธ์ œ๋ฅผ 4์ (์‚ฌ๋ฉด์ฒด) ์ƒํ™ฉ์— ํŠนํ™”์‹œ์ผœ, ๋ผ๋ฒจ๋ง(์ •์ โ€‘ํˆฌ์˜ ๋Œ€์‘) ์—†์ด ํšŒ์ „ ๋ณต์›์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์กฐ๊ฑด์„ ํƒ๊ตฌํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์ €์ž๋Š” (phi)๋ฅผ ์›์  ์ค‘์‹ฌ ํšŒ์ „๊ณผ ์ˆ˜ํ‰ยท์ˆ˜์ง ํ‰ํ–‰ ์ด๋™์˜ ํ•ฉ์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ํˆฌ์˜ ๊ฒฐ๊ณผ (U)๊ฐ€ ์ˆ˜์ง ์ด๋™์— ๋ฌด๊ฐ๊ฐํ•จ์„ ์ด์šฉํ•ด ์ˆ˜ํ‰ ์ด๋™์€ ์–ธ์ œ๋‚˜ ๊ณ ์œ ํ•˜๊ฒŒ ๊ฒฐ์ •๋œ๋‹ค๊ณ  ์ฆ๋ช…ํ•œ๋‹ค. ์ด๋Š” (phi T)์˜ ๋ฌด๊ฒŒ์ค‘์‹ฌ์ด (U)์˜ ๋ฌด๊ฒŒ์ค‘์‹ฌ์„ ์ง€๋‚˜๋Š” ์ˆ˜์ง์„  ์œ„์— ๋†“์—ฌ์•ผ ํ•œ๋‹ค๋Š” ๊ฐ„๋‹จํ•œ ๊ธฐํ•˜ํ•™์  ์‚ฌ์‹ค์—์„œ ๋น„๋กฏ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฌธ์ œ๋Š” ์ˆœ์ˆ˜

Computer Science Computational Geometry Computer Vision Mathematics
Detrending career statistics in professional baseball: Accounting for   the steroids era and beyond

Detrending career statistics in professional baseball: Accounting for the steroids era and beyond

: ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ”„๋กœ ์•ผ๊ตฌ ์„ ์ˆ˜๋“ค์˜ ๊ฒฝ๋ ฅ ํ†ต๊ณ„๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๊ฐ๊ด€์ ์ธ ๋น„๊ต๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ๊ณ„์ ˆ์  ์ถ”์„ธ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์„ ์ˆ˜๋“ค์˜ ์„ฑ๊ณผ๋ฅผ ์ •๊ทœํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹œ๋Œ€์— ๊ฑธ์ณ ์„ ์ˆ˜๋“ค์„ ๊ณต์ •ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ์•ผ๊ตฌ์™€ ๊ฐ™์€ ์Šคํฌ์ธ ๋Š” ์‹œ๋Œ€๋งˆ๋‹ค ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ๊ณผ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ์„ ์ˆ˜๋“ค์˜ ์„ฑ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‹จ์ˆœํžˆ ํ†ต๊ณ„๋ฅผ ๋น„๊ตํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์™ธ์ƒ ๋ณ€์ˆ˜๋“ค์„ ๊ณ ๋ คํ•˜์—ฌ ์„ ์ˆ˜๋“ค์˜ ๋Šฅ๋ ฅ์„ ์ •ํ™•ํžˆ ์ธก์ •ํ•ด์•ผ ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ„์ ˆ์  ์ถ”์„ธ ์ œ๊ฑฐ๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌ

Physics
Developing a system for securely time-stamping and visualizing the   changes made to online news content

Developing a system for securely time-stamping and visualizing the changes made to online news content

๋ณธ ์—ฐ๊ตฌ๋Š” ๋””์ง€ํ„ธ ๋‰ด์Šค ์•„์นด์ด๋น™ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์˜ ์ค‘์•™์ง‘์ค‘์‹ ํƒ€์ž„์Šคํƒฌํ”„(TSA) ๋ชจ๋ธ์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ , ๋ธ”๋ก์ฒด์ธ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•œ ๋ถ„์‚ฐํ˜• ์‹ ๋ขฐ ํƒ€์ž„์Šคํƒฌํ”„(dTS) ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ์ธํ„ฐ๋„ท ํŽ˜์ด์ง€๊ฐ€ 1๋…„ ๋‚ด์— 80 %๊ฐ€ ๋‚ด์šฉ์ด ๋ฐ”๋€Œ๊ณ , 60 %๊ฐ€ ์ƒˆ๋กญ๊ฒŒ ์ถ”๊ฐ€๋œ๋‹ค๋Š” ํ†ต๊ณ„์  ๊ทผ๊ฑฐ๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ํ˜„์žฌ ์›น ์•„์นด์ด๋น™์ด โ€˜๋ณด์กดโ€™์€ ํ•˜์ง€๋งŒ โ€˜๋ณ€์กฐ ๋ฐฉ์ง€โ€™์—๋Š” ๋ฏธํกํ•จ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์กด ์›น ์•„์นด์ด๋น™ ์„œ๋น„์Šค๋Š” ์ฃผ๊ธฐ์ ์ธ ์Šค๋ƒ…์ƒท ์ €์žฅ์— ๊ทธ์น˜๋ฉฐ, ์ €์žฅ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ์‹ค์ œ๋กœ ํŠน์ • ์‹œ์ ์— ์กด์žฌํ–ˆ์Œ์„ ๋…๋ฆฝ์ ์ธ ๋ณด์•ˆ ์ˆ˜๋‹จ์œผ๋กœ ๊ฒ€์ฆํ•  ๋ฐฉ๋ฒ•์ด ๋ถ€์กฑํ•˜๋‹ค. ์ด๋Š”

Computer Science System Computers and Society Digital Libraries
DGGAN: Degradation Guided Generative Adversarial Network for Real-time Endoscopic Video Enhancement

DGGAN: Degradation Guided Generative Adversarial Network for Real-time Endoscopic Video Enhancement

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‚ด์‹œ๊ฒฝ ์ˆ˜์ˆ ์—์„œ ์ค‘์š”ํ•œ ์š”์†Œ์ธ ์‹ค์‹œ๊ฐ„ ์˜์ƒ ํ’ˆ์งˆ ํ–ฅ์ƒ์„ ์œ„ํ•ด DGGAN(Degradation Guided Generative Adversarial Network)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. DGGAN์€ ํ‡ดํ™” ์ธ์‹ ๋ชจ๋“ˆ, ๋‹จ์ผ ํ”„๋ ˆ์ž„ ํ–ฅ์ƒ ๋ชจ๋ธ ๋ฐ ํ‡ดํ™” ํ‘œํ˜„ ํ“จ์ „ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ํ‡ดํ™” ์ธ์‹ ๋ชจ๋“ˆ์€ ๋Œ€์กฐ์  ํ•™์Šต ์ „๋žต์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํ‡ดํ™” ํ‘œํ˜„์„ ์ถ”์ถœํ•˜๊ณ , ์ด๋Ÿฌํ•œ ํ‘œํ˜„์€ ๋‹จ์ผ ํ”„๋ ˆ์ž„ ํ–ฅ์ƒ ๋ชจ๋ธ์˜ ๊ฐ€์ด๋“œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ˆœํ™˜ ์ผ๊ด€์„ฑ ์ œ์•ฝ ์กฐ๊ฑด๊ณผ ํ•จ๊ป˜ ํ›ˆ๋ จ๋˜์–ด ๋ณต์›๋œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ๋Š”

Network
Different Adiabatic Quantum Optimization Algorithms for the NP-Complete   Exact Cover and 3SAT Problems

Different Adiabatic Quantum Optimization Algorithms for the NP-Complete Exact Cover and 3SAT Problems

: ์–‘์ž ๊ณ„์‚ฐ ๋ถ„์•ผ์—์„œ NP ์™„์ „ ๋ฌธ์ œ๋Š” ๊ณ ์ „ ์ปดํ“จํ„ฐ์™€ ์–‘์ž ์ปดํ“จํ„ฐ ๊ฐ„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์ค‘์š”ํ•œ ์š”์†Œ์ž…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ Farhi et al.์˜ AQO ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๋ฉฐ, ์ดˆ๊ธฐ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๋ฐ˜๋ก ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, ์ €์ž๋“ค์€ van Dam๊ณผ Vazirani์˜ ์—ฐ๊ตฌ๋ฅผ ์–ธ๊ธ‰ํ•˜๋ฉฐ, ๊ทธ๋“ค์ด ๋งŒ๋“  3SAT ์ธ์Šคํ„ด์Šค ๊ฐ€์กฑ์— ๋Œ€ํ•ด AQO๊ฐ€ ์ง€์ˆ˜ ์‹œ๊ฐ„ ์†Œ์š”๋ฅผ ๋ณด์ธ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ์Œ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Altshuler et al.์€ NP ์™„์ „ Exact Cover ๋ฌธ์ œ์˜ ๋ฌด์ž‘์œ„ ์ธ์Šคํ„ด์Šค์— ๋Œ€ํ•ด์„œ๋„ AQO๊ฐ€ ์‹คํŒจํ–ˆ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ์Šต๋‹ˆ

Computer Science Quantum Physics Computational Complexity
Diffuse Hard X-ray Emission in Starburst Galaxies as Synchrotron from   Very High Energy Electrons

Diffuse Hard X-ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

์ด ์—ฐ๊ตฌ๋Š” ๋ณ„ํญ๋ฐœ ์€ํ•˜์—์„œ ๊ด€์ธก๋˜๋Š” ํ™•์‚ฐ ๊ฒฝ์งˆ Xโ€‘์„ ์ด ์ „ํ†ต์ ์ธ ์—ด๋ณต์‚ฌยทHMXBยท์—ญ์ปดํ”„ํ„ด ๋ชจ๋ธ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํžˆ ์„ค๋ช…๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ์ €์ž๋“ค์€ 10โ€“100 TeV ์ „์ž์— ์˜ํ•œ ๋™๊ธฐ๋ณต์‚ฌ๊ฐ€ Xโ€‘์„  ๋ฐด๋“œ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1์ฐจ ์ „์ž, ํŒŒ์ด์˜จ 2์ฐจ ์ „์žยท์–‘์ „์ž, ๊ทธ๋ฆฌ๊ณ  ๊ฐ๋งˆโ€‘๊ด‘์ž ์Œ์ƒ์„ฑ ์ „์žยท์–‘์ „์ž์˜ ์„ธ ๊ฐ€์ง€ ์ƒ์‚ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ชจ๋‘ ํฌํ•จํ•œ ์ข…ํ•ฉ์ ์ธ ์šฐ์ฃผ์„  ์ „์ด ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ชจ๋ธ์€ ์ „๋ ฅ๋ฒ• ํ˜•ํƒœ์˜ ์ฃผ์ž… ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๊ฐ€์ •ํ•˜๊ณ , ์€ํ•˜๋ณ„ ์ž๊ธฐ์žฅ ๊ฐ•๋„์™€ ๊ฐ€์Šค ๋ฐ€๋„, FIR ๋ณต์‚ฌ์žฅ ๊ฐ•๋„๋ฅผ ์‹ค์ œ ๊ด€์ธก๊ฐ’

Astrophysics
Diffuse matter and cosmogony of stellar systems in researches by Shajn

Diffuse matter and cosmogony of stellar systems in researches by Shajn

์ƒค์ธ์˜ ์—ฐ๊ตฌ๋Š” 20์„ธ๊ธฐ ์ค‘๋ฐ˜ ์ฒœ๋ฌธํ•™์ด ๊ด€์ธก ์ž๋ฃŒ์˜ ๋ถ€์กฑ์—์„œ ์ ์ฐจ ํ’๋ถ€ํ•œ ์‚ฌ์ง„์ธก์ •ยท์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ์ดํ„ฐ๋กœ ์ „ํ™˜๋˜๋Š” ์‹œ์ ์— ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ทธ๋Š” ํฌ๋ฆฌ๋ฏธ์•„ ์ฒœ์ฒด๋ฌผ๋ฆฌํ•™ ๊ด€์ธก์†Œ(CrAO)์—์„œ 20๋…„์— ๊ฑธ์นœ ์ฒด๊ณ„์ ์ธ ์‚ฌ์ง„์ธก์ • ํ”„๋กœ๊ทธ๋žจ์„ ์šด์˜ํ•˜๋ฉฐ, ์€ํ•˜๊ณ„์™€ ์™ธ์€ํ•˜๊ณ„ ์„ฑ์šด์˜ ๊ตฌ์กฐยท์งˆ๋Ÿ‰ยทํฌ๊ธฐ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋•Œ ์–ป์–ด์ง„ ํ•ต์‹ฌ ๊ฒฐ๊ณผ๋Š” โ€˜์„ฑ์šด์€ ๋ณ„์ด ๋ฐฉ์ถœํ•œ ๋ฌผ์งˆ์ด ๋ชจ์—ฌ ๋งŒ๋“  ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ž์ฒด์ ์ธ ์ค‘๋ ฅยท์ž๊ธฐยท์œ ์ฒด์—ญํ•™์  ๊ณผ์ •์— ์˜ํ•ด ํ˜•์„ฑยท์ง„ํ™”ํ•œ๋‹คโ€™๋Š” ๊ฒƒ์ด์—ˆ๋‹ค. ์ด๋Š” ๋‹น์‹œ ๋„๋ฆฌ ํผ์กŒ๋˜ โ€˜๋ณ„์ด ๋ฌผ์งˆ์„ ๋‚ด๋ฟœ์–ด ์„ฑ์šด์„ ๋งŒ๋“ ๋‹คโ€™๋Š” ์ „ํ†ต์  ๊ด€

Physics System
Digital Data Archives as Knowledge Infrastructures: Mediating Data   Sharing and Reuse

Digital Data Archives as Knowledge Infrastructures: Mediating Data Sharing and Reuse

๋ณธ ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ๋ฐ์ดํ„ฐ ์•„์นด์ด๋ธŒ๊ฐ€ ์ง€์‹ ์ธํ”„๋ผ ๋‚ด์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๋‹ค์ธต์  ์—ญํ• ์„ ์‹ค์ฆ์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ  ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ ๋ถ„์•ผ์— ์ค‘์š”ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค. ๋จผ์ € โ€˜์ง€์‹ ์ธํ”„๋ผโ€™ ๋ผ๋Š” ๊ฐœ๋…์„ ์ด๋ก ์  ํ‹€๋กœ ์‚ผ์•„, ์‚ฌ๋žŒยท๋ฌผยท์ œ๋„๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ณตํ•ฉ ๋„คํŠธ์›Œํฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ฐ์ดํ„ฐ์˜ ์ƒ์„ฑยท๊ณต์œ ยท๋ณด์กด์„ ์ด‰์ง„ํ•˜๊ฑฐ๋‚˜ ์ œ์•ฝํ•˜๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ์ด๋•Œ ์ €์ž๋Š” Edwards(2010)์˜ ์ •์˜๋ฅผ ์ธ์šฉํ•ด ์ธํ”„๋ผ๋ฅผ โ€˜๊ฒฌ๊ณ ํ•œ ๋„คํŠธ์›Œํฌโ€™๋กœ ๊ทœ์ •ํ•˜๊ณ , BorgmanยทDarch ๋“ฑ(2015)์˜ ์—ฐ๊ตฌ์™€ ์—ฐ๊ฒฐํ•ด ์‚ด์•„์žˆ๋Š” ์‹œ์Šคํ…œ์œผ๋กœ์„œ์˜ ๋™์  ํŠน์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ์ธํ„ฐ๋ทฐ

Data Computer Science Digital Libraries
Digital Ecosystems: Optimisation by a Distributed Intelligence

Digital Ecosystems: Optimisation by a Distributed Intelligence

๋ณธ ๋…ผ๋ฌธ์€ โ€˜Digital Ecosystemโ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ์ƒ๋ฌผํ•™์  ์ƒํƒœ๊ณ„์˜ ๋””์ง€ํ„ธ ๋Œ€์‘๋ฌผ๋กœ ์ •์˜ํ•˜๊ณ , ๊ทธ ์œ„์— ๋ถ„์‚ฐ ์ง€๋Šฅ์„ ๊ฒน์ณ ๋„ฃ์Œ์œผ๋กœ์จ ์ตœ์ ํ™” ํšจ์œจ์„ ๋†’์ด๋Š” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋‘ ๋‹จ๊ณ„์˜ ์ตœ์ ํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ํ”ผ์–ดโ€‘ํˆฌโ€‘ํ”ผ์–ด ๋„คํŠธ์›Œํฌ์— ๋ถ„์‚ฐ๋œ ์—์ด์ „ํŠธ๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ด๋™ํ•˜๋ฉด์„œ ์ „์—ญ์ ์ธ ํƒ์ƒ‰์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ โ€˜๋ชฉํ‘œ ์ด๋™(targeted migration)โ€™์ด๋ผ๋Š” ์‚ฌํšŒ์  ์ƒํ˜ธ์ž‘์šฉ ๊ทœ์น™์„ ์ ์šฉํ•ด ์—์ด์ „ํŠธ๊ฐ€ ํ•„์š”๋กœ ํ•˜๋Š” ์„œ์‹์ง€๋กœ ์Šค์Šค๋กœ ์ด๋™ํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๊ฐ ํ”ผ์–ด์—์„œ ์ˆ˜ํ–‰๋˜๋Š” ์ง„ํ™”

Computer Science Neural Computing System
Dimensionality Reduction and Reconstruction using Mirroring Neural   Networks and Object Recognition based on Reduced Dimension Characteristic   Vector

Dimensionality Reduction and Reconstruction using Mirroring Neural Networks and Object Recognition based on Reduced Dimension Characteristic Vector

๋ณธ ์—ฐ๊ตฌ๊ฐ€ ์ œ์‹œํ•˜๋Š” Mirroring Neural Network(MNN) ์€ ์ „ํ†ต์ ์ธ ์ž๋™ ์ธ์ฝ”๋”(autoโ€‘encoder)์™€ ์œ ์‚ฌํ•œ ๊ตฌ์กฐ์  ์•„์ด๋””์–ด๋ฅผ ๊ฐ–์ง€๋งŒ, ๋ช‡ ๊ฐ€์ง€ ๋…ํŠนํ•œ ์„ค๊ณ„ ์„ ํƒ์ด ์ฐจ๋ณ„์ ์„ ๋งŒ๋“ ๋‹ค. ์ฒซ์งธ, ๋„คํŠธ์›Œํฌ๋Š” โ€œ์ˆ˜๋ ดโ€‘๋ฐœ์‚ฐโ€์ด๋ผ๋Š” ๋ช…๋ช…๋ฒ•์œผ๋กœ ๊ตฌ๋ถ„๋˜๋Š” ๋‘ ๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ž…๋ ฅ์ธต์—์„œ ์‹œ์ž‘ํ•ด ์€๋‹‰์ธต์„ ๊ฑฐ์น˜๋ฉด์„œ ์ ์ง„์ ์œผ๋กœ ์œ ๋‹› ์ˆ˜๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ˆ˜๋ ด ๊ตฌ๊ฐ„ ์€ ๊ณ ์ฐจ์› ์ž…๋ ฅ์„ ์ €์ฐจ์› ์ฝ”๋“œ๋กœ ์••์ถ•ํ•œ๋‹ค. ์ดํ›„ ์ตœ์†Œ ์ฐจ์›์˜ ์ค‘์•™ ์€๋‹‰์ธต์„ ์ถœ๋ฐœ์ ์œผ๋กœ ๋‹ค์‹œ ์œ ๋‹› ์ˆ˜๋ฅผ ๋Š˜๋ ค ์ถœ๋ ฅ์ธต๊นŒ์ง€ ๋ณต์›ํ•˜๋Š” ๋ฐœ์‚ฐ ๊ตฌ๊ฐ„ ์€ ์••์ถ•๋œ ์ •๋ณด๋ฅผ ์›๋ž˜ ์ฐจ์›์œผ๋กœ ๋˜๋Œ

Network Neural Computing Artificial Intelligence Computer Vision Computer Science
DisMo: A Morphosyntactic, Disfluency and Multi-Word Unit Annotator. An   Evaluation on a Corpus of French Spontaneous and Read Speech

DisMo: A Morphosyntactic, Disfluency and Multi-Word Unit Annotator. An Evaluation on a Corpus of French Spontaneous and Read Speech

: DisMo๋Š” ๊ตฌ์–ด ์–ธ์–ด ๋ถ„์„์„ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋กœ์„œ, ํŠนํžˆ ๋‹ค์ค‘ ๋‹จ์–ด ๋‹จ์œ„์™€ ์œ ์ฐฝ์„ฑ ๊ฐ์ง€์— ํŠนํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ๊ธฐ์กด์˜ ํ’ˆ์‚ฌ ํƒœ๊น…๊ณผ ๋‹ดํ™” ๋ถ„์„์— ๋”ํ•˜์—ฌ, ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™”์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ์œ ์ฐฝ์„ฑ ์žฅ์• ๋ฅผ ๊ฐ์ง€ํ•˜๊ณ  ์ฃผ์„ํ•จ์œผ๋กœ์จ ์–ธ์–ด ๋ฐ์ดํ„ฐ์˜ ์ •ํ™•์„ฑ๊ณผ ํ˜„์‹ค์„ฑ์„ ๋†’์ž…๋‹ˆ๋‹ค. ์œ ์ฐฝ์„ฑ ์žฅ์• ๋Š” ๊ตฌ์–ด ์–ธ์–ด์—์„œ ์ค‘์š”ํ•œ ์š”์†Œ์ด๋ฉฐ, DisMo๋Š” ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ํฌ์ฐฉํ•ฉ๋‹ˆ๋‹ค. ์ฑ„์›Œ์ง„ ์ •์ง€๋‚˜ ๋ฐ˜๋ณต๊ณผ ๊ฐ™์€ ์œ ์ฐฝ์„ฑ ์žฅ์• ๋Š” ๋Œ€ํ™”์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ํ๋ฆ„์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ด๋ฅผ ๊ฐ์ง€ํ•˜๊ณ  ์ฃผ์„ํ•จ์œผ๋กœ์จ ํ’ˆ์‚ฌ ํƒœ๊น…์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์ค‘

Computer Science NLP
No Image

Dissecting the Impact of Mobile DVFS Governors on LLM Inference Performance and Energy Efficiency

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ชจ๋ฐ”์ผ DVFS ๊ฑฐ๋ฒ„๋„ˆ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ , LLM ์ถ”๋ก  ์„ฑ๋Šฅ๊ณผ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์—์„œ LLM ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ์ธก์ •ํ•˜์—ฌ ์‚ผ์ค‘ ๊ฑฐ๋ฒ„๋„ˆ๊ฐ€ ์ตœ์ ์˜ ์กฐํ•ฉ์— ๋น„ํ•ด ๋” ๊ธด ์ง€์—ฐ ์‹œ๊ฐ„์„ ์ดˆ๋ž˜ํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ฐ”์ผ ๊ฑฐ๋ฒ„๋„ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ๋น„ํšจ์œจ์„ฑ์˜ ์›์ธ์„ ๊ทœ๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” FUSE๋ผ๋Š” ํ†ตํ•ฉ ์—๋„ˆ์ง€ ์ธ์‹ ๊ฑฐ๋ฒ„๋„ˆ๋ฅผ ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค. FUSE๋Š” ๋‹ค์–‘ํ•œ ๋ชจ๋ฐ”์ผ LLM ๋ชจ๋ธ์— ๋Œ€ํ•ด ํ–ฅ์ƒ๋œ ์ถ”๋ก  ์„ฑ๋Šฅ๊ณผ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ

DNA Probabilities in People v. Prince: When are racial and ethnic   statistics relevant?

DNA Probabilities in People v. Prince: When are racial and ethnic statistics relevant?

๋ณธ ๋…ผ๋ฌธ์€ DNA ์ฆ๊ฑฐ์˜ ํ†ต๊ณ„์  ํ•ด์„์ด ๋ฒ•์ •์—์„œ ์–ด๋–ป๊ฒŒ ์˜ค์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋Š” DNA ์ผ์น˜์˜ ์„ค๋“๋ ฅ์„ ํ‰๊ฐ€ํ•  ๋•Œ โ€˜๊ฐ€๋Šฅ๋„ ๋น„(likelihood ratio)โ€™๊ฐ€ ๊ฐ€์žฅ ์ ์ ˆํ•œ ์ง€ํ‘œ์ž„์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ฐ€๋Šฅ๋„ ๋น„๋Š” โ€œํ”ผ๊ณ ์™€ ์ผ์น˜ํ•˜๋Š” DNA๊ฐ€ ์‹ค์ œ ๋ฒ”์ธ์˜ DNA์ผ ํ™•๋ฅ โ€๊ณผ โ€œ๋ฌด๊ด€ํ•œ ์ œ3์ž๊ฐ€ ์šฐ์—ฐํžˆ ๋™์ผ ํ”„๋กœํŒŒ์ผ์„ ๊ฐ€์งˆ ํ™•๋ฅ โ€์„ ๋น„๊ตํ•จ์œผ๋กœ์จ, ๋‹จ์ˆœํžˆ ์ ˆ๋Œ€ ํ™•๋ฅ ์„ ์ œ์‹œํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๋ฐฐ์‹ฌ์›์—๊ฒŒ ์ง๊ด€์ ์ธ ํŒ๋‹จ ๊ทผ๊ฑฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ๋ฏธ๊ตญ ๋ฒ•์›์—์„œ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” โ€˜์ธ์ข…ยท๋ฏผ์กฑ๋ณ„ ๋ฌด์ž‘์œ„ ์ผ์น˜ ํ™•๋ฅ โ€™์€ ์‹ค์ œ ์‚ฌ๊ฑด๊ณผ ๋ฌด๊ด€ํ•œ

Statistics Applications
No Image

Do LLMs 'Feel'? Emotion Circuits Discovery and Control

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๊ฐ์ • ์ง€๋Šฅ์˜ ํ•„์š”์„ฑ : ์ฑ—๋ด‡, ๊ฐ€์ƒ ๋น„์„œ, ๊ต์œก์šฉ ์—์ด์ „ํŠธ ๋“ฑ์—์„œ ๊ฐ์ •์  ๋ฐ˜์‘์€ ์‚ฌ์šฉ์ž ๋งŒ์กฑ๋„์™€ ์‹ ๋ขฐ ํ˜•์„ฑ์— ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ : ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ํŒŒ์ธํŠœ๋‹, RLHF ๋“ฑ์€ ์™ธ๋ถ€ ์ œ์–ด์— ์˜์กดํ•ด ์ผ๊ด€๋œ ๊ฐ์ • ํ‘œํ˜„์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‚ด๋ถ€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ง์ ‘ ํƒ๊ตฌยท์กฐ์ž‘ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์ด๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ์„ค๊ณ„ โ€“ SEV (Scenarioโ€‘Event with Valence) ๊ตฌ์กฐ : โ€œ์‹œ๋‚˜๋ฆฌ์˜คโ€‘์ด๋ฒคํŠธโ€‘๋ฐธ๋Ÿฐ์Šคโ€ ํ˜•ํƒœ๋กœ, ๋™์ผํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค ์•ˆ์— ๊ฐ์ •(๊ธ์ •/๋ถ€์ •/์ค‘๋ฆฝ)๋ณ„ ์‚ฌ๊ฑด์„ ์‚ฝ์ž…ํ•ด

< Category Statistics (Total: 2844) >

Electrical Engineering and Systems Science
101
General
732
General Relativity
22
HEP-EX
17
HEP-LAT
3
HEP-PH
39
HEP-TH
19
MATH-PH
36
NUCL-EX
2
NUCL-TH
5
Quantum Physics
41

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut