KOINEU Logo
No Image

Learning Latent Hardening (LLH): Enhancing Deep Learning with Domain Knowledge for Material Inverse Problems

1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ : ์žฌ๋ฃŒ ์—ญ๋ฌธ์ œ๋Š” ์‹คํ—˜ ๋น„์šฉยท์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋ผ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹ ํ™•๋ณด๊ฐ€ ์–ด๋ ค์›€. ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๋Œ€๋Ÿ‰ ๋ฐ์ดํ„ฐ์— ์˜์กดํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์–ด, ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ๋œ ์ƒํ™ฉ์—์„œ ๊ณผ์ ํ•ฉยท์ผ๋ฐ˜ํ™” ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋„๋ฉ”์ธ ์ง€์‹ ํ™œ์šฉ : ์žฌ๋ฃŒ ๊ณผํ•™์—์„œ๋Š” ์‘๋ ฅโ€‘๋ณ€ํ˜•๋ฅ  ๊ณก์„ ์ด ๋ฏธ์„ธ๊ตฌ์กฐ์™€ ์ง์ ‘ ์—ฐ๊ฒฐ๋˜๋Š” ๋ฌผ๋ฆฌ์  ๊ด€๊ณ„๊ฐ€ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ๋ชจ๋ธ์— ๋ช…์‹œ์ ์œผ๋กœ ์ฃผ์ž…ํ•˜๋ฉด ํ•™์Šต ํšจ์œจ์„ ํฌ๊ฒŒ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€์„ค์ด ์ œ์‹œ๋œ๋‹ค. 2. ์ œ์•ˆ๋œ LLH ํ”„๋ ˆ์ž„์›Œํฌ | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌํ˜„ ๋ฐฉ๋ฒ• | ๊ธฐ๋Œ€ ํšจ๊ณผ | | |

Learning
No Image

Learning Library Cell Representations in Vector Space

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์…€ ๋ ˆ๋ฒจ ํ‘œํ˜„์˜ ๋ถ€์žฌ : ๊ธฐ์กด EDA ํˆด์€ ์…€์˜ ๊ธฐ๋Šฅ์„ ํ…์ŠคํŠธ๋‚˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜์œผ๋กœ๋งŒ ๋‹ค๋ฃจ์–ด, ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์…€ ๊ฐ„ ๋ฏธ๋ฌ˜ํ•œ ์ฐจ์ด๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๋ผ๋ฒจ๋ง ๋น„์šฉ : ์…€ ํŠน์„ฑ์„ ๋ผ๋ฒจ๋งํ•˜๋ ค๋ฉด ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ง์ ‘ ํšŒ๋กœ๋ฅผ ๋ถ„์„ํ•ด์•ผ ํ•˜๋ฉฐ, ์ด๋Š” ์‹œ๊ฐ„ยท๋น„์šฉ์ด ๋งŽ์ด ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์ •๊ทœ์„ฑ ํ…Œ์ŠคํŠธ ์ž๋™ ์ƒ์„ฑ : ์…€ ์ž„๋ฒ ๋”ฉ์ด ์‹ค์ œ ์…€ ๊ด€๊ณ„(์ „๊ธฐ์ , ๋…ผ๋ฆฌ์ )์™€ ์ผ์น˜ํ•˜๋Š”์ง€ ์ •๋Ÿ‰ํ™” | ๋ชจ๋ธ ๊ฒ€์ฆ์„ ์ž๋™ํ™”ํ•ด ๋ฐ˜๋ณต ์‹คํ—˜ ๋น„์šฉ ์ ˆ๊ฐ | | 2 | ์ž์ฒด ์ง€๋„ ํ•™์Šต ์Šค

Learning
No Image

Let it Snow! Animating 3D Gaussian Scenes with Dynamic Weather Effects via Physics-Guided Score Distillation

1. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | โ‘  | Physicsโ€‘Guided Score Distillation ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์•ˆ | ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์šด๋™ ์‚ฌ์ „๊ณผ ์ตœ์‹  ํ…์ŠคํŠธโ€‘ํˆฌโ€‘๋น„๋””์˜ค ๋””ํ“จ์ „ ๋ชจ๋ธ์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉ, ์ •์  3D Gaussian Splatting์— ๋™์  ํšจ๊ณผ๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์‚ฝ์ž… | | โ‘ก | Neural Dynamics Model ์„ค๊ณ„ ๋ฐ ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ํ•™์Šต | ์ž…์ž ์œ„์น˜ยท์†๋„ยท์™ธ๊ด€์„ ๋™์‹œ์— ์˜ˆ์ธก, ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ๋น„๋””์˜คโ€‘SDS ์†์‹ค์„ ๊ณต๋™ ์ตœ์ ํ™” | | โ‘ข | ๋‹ค์–‘ํ•œ ๋‚ ์”จ ํšจ๊ณผ (๋ˆˆ, ๋น„, ์•ˆ๊ฐœ, ๋ชจ

No Image

Lightning Fast Caching-based Parallel Denoising Prediction for Accelerating Talking Head Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Diffusion ๋ชจ๋ธ ์€ ์ตœ๊ทผ ํ† ํ‚น ํ—ค๋“œ(์ž…์ˆ  ์›€์ง์ž„ยทํ‘œ์ • ๋™๊ธฐํ™”) ์ƒ์„ฑ์—์„œ ์ตœ๊ณ ์˜ ์‹œ๊ฐ์  ํ’ˆ์งˆ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋‹ค์ค‘ ๋‹จ๊ณ„์˜ ์ˆœ์ฐจ์  ์ƒ˜ํ”Œ๋ง ์ด ํ•„์ˆ˜๋ผ ์‹ค์‹œ๊ฐ„ ์‘์šฉ์— ๋ถ€์ ํ•ฉํ•˜๋‹ค. ์ผ๋ฐ˜์ ์ธ ๊ฐ€์† ๊ธฐ๋ฒ•(์˜ˆ: DDIM, DPMโ€‘Solver)์€ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ ์„ ํ™œ์šฉํ•˜์ง€๋งŒ, ํ† ํ‚น ํ—ค๋“œ ์˜์ƒ์€ ์ •์  ๋ฐฐ๊ฒฝยท๊ณ ์ • ์นด๋ฉ”๋ผ ์™€ ๋™์  ์ „๊ฒฝ(์–ผ๊ตดยท์ž…์ˆ ) ์ด๋ผ๋Š” ํŠน์ˆ˜ํ•œ ๊ณต๊ฐ„ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ด๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋” ํฐ ์†๋„ ์ด๋“์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• 2.1 LightningCP ์ •์  ํŠน์ง• ์บ์‹œ : ๋ฐฐ๊ฒฝ, ์กฐ๋ช…, ๊ณ ์ •๋œ ๋จธ

No Image

Limitations of Nyquist Criteria in the Discretization of 2D Electromagnetic Integral Equations at High Frequency: Spectral Insights into Pollution Effects

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ œ๊ธฐ Nyquist ๊ธฐ์ค€ ์€ โ€œํŒŒ์žฅ๋‹น ์ตœ์†Œ 2๊ฐœ์˜ ์ƒ˜ํ”Œ(๋˜๋Š” ์ž์œ ๋„)โ€์„ ์œ ์ง€ํ•˜๋ฉด ์ •ํ™•๋„๊ฐ€ ๋ณด์žฅ๋œ๋‹ค๋Š” ์ง๊ด€์  ๊ฐ€์ •์ด๋‹ค. BEM์—์„œ๋Š” ๋ณดํ†ต ์š”์†Œ๋‹น 6~10๊ฐœ์˜ ์ž์œ ๋„ ์ •๋„๋ฅผ ์œ ์ง€ํ•œ๋‹ค๋Š” ๊ฒฝํ—˜์  ๊ทœ์น™์ด ์žˆ๋‹ค. ๊ณ ์ฃผํŒŒ ์˜์—ญ์—์„œ๋Š” ํŒŒ์žฅ๋‹น ์ž์œ ๋„ ์œ ์ง€ ๊ฐ€ ์‹ค์งˆ์ ์œผ๋กœ๋Š” ๊ทนํžˆ ๋งŽ์€ ์ž์œ ๋„ ๋ฅผ ์š”๊ตฌํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ด๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์„ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ์—์„œ๋Š” โ€œBEM์€ ์ฃผํŒŒ์ˆ˜ ์ฆ๊ฐ€์—๋„ ์ •ํ™•๋„๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ•˜์ง€ ์•Š๋Š”๋‹คโ€ ๋Š” ์ฃผ์žฅ์ด FEMยทFDTD ๋Œ€๋น„ ํฐ ์žฅ์ ์œผ๋กœ ์ œ์‹œ๋˜์—ˆ์ง€๋งŒ, ์ˆ˜์น˜ ์˜ค์—ผ ์ด๋ผ๋Š” ํ˜„์ƒ์ด ์‹ค์ œ๋กœ๋Š” ์กด์žฌํ•  ๊ฐ€๋Šฅ์„ฑ

No Image

LintLLM: An Open-Source Verilog Linting Framework Based on Large Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Verilog ๋ฆฐํŒ…์˜ ํ˜„ํ™ฉ : ๊ธฐ์กด EDA(์ „์ž ์„ค๊ณ„ ์ž๋™ํ™”) ํˆด์˜ ๋ฆฐํŒ… ๊ธฐ๋Šฅ์€ ๊ทœ์น™ ๊ธฐ๋ฐ˜์ด๋ฉฐ, ์„ค๊ณ„ ์Šคํƒ€์ผ์ด๋‚˜ ์ตœ์‹  ์–ธ์–ด ๊ธฐ๋Šฅ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋กœ ์ธํ•ด ์˜คํƒ์ด ๋งŽ๊ณ , ์‹ค์ œ ๊ฒฐํ•จ์„ ๋†“์น˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. LLM์˜ ๋“ฑ์žฅ : GPTโ€‘4, Claude, o1โ€‘mini ๋“ฑ ์ตœ์‹  LLM์€ ์ž์—ฐ์–ด์™€ ์ฝ”๋“œ ๋ชจ๋‘๋ฅผ ์ดํ•ดํ•˜๊ณ , ๋ณต์žกํ•œ ๋…ผ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ํ•˜๋“œ์›จ์–ด ๊ธฐ์ˆ  ์–ธ์–ด(HDL)์— ์ ์šฉํ•˜๋ฉด ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด์„ค ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | |

Framework Model
No Image

LLM Inference Acceleration via Efficient Operation Fusion

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ Transformer ๊ตฌ์กฐ์˜ ๋ณ‘๋ชฉ : Softmax์™€ LayerNorm์€ ๊ฐ๊ฐ ์ „์ฒด ํ† ํฐ ์ฐจ์›์— ๋Œ€ํ•œ ์ „์—ญ ํ•ฉ/์ œ๊ณฑํ•ฉ ์„ ํ•„์š”๋กœ ํ•˜๋Š” ์ง‘ํ•ฉ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์—์„œ๋Š” ์ด ์—ฐ์‚ฐ์ด GPU/TPU ํด๋Ÿฌ์Šคํ„ฐ ๊ฐ„ ํ†ต์‹ ์„ ์œ ๋ฐœํ•ด 20 % ์ •๋„์˜ ์„ฑ๋Šฅ ์†์‹ค ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด ํ•ด๊ฒฐ์ฑ…์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ์ตœ์ ํ™”๋Š” ์—ฐ์‚ฐ ์ˆœ์„œ๋ฅผ ๋ฐ”๊พธ๊ฑฐ๋‚˜ ์ปค์Šคํ…€ ์ปค๋„์„ ์„ค๊ณ„ํ•˜๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ, ๋น„์„ ํ˜• ์—ฐ์‚ฐ๊ณผ ์„ ํ˜• ์—ฐ์‚ฐ ์‚ฌ์ด์˜ ๋ฐ์ดํ„ฐ ์˜์กด์„ฑ์„ ์™„์ „ํžˆ ํ•ด์†Œํ•˜์ง€ ๋ชปํ•œ๋‹ค . 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ์—ฐ์‚ฐ ์œตํ•ฉ(Fusion) ๋ฐ ์ง€์—ฐ ์ •๊ทœํ™”(De

No Image

LLM-Powered Code Analysis and Optimization for Gaussian Splatting Kernels

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ 3D Gaussian Splatting(3DGS) ์€ ๊ณ ํ’ˆ์งˆ ๋ทฐ ํ•ฉ์„ฑ ๋ฐ ์‹ค์‹œ๊ฐ„ ๋ Œ๋”๋ง์— ํ•„์ˆ˜์ ์ธ ์ตœ์‹  ๊ธฐ์ˆ ์ด๋ฉฐ, GPU ์—ฐ์‚ฐ๋Ÿ‰์ด ๋ฐฉ๋Œ€ํ•ด ์ตœ์ ํ™”๊ฐ€ ํ•ต์‹ฌ ๊ณผ์ œ์ด๋‹ค. ๊ธฐ์กด ์ˆ˜๋™ ์ตœ์ ํ™”๋Š” ์ „๋ฌธ๊ฐ€ ์˜์กด์„ฑ ๊ณผ ์‹œ๊ฐ„ยท์ธ์  ๋น„์šฉ ์ด ํฌ๊ฒŒ ์†Œ์š”๋˜๋ฉฐ, ๋ณต์žกํ•œ GPU ์•„ํ‚คํ…์ฒ˜(์˜ˆ: SM ๊ตฌ์กฐ, ๋ฉ”๋ชจ๋ฆฌ ๊ณ„์ธต, ๋ ˆ์ง€์Šคํ„ฐ ์••๋ฐ•)์™€ ๋‹ค์–‘ํ•œ ํŠœ๋‹ ํŒŒ๋ผ๋ฏธํ„ฐ(์Šค๋ ˆ๋“œ ๋ธ”๋ก ํฌ๊ธฐ, ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ ํŒจํ„ด ๋“ฑ) ๋•Œ๋ฌธ์— ์ตœ์ ํ™” ๊ณต๊ฐ„์ด ๊ฑฐ์˜ ๋ฌดํ•œ์— ๊ฐ€๊น๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | LLM(Deepseek,

Analysis
Logarithmic Hurwitz Spaces in Mixed and Positive Characteristic with Wild Ramification

Logarithmic Hurwitz Spaces in Mixed and Positive Characteristic with Wild Ramification

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ „ํ†ต์ ์ธ ํ—ˆ๋ฐ”๋ฅด์ธ  ๊ณต๊ฐ„์€ ํŠน์„ฑ 0์—์„œ ์ฐจ์ˆ˜ (d)์ธ ์ปค๋ฒ„๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ๋กœ๊ทธ ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜๋ฉด ๊ฒฝ๊ณ„(ํŠนํžˆ ํ‡ดํ™”๋œ ์ปค๋ฒ„)์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ •๊ตํ•˜๊ฒŒ ๊ธฐ์ˆ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ฐจ์ˆ˜ (p)์ธ ์ปค๋ฒ„๊ฐ€ ํŠน์„ฑ (p)์—์„œ ์™€์ผ๋“œ(๋ถˆ์•ˆ์ •) ๋ถ„๊ธฐ ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ, ๊ธฐ์กด ์ด๋ก ์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์–ด๋ ค์›€์— ์ง๋ฉดํ•œ๋‹ค. ๋ถ„๋ฆฌ ๊ฐ€๋Šฅยท๋น„๋ถ„๋ฆฌ ๊ฐ€๋Šฅ ์ปค๋ฒ„์˜ ํ˜ผ์žฌ โ€“ ํŠน์„ฑ (p)์—์„œ๋Š” ๊ฐ™์€ ์ฐจ์ˆ˜์˜ ์ปค๋ฒ„๊ฐ€ ์ƒ๋Œ€ ํ๋ฆฌ์˜ค์Šค(Frobenius) ํ˜•ํƒœ๋ฅผ ์ทจํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฆฌํ”„ํŠธ(lift) ๋ฌธ์ œ โ€“ ํŠน์„ฑ (p)์—์„œ ์กด์žฌํ•˜๋Š” ์ปค๋ฒ„๊ฐ€ ํŠน์„ฑ 0์œผ๋กœ ์˜ฌ

Mathematics
No Image

Logistics Analysis for Lunar Post-Mission Disposal

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ฌ ํ™˜๊ฒฝ ๋ณด์ „ : ํ˜„์žฌ๊นŒ์ง€ ๋‹ฌ ํ‘œ๋ฉด์— ๋Œ€ํ•œ ๊ตญ์ œ์  ํ™˜๊ฒฝ ๊ทœ์ œ๋Š” ๋ฏธ๋น„ํ•˜์ง€๋งŒ, ํ–ฅํ›„ ์ง€์† ๊ฐ€๋Šฅํ•œ ํƒ์‚ฌ์™€ ์ƒ์—…ํ™”๊ฐ€ ์ง„ํ–‰๋  ๊ฒฝ์šฐ ํ๊ธฐ๋ฌผ ๊ด€๋ฆฌ ์ •์ฑ…์ด ํ•ต์‹ฌ์ด ๋  ์ „๋ง์ด๋‹ค. ISRU์˜ ๊ฒฝ์ œ์„ฑ : ํ˜„์žฅ์ž์›ํ™œ์šฉ์€ ์—ฐ๋ฃŒยท์‚ฐ์†Œ ๊ณต๊ธ‰ ๋น„์šฉ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ”์ง€๋งŒ, ๋ถ€์‚ฐ๋ฌผ(์Šฌ๋ž˜๊ทธยท๊ธˆ์†ยทํœ˜๋ฐœ์„ฑ ๊ฐ€์Šค)์˜ ๋ˆ„์ ์€ ์žฅ๊ธฐ ์šด์˜์— ๋ถ€์ •์  ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. 2. ๋ถ„์„ ๋Œ€์ƒ ๊ธฐ์ˆ  | ๊ธฐ์ˆ  | ์ฃผ์š” ์ž…๋ ฅ | ์ฃผ์š” ์‚ฐ์ถœ๋ฌผ | ๋ถ€์‚ฐ๋ฌผ ์ข…๋ฅ˜ | | | | | | | MRE | ๋ ˆ๊ณจ๋ฆฌํŠธ(๊ทœ์†Œยท์•Œ๋ฃจ๋ฏธ๋Š„ยท์ฒ  ๋“ฑ) + ์ „๋ ฅ | ์‚ฐ์†Œ, ๊ธˆ์†(Fe, Al) |

Analysis
No Image

LookSync: Large-Scale Visual Product Search System for AI-Generated Fashion Looks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํŒจ์…˜ AI์˜ ๊ธ‰์„ฑ์žฅ : ํ…์ŠคํŠธโ€‘ํˆฌโ€‘์ด๋ฏธ์ง€, ๊ฐ€์ƒ ํ”ผํŒ… ๋“ฑ ์ƒ์„ฑํ˜• AI๊ฐ€ ํŒจ์…˜ ์‚ฐ์—…์— ๋น ๋ฅด๊ฒŒ ๋„์ž…๋˜๊ณ  ์žˆ๋‹ค. ์‹ค์ œ ์ œํ’ˆ ๋งค์นญ ๋ฌธ์ œ : ์‚ฌ์šฉ์ž๋Š” AIโ€‘์ƒ์„ฑ๋œ ๊ฐ€์ƒ์˜ ์Šคํƒ€์ผ์„ ์‹ค์ œ ๊ตฌ๋งค ๊ฐ€๋Šฅํ•œ ์•„์ดํ…œ๊ณผ ์—ฐ๊ฒฐํ•˜๊ณ  ์‹ถ์–ดํ•œ๋‹ค. ๊ธฐ์กด ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์€ ์Šคํƒ€์ผยท์ปจํ…์ŠคํŠธ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜ | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ๊ธฐ๋Šฅ | ์ฃผ์š” ๊ธฐ์ˆ /์•Œ๊ณ ๋ฆฌ์ฆ˜ | | | | | | ์ฟผ๋ฆฌ ์ƒ์„ฑ | AIโ€‘์ƒ์„ฑ ๋ฃฉ ์ด๋ฏธ์ง€ โ†’ ๊ฒ€์ƒ‰ ์ฟผ๋ฆฌ ๋ณ€ํ™˜ | ์ด๋ฏธ์ง€ ์บก์…”๋‹, ํ…์ŠคํŠธโ€‘์ด๋ฏธ์ง€ ๋งคํ•‘ | | ๋ฒกํ„ฐํ™” | ์ด๋ฏธ์ง€ยทํ…์ŠคํŠธ๋ฅผ ๊ณ ์ฐจ์› ์ž„๋ฒ ๋”ฉ

System
No Image

Loquetier: A Virtualized Multi-LoRA Framework for Unified LLM Fine-tuning and Serving

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ PEFT์™€ LoRA : ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ๋Š˜๋ฆฌ์ง€ ์•Š์œผ๋ฉด์„œ๋„ LLM์„ ๋‹ค์–‘ํ•œ ๋‹ค์šด์ŠคํŠธ๋ฆผ ํƒœ์Šคํฌ์— ๋งž์ถœ ์ˆ˜ ์žˆ์–ด ์‚ฐ์—…ยทํ•™๊ณ„ ๋ชจ๋‘์—์„œ ํญ๋„“๊ฒŒ ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋‹ค. ํ†ตํ•ฉ ํŒŒ์ดํ”„๋ผ์ธ ๋ถ€์žฌ : ๊ธฐ์กด ์‹œ์Šคํ…œ์€ ๋ฏธ์„ธ์กฐ์ • ๋‹จ๊ณ„์™€ ์ถ”๋ก  ๋‹จ๊ณ„๊ฐ€ ๋ณ„๋„ ๋Ÿฐํƒ€์ž„ยทํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋ผ, ์–ด๋Œ‘ํ„ฐ ๊ต์ฒด ๋น„์šฉ, ๋ฉ”๋ชจ๋ฆฌ ๋ณต์ œ, API ๋ถˆ์ผ์น˜ ๋“ฑ ์‹ค๋ฌด์  ๋น„ํšจ์œจ์ด ๋ฐœ์ƒํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Virtualized Module : ๋ฒ ์ด์Šค ๋ชจ๋ธ๊ณผ PEFT ์–ด๋Œ‘ํ„ฐ๋ฅผ ๋…ผ๋ฆฌ์ ์œผ๋กœ ๋ถ„๋ฆฌ, ๋‹ค์ค‘ ์–ด๋Œ‘ํ„ฐ๋ฅผ

Framework
No Image

Low Power Vision Transformer Accelerator with Hardware-Aware Pruning and Optimized Dataflow

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธฐ์กด ํŠธ๋žœ์Šคํฌ๋จธ ๊ฐ€์†๊ธฐ๋Š” ์ž๊ธฐโ€‘์–ดํ…์…˜์˜ O(Nยฒ) ๋ณต์žก๋„ ๊ฐ์†Œ์— ์ง‘์ค‘ํ–ˆ์œผ๋‚˜, ViT์—์„œ๋Š” ํ† ํฐ ์ˆ˜(N)๊ฐ€ ์ž‘์•„ ์–ดํ…์…˜ ๋น„์šฉ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๋”ฐ๋ผ์„œ FFN์ด ์ „์ฒด ์—ฐ์‚ฐ๋Ÿ‰ยท์ „๋ ฅ ์†Œ๋ชจ์˜ ์ฃผ๋œ ์›์ฒœ์ด ๋˜๋ฉฐ, ์ด๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์ด ์‹ค์ œ ์‹œ์Šคํ…œ ํšจ์œจ์— ๋” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ ๋™์  ํ† ํฐ ํ”„๋ฃจ๋‹ : ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„์ด ์šฉ์ดํ•˜๋„๋ก ํ† ํฐ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์„ ํƒยท์ œ๊ฑฐ, ๋ณต์žก๋„ ๊ฐ์†Œ์™€ ๋™์‹œ์— ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ ์ ˆ๊ฐ. ํ™œ์„ฑํ™” ํ•จ์ˆ˜ ๊ต์ฒด (GELU โ†’ ReLU) : ReLU๋Š” ์—ฐ์‚ฐ์ด ๊ฐ„๋‹จํ•˜๊ณ  ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ๋น„์šฉ์ด ๋‚ฎ์œผ๋ฉฐ,

Data
No Image

M4GN: Mesh-based Multi-segment Hierarchical Graph Network for Dynamic Simulations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ”์‰ฌ ๊ธฐ๋ฐ˜ GNN ์€ ์—ฐ์† PDE๋ฅผ ์ด์‚ฐ ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•ด ํ•™์Šตยท์˜ˆ์ธก์— ํ™œ์šฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊นŠ์€ ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ ์€ ๊ทธ๋ž˜ํ”„ ์ง๊ฒฝ์ด ์ปค์งˆ์ˆ˜๋ก ์—ฐ์‚ฐ๋Ÿ‰์ด O(NยทL) (N: ๋…ธ๋“œ ์ˆ˜, L: ๋ ˆ์ด์–ด ์ˆ˜)์œผ๋กœ ๊ธ‰์ฆํ•˜๊ณ , ๋…ธ๋“œ ํŠน์„ฑ์ด ์„œ๋กœ ์„ž์—ฌ ๊ณผโ€‘์Šค๋ฌด๋”ฉ ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ณ„์ธตํ˜• GNN ์€ ๊ทธ๋ž˜ํ”„๋ฅผ ์ฝ”์Šคํ™”(coarsening)ํ•ด ์ „ํŒŒ ๊ฑฐ๋ฆฌ๋ฅผ ์ค„์ด์ง€๋งŒ, ์ฝ”์Šค ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ์‹œ ๋ฌผ๋ฆฌ์  ๊ฒฝ๊ณ„(์˜ˆ: ์ถฉ๊ฒฉํŒŒ, ์žฌ๋ฃŒ ๋ถˆ์—ฐ์†)์™€ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ๋ณด์กดํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ค์›Œ ์ •ํ™•๋„ ์†์‹ค์ด ๋นˆ๋ฒˆํ•˜๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ๊ธฐ

Network
No Image

Mapping network structures and dynamics of decentralised cryptocurrencies: The evolution of Bitcoin (2009-2023)

1. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ : 2009โ€‘2023๋…„ ์ „์ฒด ๋ธ”๋ก์ฒด์ธ ํŠธ๋žœ์žญ์…˜์„ ํ™œ์šฉํ•œ ๋„คํŠธ์›Œํฌ ์žฌ๊ตฌ์„ฑ์€ ํ˜„์žฌ ๊ฐ€๋Šฅํ•œ ๊ฐ€์žฅ ํฌ๊ด„์ ์ธ ์ ‘๊ทผ์ด๋‹ค. ๋‹ค๋งŒ, ์˜คํ”„์ฒด์ธ(๋ผ์ดํŠธ๋‹ ๋„คํŠธ์›Œํฌ ๋“ฑ) ํ™œ๋™์€ ์ œ์™ธ๋˜์–ด ์‹ค์ œ ๋„คํŠธ์›Œํฌ ๋ณต์žก์„ฑ์„ ๋‹ค์†Œ ๊ณผ์†Œํ‰๊ฐ€ํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ๋„คํŠธ์›Œํฌ ์ธก์ • ์ง€ํ‘œ : ์ค‘์‹ฌ์„ฑ(๋…ธ๋“œ ๋””๊ทธ๋ฆฌ, ๋ฒ ํŠธ์œ„๋‹ˆ์Šค), ๋ถ€์˜ ๋ถ„ํฌ(์ง€๋‹ˆ๊ณ„์ˆ˜, ํŒ”๋งˆ ๋น„์œจ) ๋“ฑ์„ ์‚ฌ์šฉํ•œ ์ ์€ ์ ์ ˆํ•˜์ง€๋งŒ, ์‹œ๊ฐ„ ๊ฐ€์ค‘ ๋„คํŠธ์›Œํฌ (temporal network) ๋ถ„์„์ด ์ถ”๊ฐ€๋˜๋ฉด ๋ณ€ํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋” ์ •๋ฐ€ํžˆ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ์ฃผ์š” ๋ฐœ๊ฒฌ๊ณผ ๊ทธ ์˜๋ฏธ | ์ง„ํ™” ๋‹จ๊ณ„

Network
No Image

Mapping tuberculosis fatalities by region and age group in South Korea: A dataset for targeted health policy optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ฒฐํ•ต ์‚ฌ๋ง๋ฅ ์˜ ์—ฐ๋ น ์˜์กด์„ฑ : 70์„ธ ์ด์ƒ์—์„œ ์‚ฌ๋ง๋ฅ ์ด ๊ธ‰์ฆํ•˜๋Š” ๋“ฑ ์—ฐ๋ น์ด ์œ„ํ—˜ ์š”์ธ์œผ๋กœ ํฌ๊ฒŒ ์ž‘์šฉํ•œ๋‹ค(ํ‘œ 1). ๊ณต๊ฐ„ ์ด์งˆ์„ฑ : ์ˆ˜๋„๊ถŒยท๋น„์ˆ˜๋„๊ถŒ ๊ฐ„ ์ธ๊ตฌ ์—ฐ๋ น๊ตฌ์กฐ ์ฐจ์ด์™€ ๋ณ‘์› ๋ถ„ํฌ ์ฐจ์ด๊ฐ€ ๊ฒฐํ•ต ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ฐ์ดํ„ฐ ๊ฒฉ์ฐจ : ๋„ ์ˆ˜์ค€์—์„œ๋Š” ์—ฐ๋ น๋ณ„ ํ†ต๊ณ„๊ฐ€ ๊ณต๊ฐœ๋˜์ง€๋งŒ, ๊ตฌ์—ญ ์ˆ˜์ค€์—์„œ๋Š” ์—ฐ๋ นโ€‘๊ณต๊ฐ„ ๊ฒฐํ•ฉ ๋ฐ์ดํ„ฐ๊ฐ€ ๋น„๊ณต๊ฐœ๋ผ ์ •์ฑ… ์„ค๊ณ„์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ๋ฐ์ดํ„ฐ ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ• | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ตฌํ˜„ ๋ฐฉ์‹ | | | | | | (1) ์ด๊ณ„ ํ™•๋ณด | ๊ตฌ์—ญ๋ณ„ ์—ฐ๋ นโ€‘ํ†ตํ•ฉ ๊ฒฐํ•ต ํ™˜์žยท์‚ฌ๋ง์ž(Nโ‚›, Dโ‚›)

Physics Data
No Image

MaRVIn: A Cross-Layer Mixed-Precision RISC-V Framework for DNN Inference, from ISA Extension to Hardware Acceleration

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ˜ผํ•ฉ ์ •๋ฐ€๋„ ์–‘์žํ™” ๋Š” ์ตœ๊ทผ AI ํ•˜๋“œ์›จ์–ด ์ตœ์ ํ™” ํŠธ๋ Œ๋“œ์˜ ํ•ต์‹ฌ์ด๋ฉฐ, ํŠนํžˆ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ ์—ฐ์‚ฐยท๋ฉ”๋ชจ๋ฆฌยท์ „๋ ฅ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด RISCโ€‘V ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ๋Š” ๊ณ ์ •๋œ ์ •๋ฐ€๋„(์ฃผ๋กœ 8โ€‘bit ํ˜น์€ 16โ€‘bit) ์—ฐ์‚ฐ์— ์ตœ์ ํ™”๋ผ ์žˆ์–ด, ๊ฐ€๋ณ€ ์ •๋ฐ€๋„ ์—ฐ์‚ฐ์„ ์œ„ํ•œ ISAยทํ•˜๋“œ์›จ์–ด ์ง€์›์ด ๋ถ€์กฑํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ํŒจํ‚นยท์–ธํŒจํ‚น, ์—ฐ์‚ฐ ์œ ๋‹› ๋น„ํ™œ์„ฑํ™” ๋“ฑ ์†Œํ”„ํŠธ์›จ์–ดโ€‘ํ•˜๋“œ์›จ์–ด ๊ฐ„ ๋น„ํšจ์œจ ์ด ์„ฑ๋Šฅยท์ „๋ ฅ ํ•œ๊ณ„๋ฅผ ๋งŒ๋“ ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ์ฐจ๋ณ„์  | | | | | | ISA ํ™•์žฅ | 2/4/8โ€‘

Framework
No Image

MASH: Masked Anchored SpHerical Distances for 3D Shape Representation and Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ 3D ํ˜•ํƒœ ํ‘œํ˜„์˜ ๋‚œ์ œ : ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ, ๋ฉ”์‰ฌ, voxel ๋“ฑ ๊ฐ๊ฐ ์žฅยท๋‹จ์ ์ด ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ ๋ฉ”์‰ฌ๋Š” ๋ฉ”๋ชจ๋ฆฌ ์†Œ๋ชจ๊ฐ€ ํฌ๊ณ , voxel์€ ํ•ด์ƒ๋„ ์ œํ•œ์ด ์žˆ๋‹ค. ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ : ์ตœ๊ทผ PointNet++ยทDGCNN ๋“ฑ์€ ๋กœ์ปฌ/๊ธ€๋กœ๋ฒŒ ๊ฑฐ๋ฆฌ ์ •๋ณด๋ฅผ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ๊ฑฐ๋ฆฌ ์ž์ฒด๊ฐ€ ๋…ธ์ด์ฆˆ ์— ๋ฏผ๊ฐํ•˜๊ณ  ์Šค์ผ€์ผ ๋ถˆ๋ณ€์„ฑ ์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Masked Anchored Spherical Distances 1. ์•ต์ปค ํฌ์ธํŠธ ์„ ์ • ์ž…๋ ฅ ํ˜•ํƒœ(์˜ˆ: ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ)์—์„œ K๊ฐœ์˜ ๋Œ€ํ‘œ ์•ต์ปค ๋ฅผ Fa

Measuring Fractal Dimension using Discrete Global Grid Systems

Measuring Fractal Dimension using Discrete Global Grid Systems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ”„๋ž™ํ„ธ ์ฐจ์› ์€ ์ž์—ฐ ํ˜„์ƒ์˜ ๋ณต์žก์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ํ•ต์‹ฌ ์ง€ํ‘œ์ด๋ฉฐ, ํŠนํžˆ ๊ตฌ๋ฆ„, ํ•ด์•ˆ์„ , ์ง€ํ˜• ๋“ฑ ์ง€๋ฆฌ๊ณต๊ฐ„ ๋ฐ์ดํ„ฐ์— ๋„๋ฆฌ ์ ์šฉ๋œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ •๊ทœ ๊ฒฉ์ž ํ˜น์€ ์ž„์˜์˜ ์ปค๋ฒ„๋ง ์ง‘ํ•ฉ ์— ์˜์กดํ•ด ๊ฒฉ์ž ๋ฐฐ์น˜ยท๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค. DGGS ๋Š” ์ „ ์„ธ๊ณ„๋ฅผ ๊ณ„์ธต์ ์ด๊ณ  ๋“ฑ๋ฉด์ (๋˜๋Š” ๋“ฑ๊ฑฐ๋ฆฌ)์ธ ์…€๋กœ ๋ถ„ํ• ํ•˜๋Š” ์ฒด๊ณ„๋กœ, GISยท์›๊ฒฉํƒ์‚ฌ ๋ถ„์•ผ์—์„œ ๋ฐ์ดํ„ฐ ์ธ๋ฑ์‹ฑยท๋ถ„์„์— ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ”„๋ž™ํ„ธ ์ฐจ์› ์ธก์ •์— ์ ์šฉํ•˜๋ฉด ๊ฒฉ์ž ์˜์กด์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๊ณ  ์ง€๊ตฌ ๊ณก๋ฅ ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  1.

System
No Image

MEDEA: A Design-Time Multi-Objective Manager for Energy-Efficient DNN Inference on Heterogeneous Ultra-Low Power Platforms

| ๋ถ„์„ ํ•ญ๋ชฉ | ์ฃผ์š” ๋‚ด์šฉ | ์˜์˜ ๋ฐ ํ•œ๊ณ„ | | | | | | ๋ฌธ์ œ ์ •์˜ ๋ฐ ๋™๊ธฐ | ์ดˆ์ €์ „๋ ฅ ์ด๊ธฐ์ข… ํ”Œ๋žซํผ์—์„œ DNN ์ถ”๋ก  ์‹œ ์—๋„ˆ์ง€์™€ ๋ฉ”๋ชจ๋ฆฌ, ์‹ค์‹œ๊ฐ„ ์ œ์•ฝ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œ์ผœ์•ผ ํ•จ. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋Œ€๋ถ€๋ถ„ ๋‹จ์ผ ๋ชฉํ‘œ(์—๋„ˆ์ง€ ๋˜๋Š” ์„ฑ๋Šฅ) ํ˜น์€ ๊ณ ์ • ์ „์••ยท์ฃผํŒŒ์ˆ˜์— ์ดˆ์ . | ์‹ค์ œ ๋””๋ฐ”์ด์Šค ํ™˜๊ฒฝ์„ ๋ฐ˜์˜ํ•œ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ํ•„์š”์„ฑ์„ ์ž˜ ์ œ์‹œํ•จ. ๋‹ค๋งŒ, ๋งˆ๊ฐ ์‹œ๊ฐ„ ๋ชจ๋ธ๋ง์ด ์‹ค์ œ ์›Œํฌ๋กœ๋“œ ๋ณ€๋™์„ฑ์„ ์ถฉ๋ถ„ํžˆ ํฌ๊ด„ํ•˜๋Š”์ง€ ์ถ”๊ฐ€ ๊ฒ€์ฆ ํ•„์š”. | | MEDEA ์•„ํ‚คํ…์ฒ˜ | 1) ์ปค๋„โ€‘๋ ˆ๋ฒจ DVFS : ๊ฐ ์—ฐ์‚ฐ ์ปค๋„ ๋ณ„ ์ „์••ยท์ฃผํŒŒ์ˆ˜ ์กฐ์ •.<br>2) ์„ธ๋ถ„

No Image

Memory Access Vectors: Improving Sampling Fidelity for CPU Performance Simulations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ CPU ์„ฑ๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์€ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜์˜ ๋ณ‘๋ชฉ์„ ํŒŒ์•…ํ•˜๊ณ  ์ตœ์ ํ™” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ๋„๊ตฌ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ์ „์ฒด ํŠธ๋ ˆ์ด์Šค ๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๋žœ๋ค ์ƒ˜ํ”Œ๋ง ์„ ํ†ตํ•ด ๋น„์šฉ์„ ์ ˆ๊ฐํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ƒ˜ํ”Œ๋ง ๋น„์œจ์ด ๋‚ฎ์•„์งˆ์ˆ˜๋ก ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ ํŠน์„ฑ(์˜ˆ: ๊ณต๊ฐ„ยท์‹œ๊ฐ„ ์ง€์—ญ์„ฑ)์ด ์™œ๊ณก๋ผ ์˜ˆ์ธก ์ •ํ™•๋„ ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ƒ˜ํ”Œ๋ง ์ถฉ์‹ค๋„ ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋น„์šฉ์„ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด ์ ˆ์‹คํžˆ ์š”๊ตฌ๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Memory Access Vectors (MAV) | ์š”์†Œ | ์„ค๋ช…

No Image

Meshing of High-Dimensional Toroidal Manifolds from Quasi-Periodic Three-Body Problem Dynamics using Parameterization via Discrete One-Forms

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ค€์ฃผ๊ธฐ 3์ฒด ๋ฌธ์ œ ๋Š” ์ฒœ์ฒด์—ญํ•™ยท๋ถ„์ž๋™์—ญํ•™ ๋“ฑ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋ณต์žกํ•œ ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์œผ๋กœ, ํ•ด๊ฐ€ ํ† ๋Ÿฌ์Šค ํ˜•ํƒœ์˜ ๊ณ ์ฐจ์› ์œ„์ƒ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ† ๋Ÿฌ์Šค ๋‹ค์–‘์ฒด๋ฅผ ์ •๋ฐ€ํžˆ ๋ฉ”์‹ฑ ํ•˜๋Š” ๊ฒƒ์€ ๊ถค๋„ ์•ˆ์ •์„ฑ ๋ถ„์„, ์ „์—ญ ๋ฆฌํ„ด ๋งต(return map) ๊ตฌ์ถ•, ๊ทธ๋ฆฌ๊ณ  ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋“ฑ์— ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•(์˜ˆ: ๊ณ ์ฐจ์› ์ž„๋ฒ ๋”ฉ + Delaunay ์‚ผ๊ฐ๋ถ„ํ• , ๋ ˆ๋ฒจ์…‹ ๊ธฐ๋ฐ˜ ์žฌ๊ตฌ์„ฑ)์€ ์ฐจ์› ์ €์ฃผ ์™€ ์œ„์ƒ ์™œ๊ณก ๋ฌธ์ œ์— ์ทจ์•ฝํ•˜๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด: ์ด์‚ฐ 1โ€‘ํ˜•์‹ ํŒŒ๋ผ๋ฏธํ„ฐํ™” ์—ฐ์† 1โ€‘ํ˜•์‹ (differential 1โ€‘for

No Image

MetaDecorator: Generating Immersive Virtual Tours through Multimodality

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ฐ€์ƒ ํˆฌ์–ด ์‹œ์žฅ์˜ ํ•œ๊ณ„ : ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๊ฐ€์ƒ ํˆฌ์–ด๋Š” ์ดฌ์˜๋œ ์›๋ณธ ํŒŒ๋…ธ๋ผ๋งˆ๋ฅผ ๊ทธ๋Œ€๋กœ ์ œ๊ณตํ•˜๊ฑฐ๋‚˜, ๊ฐ„๋‹จํ•œ ์ƒ‰๋ณด์ •ยทํ•„ํ„ฐ ์ ์šฉ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋‹ค. ์ด๋Š” ์‚ฌ์šฉ์ž์˜ ๊ฐœ์„ฑ ํ‘œํ˜„๊ณผ ๋ชฐ์ž…๊ฐ ์ œ๊ณต์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ AI ๊ธฐ์ˆ ์˜ ๊ธ‰๋ถ€์ƒ : ํ…์ŠคํŠธโ€‘์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ(DALLยทE, Stable Diffusion ๋“ฑ)๊ณผ LLM(ChatGPT, GPTโ€‘4 ๋“ฑ)์˜ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜๋ฉด์„œ, ์ž์—ฐ์–ด ๋ช…๋ น๋งŒ์œผ๋กœ ๋ณตํ•ฉ์ ์ธ ์‹œ๊ฐยท์–ธ์–ดยท์ด‰๊ฐ ๊ฒฝํ—˜์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ ธ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ |

No Image

Microarchitecture Design and Benchmarking of Custom SHA-3 Instruction for RISC-V

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์•”ํ˜ธ ๊ฐ€์†๊ธฐ์˜ ํ•„์š”์„ฑ : ํด๋ผ์šฐ๋“œ, ์—ฃ์ง€, IoT ๋“ฑ์—์„œ ๋ฐ์ดํ„ฐ ๋ณด์•ˆ ์š”๊ตฌ๊ฐ€ ๊ธ‰์ฆํ•˜๋ฉด์„œ CPU ๋‚ด๋ถ€์— ์•”ํ˜ธ ์—ฐ์‚ฐ์„ ์ง์ ‘ ๋‚ด์žฅํ•˜๋Š” ๊ฒƒ์ด ํšจ์œจ์„ฑ ์ธก๋ฉด์—์„œ ํ•„์ˆ˜์ ์ด๋‹ค. SHAโ€‘3์˜ ํŠน์ˆ˜์„ฑ : SHAโ€‘3(Keccak)๋Š” ๋ผ์šด๋“œ ๊ธฐ๋ฐ˜ ํผ๋ฎคํ…Œ์ด์…˜๊ณผ ๋‹ค์ค‘ ๋‹จ๊ณ„ ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ์„ ํฌํ•จํ•ด, AESโ€‘NI์™€ ๊ฐ™์€ ๊ธฐ์กด ์•”ํ˜ธ ๋ช…๋ น์–ด์™€๋Š” ๊ตฌ์กฐ๊ฐ€ ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐ์กด ์„ค๊ณ„ ํŒจํ„ด์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | | | | | ๋ช…๋ น์–ด ์„ค๊ณ„ | SHAโ€‘3 ํผ๋ฎคํ…Œ์ด์…˜์„ ํ•˜๋‚˜์˜ ์ปค์Šคํ…€ RISCโ€‘V ๋ช…๋ น์–ด(`

MimicParts: Part-aware Style Injection for Speech-Driven 3D Motion Generation

MimicParts: Part-aware Style Injection for Speech-Driven 3D Motion Generation

[CATCHY TITLE KO] MimicParts: ํŒŒํŠธโ€‘์ธ์‹ ์Šคํƒ€์ผ ์ฃผ์ž…์œผ๋กœ ๋งโ€‘๊ตฌ๋™ 3D ๋ชจ์…˜์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ! [ABSTRACT KO] ์Œ์„ฑ ์‹ ํ˜ธ๋กœ๋ถ€ํ„ฐ ์Šคํƒ€์ผ์ด ์ž…ํžŒ 3D ์ธ๊ฐ„ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ๋Š”, ์Œ์„ฑ, ๊ฐœ๋ณ„ ์Šคํƒ€์ผ, ๊ทธ๋ฆฌ๊ณ  ์‹ ์ฒด ์›€์ง์ž„ ์‚ฌ์ด์˜ ๋ณต์žกํ•˜๊ณ  ๋ฏธ์„ธํ•œ ์ƒ๊ด€๊ด€๊ณ„ ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ต๋‹ค. ๊ธฐ์กด ์Šคํƒ€์ผ ์ธ์ฝ”๋”ฉ ๋ฐฉ์‹์€ ์Šคํƒ€์ผ ๋‹ค์–‘์„ฑ์„ ๊ณผ๋„ํ•˜๊ฒŒ ๋‹จ์ˆœํ™”ํ•˜๊ฑฐ๋‚˜(์˜ˆ: ์ „์‹ ์„ ํ•˜๋‚˜์˜ ์Šคํƒ€์ผ๋กœ ์ฒ˜๋ฆฌ) ์‹ ์ฒด ๋ถ€์œ„๋ณ„ ์Šคํƒ€์ผ ์ฐจ์ด(์ƒ์ฒด vs. ํ•˜์ฒด)๋ฅผ ๋ฌด์‹œํ•ด ๋™์ž‘์˜ ์‚ฌ์‹ค๊ฐ์„ ์ €ํ•ดํ•œ๋‹ค. ๋˜ํ•œ, ๋™์ž‘ ์Šคํƒ€์ผ์€ ๋ง์˜ ๋ฆฌ๋“ฌยท๊ฐ์ • ๋ณ€ํ™”์— ๋”ฐ๋ผ ๋™์ ์œผ

No Image

MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค์ค‘๋ชจ๋‹ฌ ํ—ˆ์œ„์ •๋ณด์˜ ๊ธ‰์ฆ : ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€๋ฅผ ๋™์‹œ์— ๋ณ€์กฐํ•˜๋Š” ์‚ฌ๋ก€๊ฐ€ ๋Š˜์–ด๋‚˜๋ฉด์„œ ๊ธฐ์กด ํ…์ŠคํŠธโ€‘์ „์šฉ ํ˜น์€ ์ด๋ฏธ์ง€โ€‘์ „์šฉ ๊ฒ€์ฆ๊ธฐ๋งŒ์œผ๋กœ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ผ๋ฒจ ๋ถ€์กฑ ๋ฌธ์ œ : ์ƒˆ๋กœ์šด ๋ณ€์กฐ ๊ธฐ๋ฒ•(์˜ˆ: AIโ€‘์ƒ์„ฑ ์ด๋ฏธ์ง€, ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์žฌ์กฐํ•ฉ ๋“ฑ)์ด ์ง€์†์ ์œผ๋กœ ๋“ฑ์žฅํ•ด, ๋งค๋ฒˆ ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง์ด ํ•„์š”ํ•˜๊ฒŒ ๋œ๋‹ค. ์ œ๋กœ์ƒทยท์ถ”๋ก โ€‘์‹œ์  ์ ‘๊ทผ : ๋ผ๋ฒจ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ , ์‚ฌ์ „ ํ•™์Šต๋œ ๋Œ€ํ˜• ๋ชจ๋ธ๊ณผ ์™ธ๋ถ€ ์ง€์‹(์›น) ํ™œ์šฉ์„ ํ†ตํ•ด ์ฆ‰์‹œ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ์š”๊ตฌ๋œ๋‹ค. 2. MIRAGE ํ”„๋ ˆ์ž„์›Œํฌ ์„ค๊ณ„ | ๋ชจ๋“ˆ | ํ•ต์‹ฌ ๊ธฐ๋Šฅ | ์‚ฌ์šฉ ๊ธฐ์ˆ ยท๋ชจ๋ธ

Framework Detection
No Image

Missing Data Multiple Imputation for Tabular Q-Learning in Online RL

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ฒฐ์ธก ๋ฐ์ดํ„ฐ ๋ฌธ์ œ : ์˜จ๋ผ์ธ RL์—์„œ๋Š” ์„ผ์„œ ์˜ค๋ฅ˜, ํ†ต์‹  ์ง€์—ฐ, ํ˜น์€ ์˜๋„์ ์ธ ํƒ์ƒ‰ ์ „๋žต์œผ๋กœ ์ธํ•ด ์ƒํƒœยท๋ณด์ƒยท๋‹ค์Œ ์ƒํƒœ ์ •๋ณด๊ฐ€ ๋ˆ„๋ฝ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด Qโ€‘๋Ÿฌ๋‹์€ ์ด๋Ÿฌํ•œ ๋ˆ„๋ฝ์„ ๋ฌด์‹œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ˆœํžˆ ํ•ด๋‹น ํŠธ๋žœ์ง€์…˜์„ ๋ฒ„๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ์ด ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ํ‘œํ˜• Qโ€‘๋Ÿฌ๋‹์˜ ํ•œ๊ณ„ : ํ‘œํ˜• ๋ฐฉ์‹์€ ์ž‘์€ ์ƒํƒœยทํ–‰๋™ ๊ณต๊ฐ„์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์ง€๋งŒ, ๊ฒฐ์ธก๊ฐ’์„ ๋‹ค๋ฃจ๋Š” ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•์ด ๋ถ€์žฌํ•˜๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋‹ค์ค‘ ์ž„ํ“จํ…Œ์ด์…˜(MI) : ๊ฒฐ์ธก๊ฐ’์„ ํ•˜๋‚˜์˜ ์ถ”์ •๊ฐ’์ด ์•„๋‹ˆ๋ผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•˜๊ณ , ๊ฐ๊ฐ์—

Data Learning
No Image

Mitigating context switching in densely packed Linux clusters with Latency-Aware Group Scheduling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ฐ€์ง‘ํ˜• ์›Œํฌ๋กœ๋“œ : ์„œ๋ฒ„๋ฆฌ์Šค, ํ•จ์ˆ˜โ€‘asโ€‘aโ€‘Service(FaaS) ๋“ฑ ์งง์€ ์‹คํ–‰ ์‹œ๊ฐ„๊ณผ ๋†’์€ ๋™์‹œ์„ฑ์„ ๊ฐ€์ง„ ์ž‘์—…์ด ๋‹ค์ˆ˜ ๋ฐฐ์น˜๋  ๋•Œ, ํ•˜๋‚˜์˜ ๋…ธ๋“œ์— ์ˆ˜๋ฐฑ~์ˆ˜์ฒœ ๊ฐœ์˜ cgroup์ด ์กด์žฌํ•œ๋‹ค. ๊ธฐ์กด ์Šค์ผ€์ค„๋Ÿฌ ํ•œ๊ณ„ : Linux CFS(Completely Fair Scheduler)๋Š” ๊ฐ ํƒœ์Šคํฌ์— ๊ณต์ •์„ฑ์„ ๋ณด์žฅํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ์ปจํ…์ŠคํŠธ ์Šค์œ„์นญ ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ณต์ •์„ฑ ์„ ์šฐ์„ ํ•œ๋‹ค. cgroup์ด ๋งŽ์•„์ง€๋ฉด ๋Ÿฐํ๊ฐ€ ๊ณผ๋ถ€ํ•˜๋˜๊ณ , ์Šค์œ„์น˜ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ์˜ค๋ฒ„ํ”„๋กœ๋น„์ €๋‹ : ํ˜„์žฌ ์‹ค๋ฌด์—์„œ๋Š” ๋…ธ๋“œ๋‹น ์—ฌ์œ 

No Image

mitransient: Transient light transport in Mitsuba 3

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Transient Light Transport ๋Š” ๋น›์ด ๋งค์งˆ์„ ํ†ต๊ณผํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฏธ์„ธํ•œ ์‹œ๊ฐ„ ์ง€์—ฐ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ถ„์•ผ๋กœ, ์ดˆ๊ณ ์† ๊ด‘ํ•™ยท๋ผ์ด๋‹คยท๋น„ํŒŒ๊ดด ๊ฒ€์‚ฌ ๋“ฑ์— ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด ๋ Œ๋”๋Ÿฌ(์˜ˆ: Mitsuba 2, PBRT)์—์„œ๋Š” ์ฃผ๋กœ ์ •์ (steadyโ€‘state) ์กฐ๋ช…๋งŒ์„ ์ง€์›ํ•ด, ์ˆœ๊ฐ„ ํ˜„์ƒ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋ ค๋ฉด ๋ณ„๋„ ๊ตฌํ˜„์ด ํ•„์š”ํ–ˆ๋‹ค. Mitsua 3๋Š” ๋ชจ๋“ˆ์‹ ์„ค๊ณ„์™€ JIT ์ปดํŒŒ์ผ ๊ธฐ๋ฐ˜์˜ ๊ณ ์„ฑ๋Šฅ ์ฝ”์–ด๋ฅผ ์ œ๊ณตํ•˜๋ฏ€๋กœ, ์ˆœ๊ฐ„ ๊ด‘์ „๋‹ฌ์„ ์œ„ํ•œ ํ™•์žฅ์— ์ตœ์ ์˜ ํ”Œ๋žซํผ์ด๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | |

No Image

Mixed Structural Choice Operator: Enhancing Technology Mapping with Heterogeneous Representations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ „ํ†ต์  ํ๋ฆ„์˜ ํ•œ๊ณ„ : ๋…ผ๋ฆฌ ์ตœ์ ํ™”์™€ ๊ธฐ์ˆ  ๋งคํ•‘์„ ์ˆœ์ฐจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋ฉด, ์ดˆ๊ธฐ ์ตœ์ ํ™” ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•œ ๊ตฌ์กฐ์  ํŽธํ–ฅ์ด ์ดํ›„ ๋งคํ•‘ ๋‹จ๊ณ„์—์„œ ๊ทธ๋Œ€๋กœ ์ „์ด๋ผ ์ „์ฒด ํ•ฉ์„ฑ ํ’ˆ์งˆ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๊ธฐ์กด ํ•ด๊ฒฐ์ฑ… : ๋‹ค์ค‘ ๋…ผ๋ฆฌ ํ‘œํ˜„ ํ˜‘์—… ์ตœ์ ํ™”์™€ ๊ตฌ์กฐ ์„ ํƒ(Structural Choice) ๊ธฐ๋ฒ•์€ ์–ด๋А ์ •๋„ ๊ฐœ์„ ์„ ๋ณด์˜€์ง€๋งŒ, ๊ธฐ์ˆ โ€‘์ธ์‹(technologyโ€‘aware) ์ตœ์ ํ™”๊ฐ€ ๊ฒฐ์—ฌ๋ผ ์‹ค์ œ ์…€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋‚˜ FPGA LUT ๋น„์šฉ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Mixed Structural Choices (MCH)

No Image

ML For Hardware Design Interpretability: Challenges and Opportunities

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ML ๋ชจ๋ธ ๊ทœ๋ชจ ํ™•๋Œ€ : ์˜ค๋Š˜๋‚ ์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜์–ต~์ˆ˜์ฒœ์–ต ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋‹ฌํ•˜๋ฉฐ, ๊ธฐ์กด CPU/GPU๋งŒ์œผ๋กœ๋Š” ์ „๋ ฅยท์„ฑ๋Šฅ ํšจ์œจ์ด ๋–จ์–ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ „์šฉ ASIC/FPGA ๊ฐ€์†๊ธฐ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ์„ค๊ณ„ ํ•ด์„์„ฑ์˜ ๋ณ‘๋ชฉ : RTL ์ˆ˜์ค€์˜ ์„ค๊ณ„๋Š” ๋งค์šฐ ์ €์ˆ˜์ค€์ด๋ฉฐ, ์„ค๊ณ„ ์˜๋„ยท์ œ์•ฝ์กฐ๊ฑด์„ ๋ฌธ์„œํ™”ํ•˜์ง€ ์•Š์œผ๋ฉด ํŒ€ ๊ฐ„ ํ˜‘์—…ยท๋””๋ฒ„๊น…์ด ์–ด๋ ค์›Œ ์„ค๊ณ„ ์ฃผ๊ธฐ๊ฐ€ ๊ธธ์–ด์ง„๋‹ค. ํ˜„์žฌ๋Š” ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์ˆ˜์ž‘์—…์œผ๋กœ ์ฃผ์„ยท์„ค๋ช…์„œ๋ฅผ ์ž‘์„ฑํ•œ๋‹ค. 2. LLM์„ ํ™œ์šฉํ•œ RTLโ€‘toโ€‘NL ์ž‘์—… ํ•ต์‹ฌ ์•„์ด๋””์–ด : LLM์—๊ฒŒ RTL ์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜๋ฉด, ํ•ด๋‹น ์ฝ”๋“œ์˜ ๋™์ž‘

No Image

Model-Guided Dual-Role Alignment for High-Fidelity Open-Domain Video-to-Audio Generation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋น„๋””์˜คโ€‘ํˆฌโ€‘์˜ค๋””์˜ค ๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ์‹ค์‹œ๊ฐ„ ์ฝ˜ํ…์ธ  ๋ณด๊ฐ•, AR/VR, ์˜ํ™” ํฌ์ŠคํŠธโ€‘ํ”„๋กœ๋•์…˜ ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ์ด ๊ธฐ๋Œ€๋˜๋Š” ํ•ต์‹ฌ ๊ณผ์ œ์ด๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ๋ถ„๋ฅ˜๊ธฐโ€‘๊ธฐ๋ฐ˜ ๊ฐ€์ด๋“œ (classifierโ€‘guided) ํ˜น์€ ๋ถ„๋ฅ˜๊ธฐโ€‘ํ”„๋ฆฌ ๊ฐ€์ด๋“œ (classifierโ€‘free guidance) ๋ฐฉ์‹์— ์˜์กดํ•ด, ๋ชจ๋ธ์ด ์™ธ๋ถ€ ์‹ ํ˜ธ์— ์˜ํ•ด ์กฐ์ •๋˜๋Š” ๊ตฌ์กฐ๋ฅผ ์ทจํ•œ๋‹ค. ์ด๋Š” ๊ฐ€์ด๋“œ ์‹ ํ˜ธ์˜ ํ’ˆ์งˆ ์— ํฌ๊ฒŒ ์ขŒ์šฐ๋˜๋ฉฐ, ๊ณ ํ•ด์ƒ๋„ยท๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์—์„œ ์ผ๊ด€๋œ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ต๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ๋ชจ๋ธโ€‘์ฃผ๋„ ๋“€์–ผโ€‘์—ญํ•  ์ •๋ ฌ | ์š”

Model
No Image

Modeling and Optimization of Insulin Injection for Type-1 Diabetes Mellitus Management

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ”ผํ•˜์ธต์˜ ์—ญํ•  : ์ธ์А๋ฆฐ์€ ํ”ผํ•˜ ์กฐ์ง์— ์ฃผ์ž…๋œ ๋’ค ํ˜ˆ๋ฅ˜๋กœ ํก์ˆ˜๋˜๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ์ธ์А๋ฆฐยทํฌ๋„๋‹น์˜ ํ™•์‚ฐยท๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ํ˜ˆ๋‹น ๋ณ€๋™์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ „์‹  ๋™์—ญํ•™(์˜ˆ: ์ตœ์†Œํ˜ˆ๋‹น ๋ชจ๋ธ)์ด๋‚˜ ๊ฐ„๋‹จํ•œ ์ผ์ฐจ ์ด์ฐจ ์‹œ์Šคํ…œ์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ํ”ผํ•˜์ธต์˜ ๋ฏธ์„ธ ํ™˜๊ฒฝ์„ ์ •๋Ÿ‰ํ™”ํ•œ ๋ชจ๋ธ์€ ๋ถ€์กฑํ–ˆ๋‹ค. ๋ถ„์ž ํ†ต์‹  ๊ด€์  : ๋‹ค์„ธํฌ ๊ฐ„ ์‹ ํ˜ธ ์ „๋‹ฌ์„ โ€˜๋ถ„์ž ํ†ต์‹ โ€™์œผ๋กœ ํ•ด์„ํ•จ์œผ๋กœ์จ, ์ธ์А๋ฆฐ ์ž…์ž์™€ ํฌ๋„๋‹น ๋ถ„์ž ์‚ฌ์ด์˜ ํ™•์‚ฐยท๊ฒฐํ•ฉยท๋ถ„ํ•ด ๊ณผ์ •์„ ๋ฌผ๋ฆฌโ€‘ํ™”ํ•™์ ์œผ๋กœ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ธฐ์ˆ ํ•œ๋‹ค๋Š” ์ ์ด ํ˜์‹ ์ ์ด๋‹ค. 2. ๋ชจ๋ธ๋ง ์ ‘๊ทผ๋ฒ• | ์š”

Model
No Image

Modeling Protein Evolution via Generative Inference From Monte Carlo Chains to Population Genetics

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ 1. ์ „ํ†ต์  ์น˜ํ™˜ ๋ชจ๋ธ์˜ ํ•œ๊ณ„ Jukesโ€‘Cantor, HKY, GTR, WAG ๋“ฑ์€ ์‚ฌ์ดํŠธ ๋…๋ฆฝ ์„ ์ „์ œํ•œ๋‹ค. ์‹ค์ œ ๋‹จ๋ฐฑ์งˆ์€ ๊ตฌ์กฐ์ ยท๊ธฐ๋Šฅ์  ์ œ์•ฝ์œผ๋กœ ์ธํ•ด ์—ํ”ผ์Šคํƒ€์‹œ์Šค(epistasis) ๊ฐ€ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์กด์žฌํ•œ๋‹ค. 2. ์ƒ์„ฑ ๋ชจ๋ธ(DCA)์˜ ๋“ฑ์žฅ ๋Œ€๊ทœ๋ชจ ์ž์—ฐ ์„œ์—ด MSA๋กœ๋ถ€ํ„ฐ Potts ๋ชจ๋ธ (ํ•„๋“œ hแตข, ๊ฒฐํ•ฉ Jแตขโฑผ)์„ ํ•™์Šตํ•ด ํ™•๋ฅ  ๋ถ„ํฌ P(a) โˆ e^{ E(a)} ๋ฅผ ์–ป๋Š”๋‹ค. ์—๋„ˆ์ง€ E๋Š” ํ”ผํŠธ๋‹ˆ์Šค ์˜ ์—ญ์ˆ˜๋กœ ํ•ด์„ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์žฅ๊ฑฐ๋ฆฌ ์ƒํ˜ธ์ž‘์šฉ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํฌํ•จํ•œ๋‹ค. 2. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ ๋น„๊ต | ๋ฐฉ๋ฒ•

Model Quantitative Biology
No Image

MTPNet: Multi-Grained Target Perception for Unified Activity Cliff Prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Activity cliff ์€ ๊ตฌ์กฐ๊ฐ€ ์œ ์‚ฌํ•˜์ง€๋งŒ ํ™œ์„ฑ์ด ํฌ๊ฒŒ ๋‹ค๋ฅธ ํ™”ํ•ฉ๋ฌผ ์Œ์„ ์˜๋ฏธํ•˜๋ฉฐ, ์‹ ์•ฝ ์„ค๊ณ„์—์„œ ์œ„ํ—˜ ์‹ ํ˜ธ๋กœ ์ž‘์šฉํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ๋‹จ์ผ ํƒ€๊นƒ (์˜ˆ: ํŠน์ • ํšจ์†Œ)๋งŒ์„ ๊ณ ๋ คํ•ด, ๋‹ค์ค‘ ํƒ€๊นƒ ํ˜น์€ ํƒ€๊นƒ ๋ณ€์ด๊นŒ์ง€ ํฌ๊ด„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” ์‹ค์ œ ์•ฝ๋ฌผ ๊ฐœ๋ฐœ ๋‹จ๊ณ„์—์„œ ๋‹ค์ค‘ ํƒ€๊นƒ ๋ณตํ•ฉ์ฒด ๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ์— ํฐ ์ œ์•ฝ์ด ๋œ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | MTPNet ์ด๋ผ๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์‹œ | ๋‹จ์ผ GNN์ด ์•„๋‹Œ, ํƒ€๊นƒ ๋‹จ๋ฐฑ์งˆ ์ •๋ณด๋ฅผ ์ง์ ‘ ํ™œ์šฉํ•ด ๋ถ„์ž ํ‘œํ˜„์„ ์กฐ์ • |

No Image

Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ์˜ ํ’๋ถ€ํ•จ vs. ์‹ค์‹œ๊ฐ„ ์ œ์•ฝ : EO๋Š” ๋‹ค์ค‘์„ผ์„œ(๊ด‘ํ•™, SAR, ๋ ˆ์ด๋”, ํ•˜์ดํผ์ŠคํŽ™ํŠธ๋Ÿผ ๋“ฑ)๋กœ๋ถ€ํ„ฐ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์‹ค์ œ ์šด์˜์—์„œ๋Š” ๋น„์šฉยท์ „๋ ฅยทํ†ต์‹  ์ œํ•œ ๋“ฑ์œผ๋กœ ์ถ”๋ก  ์‹œ ๋ชจ๋“  ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†๋‹ค. ํ˜‘์—… ํ•™์Šต์˜ ํ•„์š”์„ฑ : ํ›ˆ๋ จ ๋‹จ๊ณ„์—์„œ ๋‹ค์–‘ํ•œ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ํ™œ์šฉํ•ด ํ’๋ถ€ํ•œ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ๋‹จ์ผ๋ชจ๋‹ฌ ์ถ”๋ก ์— ์ „์ด์‹œํ‚ค๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ์•„์ด๋””์–ด๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ๋ชจ๋‹ฌ๋ฆฌํ‹ฐโ€‘๋น„ํŠน์ •(coโ€‘learning) ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์•ˆ | ํŠน์ • ์ถ”๋ก 

Model Learning
Multi-User Personalisation in Human-Robot Interaction: Resolving Preference Conflicts Using Gradual Argumentation

Multi-User Personalisation in Human-Robot Interaction: Resolving Preference Conflicts Using Gradual Argumentation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ํ™˜๊ฒฝ : ์˜ค๋Š˜๋‚  ๋กœ๋ด‡์€ ๊ฐ€์ •, ์‚ฌ๋ฌด์‹ค, ๊ณต๊ณต์žฅ์†Œ ๋“ฑ ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์ด ๋™์‹œ์— ์ด์šฉํ•˜๋Š” ์ƒํ™ฉ์— ๋ฐฐ์น˜๋˜๊ณ  ์žˆ๋‹ค. ๋งž์ถคํ˜• ์ƒํ˜ธ์ž‘์šฉ : ๊ฐ๊ฐ์˜ ์‚ฌ์šฉ์ž๋Š” ๋กœ๋ด‡์—๊ฒŒ ๊ธฐ๋Œ€ํ•˜๋Š” ํ–‰๋™, ์„œ๋น„์Šค ์ˆ˜์ค€, ์ธํ„ฐํŽ˜์ด์Šค ์„ ํ˜ธ๋„๊ฐ€ ๋‹ค๋ฅด๋‹ค. ์„ ํ˜ธ ์ถฉ๋Œ : ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ์šฉ์ž๋“ค์˜ ์š”๊ตฌ๊ฐ€ ์ถฉ๋Œํ•  ๊ฒฝ์šฐ ๋กœ๋ด‡์ด ์–ด๋–ป๊ฒŒ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด์ง€์— ๋Œ€ํ•œ ๋ช…ํ™•ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค. 2. ํ•ต์‹ฌ ๊ฐœ๋…: ์ ์ง„์  ๋…ผ์ฆ (Gradual Argumentation) ๋…ผ์ฆ ํ”„๋ ˆ์ž„์›Œํฌ : ๊ฐ ์‚ฌ์šฉ์ž์˜ ์„ ํ˜ธ๋ฅผ โ€˜์ฃผ์žฅ(argument)โ€™์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ์ฃผ์žฅ ๊ฐ„์˜

No Image

Multiclass Local Calibration With the Jensen-Shannon Distance

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์˜ ์ค‘์š”์„ฑ : ํ™•๋ฅ  ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •์ด ์š”๊ตฌ๋˜๋Š” ๋ถ„์•ผ(์˜๋ฃŒ, ๊ธˆ์œต, ์ž์œจ์ฃผํ–‰ ๋“ฑ)์—์„œ๋Š” ๋ชจ๋ธ์ด โ€œ์–ผ๋งˆ๋‚˜ ํ™•์‹ ํ•˜๋Š”๊ฐ€โ€๋ฅผ ์ •ํ™•ํžˆ ํ‘œํ˜„ํ•ด์•ผ ํ•จ. ๋‹ค์ค‘ ํด๋ž˜์Šค ๊ฐ• ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์˜ ํ•œ๊ณ„ : ์ „์ฒด ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ํ‰๊ท ์ ์œผ๋กœ ๋งž์ถ”๋Š” ๊ฐ• ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์€ ํฌ์†Œ ์˜์—ญ์—์„œ์˜ ์˜ค๋ฅ˜๋ฅผ ๊ฐ์ถ”๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Œ. ๊ทผ์ ‘ ํŽธํ–ฅ(proximity bias) : ํŠน์ง• ๊ณต๊ฐ„์—์„œ ์ด์›ƒ์ด ์ ์€ ์ง€์—ญ์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•ด ๋ชจ๋ธ์ด ๊ณผ์‹ ํ•˜๊ฑฐ๋‚˜ ๊ณผ์†Œ์‹ ๋ขฐํ•˜๊ฒŒ ๋จ. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ „์—ญ์ ์ธ ์ •๊ทœํ™”๋งŒ ์ˆ˜ํ–‰ํ•ด ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•จ. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ |

No Image

Multihead Finite-State Compression

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์œ ํ•œ ์ƒํƒœ ์••์ถ• ์€ ์ „ํ†ต์ ์ธ ์••์ถ• ์ด๋ก ์—์„œ ์ œํ•œ๋œ ๋ฉ”๋ชจ๋ฆฌ(์œ ํ•œ ์ƒํƒœ ๊ธฐ๊ณ„)๋งŒ์„ ์‚ฌ์šฉํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋ชจ๋ธ์ด๋ฉฐ, ์œ ํ•œ ์ƒํƒœ ์ฐจ์› (finiteโ€‘state dimension)์ด๋ผ๋Š” ๋ณต์žก๋„ ์ง€ํ‘œ์™€ ๊นŠ์€ ์—ฐ๊ด€์ด ์žˆ๋‹ค. HuangยทLiยทLutzยทLutz(2025)์˜ ๋‹ค์ค‘ ํ—ค๋“œ ์œ ํ•œ ์ƒํƒœ ์ฐจ์› ์€ ์—ฌ๋Ÿฌ ์ฝ๊ธฐ ํ—ค๋“œ๋ฅผ ํ—ˆ์šฉํ•จ์œผ๋กœ์จ ์ฐจ์›์˜ ๋ฏธ์„ธ ์กฐ์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์ง€๋งŒ, ์ด์— ๋Œ€์‘ํ•˜๋Š” ์••์ถ• ๋ชจ๋ธ ์€ ์•„์ง ์ œ์‹œ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๋ฉฐ, โ€œ์••์ถ• ์ฐจ์›โ€์ด๋ผ๋Š” ๊ด€๊ณ„๋ฅผ ๋‹ค์ค‘ ํ—ค๋“œ ํ™˜๊ฒฝ์—์„œ๋„ ์„ฑ๋ฆฝ์‹œํ‚ค๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ๋‹ค

No Image

NABench: Large-Scale Benchmarks of Nucleotide Foundation Models for Fitness Prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ƒ๋ฌผํ•™์  ์ ํ•ฉ๋„ ์˜ˆ์ธก ์€ ์œ ์ „ ๋ณ€์ด์˜ ๊ธฐ๋Šฅ์  ์˜ํ–ฅ์„ ํ•ด์„ํ•˜๊ณ , ์‹ ์•ฝ ๊ฐœ๋ฐœยท์ง„ํ™” ์—ฐ๊ตฌ ๋“ฑ์— ํ•„์ˆ˜์ ์ธ ๊ณผ์ œ์ด๋‹ค. ์ตœ๊ทผ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ณผ ์ƒ๋ฌผํ•™์  ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ ์ด DNAยทRNA ์„œ์—ด์„ ํ•™์Šตํ•˜๋ฉด์„œ ๋›ฐ์–ด๋‚œ ์ „์ด ํ•™์Šต ๋Šฅ๋ ฅ์„ ๋ณด์ด๊ณ  ์žˆ์ง€๋งŒ, ํ‘œ์ค€ํ™”๋œ ํ‰๊ฐ€ ์ฒด๊ณ„ ๊ฐ€ ๋ถ€์žฌํ–ˆ๋‹ค. NABench๋Š” ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ณ , ๋ชจ๋ธ ๊ฐ„ ๊ณต์ •ํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ๋น„๊ต ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ | ๋ฐ์ดํ„ฐ ์œ ํ˜• | ๊ทœ๋ชจ | ์ถœ์ฒ˜ | ํŠน์ง• | | | | | | | ์‹คํ—˜์  ํ”ผํŠธ๋‹ˆ์Šค | ~2M ๋ณ€์ด | Deep M

Model
No Image

Navigating the Edge-Cloud Continuum: A State-of-Practice Survey

1. ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ชฉํ‘œ ๋™๊ธฐ : ์—ฃ์ง€์™€ ํด๋ผ์šฐ๋“œ๊ฐ€ ์ ์  ๋” ๊ธด๋ฐ€ํžˆ ๊ฒฐํ•ฉ๋˜๋Š” ํ˜„์ƒ(โ€˜์—ฐ์†์ฒดโ€™)์ด ์‚ฐ์—… ์ „๋ฐ˜์— ํผ์ง€๊ณ  ์žˆ์œผ๋‚˜, ์‹ค์ œ ๊ตฌํ˜„ ์‹œ ๊ฒช๋Š” ์ธํ”„๋ผยทํ‘œ์ค€ยทํˆด๋ง ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‹ค์šฉ์  ์ง€์‹์ด ๋ถ€์กฑํ•จ. ๋ชฉํ‘œ : ๊ฐœ๋ฐœ์ž ์นœํ™”์ ์ธ ๊ด€์ ์—์„œ ์—ฐ์†์ฒด๋ฅผ ์ดํ•ดํ•˜๊ณ  ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก (i) ๊ฐœ๋…์  ํ”„๋ ˆ์ž„์›Œํฌ, (ii) ์•„ํ‚คํ…์ฒ˜ยท์„ฑ๋Šฅยท๋ฐฐํฌ ํŒจ๋Ÿฌ๋‹ค์ž„ ์ •๋ฆฌ, (iii) ์ฃผ์š” ํ”Œ๋žซํผยทํˆด ์†Œ๊ฐœ, (iv) ์‹ค์ œ ์‚ฌ๋ก€์™€ ์‹คํ—˜ ํ™˜๊ฒฝ ์ œ๊ณต, (v) ํ–ฅํ›„ ์—ฐ๊ตฌ ๊ณผ์ œ ๋„์ถœ์„ ๋ชฉํ‘œ๋กœ ํ•จ. 2. ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ๋น„๊ณ  | | | | | | ๋ฌธํ—Œ ์ˆ˜์ง‘ | ์ตœ์‹  ํ•™

No Image

Needles in the Landscape: Semi-Supervised Pseudolabeling for Archaeological Site Discovery under Label Scarcity

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋ผ๋ฒจ ํฌ์†Œ์„ฑ : ๊ณ ๊ณ ํ•™ ๋ฐ์ดํ„ฐ๋Š” ์–‘์„ฑ(์œ ์ ) ๋ผ๋ฒจ์ด ๊ทนํžˆ ์ ๊ณ , ๋Œ€๋ถ€๋ถ„์ด โ€œ๋ฏธ๋ผ๋ฒจโ€(unlabeled) ์ƒํƒœ์ด๋ฉฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ์ง€๋„ํ•™์Šต์— ํฐ ์ œ์•ฝ์„ ๋งŒ๋“ ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ : LAMAP ๋“ฑ ๊ธฐ์กด ๋ชจ๋ธ์€ ์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜์œผ๋กœ, ๋ผ๋ฒจ์ด ์ถฉ๋ถ„ํžˆ ํ™•๋ณด๋œ ๊ฒฝ์šฐ์—๋งŒ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋ผ๋ฒจ์ด ๋ถ€์กฑํ•˜๋ฉด ๊ณผ์ ํ•ฉ ๋ฐ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๊ฐ€ ์‹ฌํ™”๋œ๋‹ค. 2. ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  | ๊ตฌ์„ฑ ์š”์†Œ | ์„ค๋ช… | ์—ญํ•  | | | | | | ๋ฐ˜์ง€๋„ํ•™์Šต PU ํ”„๋ ˆ์ž„์›Œํฌ | ์–‘์„ฑ ๋ผ๋ฒจ๋งŒ ์‚ฌ์šฉํ•˜๊ณ  ๋‚˜๋จธ์ง€๋Š” โ€œunlabeledโ€๋กœ ์ฒ˜๋ฆฌ | ๋ผ

No Image

Neural Cellular Automata: From Cells to Pixels

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ NCA์˜ ์žฅ์  : ๋กœ์ปฌ ๊ทœ์น™ ๊ธฐ๋ฐ˜์˜ ์ž๊ธฐ ์กฐ์งํ™”, ์žฌ์ƒยท๊ฐ•์ธ์„ฑ, ๋‹ค์–‘ํ•œ ์ƒ์„ฑ ์ž‘์—…์— ์ ์šฉ ๊ฐ€๋Šฅ. ํ˜„์กด ํ•œ๊ณ„ : ํ›ˆ๋ จยท์ถ”๋ก  ์‹œ ๊ฒฉ์ž ๊ทœ๋ชจ์— ๋”ฐ๋ผ ๋ฉ”๋ชจ๋ฆฌยท์‹œ๊ฐ„ ๋ณต์žก๋„๊ฐ€ ๊ธ‰์ฆํ•ด ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ยท3D ํ˜•ํƒœ ์ƒ์„ฑ์ด ์‹ค์šฉ์ ์ด์ง€ ์•Š์Œ. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Coarseโ€‘grid NCA + Implicit Decoder ๊ตฌ์กฐ ์ œ์•ˆ | NCA๋Š” ์ €ํ•ด์ƒ๋„์—์„œ ์ „์—ญ ํŒจํ„ด์„ ํ˜•์„ฑํ•˜๊ณ , ๋””์ฝ”๋”๊ฐ€ ์ด๋ฅผ ๊ณ ํ•ด์ƒ๋„ ํ”ฝ์…€/๋ณผ๋ฅจ์œผ๋กœ ๋ณ€ํ™˜ํ•ด ํ•ด์ƒ๋„ ๋…๋ฆฝ์„ฑ์„ ํ™•๋ณด | | 2 | ์™„์ „ ๋กœ์ปฌ ์—ฐ์‚ฐ

No Image

Neural Shell Texture Splatting: More Details and Fewer Primitives

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ Gaussian Splatting ์€ ์ตœ๊ทผ NeRF ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ ๋ Œ๋”๋ง์„ ๋Œ€์ฒดํ•˜๊ฑฐ๋‚˜ ๋ณด์™„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ์— ๊ฐ•์ ์ด ์žˆ์ง€๋งŒ, ์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์— ๋‹ฌํ•˜๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋ฆฌ๋ฏธํ‹ฐ๋ธŒ๊ฐ€ ํ•„์š”ํ•ด ๋ฉ”๋ชจ๋ฆฌยท์—ฐ์‚ฐ ๋น„์šฉ์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด ๋ฌธ์ œ๋ฅผ โ€œ๊ธฐํ•˜์™€ ์™ธ๊ด€์˜ ์–ฝํž˜โ€ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ•ด์†Œํ•˜๋ฉด ํ”„๋ฆฌ๋ฏธํ‹ฐ๋ธŒ ์ˆ˜๋ฅผ ์ค„์ด๋ฉด์„œ๋„ ํ’ˆ์งˆ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด: Neural Shell Texture ์ „์—ญ ํ…์Šค์ฒ˜ ํ•„๋“œ ๋ฅผ ๋ณ„๋„๋กœ ํ•™์Šตํ•œ๋‹ค. ํ‘œ๋ฉด ๊ทผ์ฒ˜(์‰˜) ์˜์—ญ์— ํ…์Šค์ฒ˜ ์ •๋ณด๋ฅผ

No Image

Neutral species facilitate coexistence among cyclically competing species under birth and death processes

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ „ํ†ต RPS ๋ชจ๋ธ์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ 3์ข… ๊ฐ„์˜ ์Œ๋Œ€ ์ƒํ˜ธ์ž‘์šฉ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ์ž์—ฐ ์ถœ์ƒยท์‚ฌ๋ง(birthโ€‘death) ๊ณผ์ •์„ ๋ฐฐ์ œํ•˜๊ฑฐ๋‚˜ ๊ณ ์ •๋œ ๋นˆ์นธ(โˆ…)๋งŒ์„ ๊ณ ๋ คํ–ˆ๋‹ค. ์ด๋Š” ์‹ค์ œ ์ƒํƒœ๊ณ„์—์„œ ํ”ํžˆ ๊ด€์ฐฐ๋˜๋Š” โ€œ์ค‘๋ฆฝ ์ข…โ€(์˜ˆ: ์„œ์‹์ง€ ๋‚ด ๋น„๊ฒฝ์Ÿ ์‹๋ฌผ)๊ณผ ๊ทธ๋“ค์˜ ๋™์  ์—ญํ• ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ณ ์ฐจ ์ƒํ˜ธ์ž‘์šฉ(HOI)์˜ ๋ถ€์ƒ : ์ตœ๊ทผ ์ด๋ก ยท์‹คํ—˜ ๋ชจ๋‘์—์„œ, ์ œ3์˜ ์ข…์ด ๋‘ ์ข… ๊ฐ„์˜ ๊ฒฝ์Ÿ ๊ฐ•๋„๋ฅผ ์กฐ์ ˆํ•˜๋Š” ๊ณ ์ฐจ ์ƒํ˜ธ์ž‘์šฉ์ด ๋‹ค์–‘์„ฑ ์œ ์ง€์— ํ•ต์‹ฌ์ ์ด๋ผ๋Š” ์ฆ๊ฑฐ๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ HOI๋ฅผ ์ถœ์ƒยท์‚ฌ๋ง ์ด๋ผ

Quantitative Biology
No Image

NLS: Natural-Level Synthesis for Hardware Implementation Through GenAI

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ์žฅ๋ฒฝ : ASIC/FPGA ์„ค๊ณ„๋Š” RTL ์ˆ˜์ค€์˜ ์ƒ์„ธํ•œ ๊ธฐ์ˆ ์ด ์š”๊ตฌ๋ผ ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ์ ‘๊ทผํ•˜๊ธฐ ์–ด๋ ต๋‹ค. HLS ํ•œ๊ณ„ : ๊ธฐ์กด HLS๋Š” C/C++ ๊ธฐ๋ฐ˜์ด๋ฏ€๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆ˜์ค€๊ณผ ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ ์‚ฌ์ด์˜ ์ถ”์ƒํ™” ๊ฒฉ์ฐจ๊ฐ€ ์กด์žฌํ•œ๋‹ค. GenAI ๋ถ€์ƒ : ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์€ ์ž์—ฐ์–ด ์ดํ•ดยท์ƒ์„ฑ ๋Šฅ๋ ฅ์ด ๋›ฐ์–ด๋‚˜๋ฉฐ, ์ฝ”๋“œ ์ž๋™ ์ƒ์„ฑ์—์„œ๋„ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. 2. NLS ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ํ•ต์‹ฌ ๊ธฐ์ˆ  | | | | | | ํ”„๋กฌํ”„ํŠธ ์—”์ง„ | ์„ค๊ณ„ ์˜๋„๋ฅผ ์ž์—ฐ์–ด/DSL ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ | ํ”„๋กฌํ”„ํŠธ ํ…œ

No Image

No Pose Estimation? No Problem: Pose-Agnostic and Instance-Aware Test-Time Adaptation for Monocular Depth Estimation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋„๋ฉ”์ธ ๊ฒฉ์ฐจ ๋ฌธ์ œ : MDE ๋ชจ๋ธ์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์‹ค์ œ ์šด์šฉ ํ™˜๊ฒฝ ์‚ฌ์ด์˜ ์กฐ๋ช…, ๋‚ ์”จ, ์นด๋ฉ”๋ผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ฐจ์ด ๋“ฑ์œผ๋กœ ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋œ๋‹ค. ๊ธฐ์กด TTA ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด TTA ๋ฐฉ๋ฒ•์€ ํฌ์ฆˆ ์ •๋ณด(์˜ˆ: SfM, SLAM ๊ธฐ๋ฐ˜) ์— ์˜์กดํ•˜๊ฑฐ๋‚˜, ๋™์  ๊ฐ์ฒด๋ฅผ ์ œ๋Œ€๋กœ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•ด selfโ€‘supervised loss ๊ฐ€ ์™œ๊ณก๋˜๋Š” ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Poseโ€‘agnostic TTA : ์นด๋ฉ”๋ผ ํฌ์ฆˆ ์—†์ด๋„ ๊นŠ์ด ์˜ˆ์ธก์„ ์ •์ œํ•˜๋Š” ์†์‹ค

Noncooperative Coordination for Decentralized Air Traffic Management

Noncooperative Coordination for Decentralized Air Traffic Management

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ค‘์•™์ง‘์ค‘์‹ ATM์˜ ํ•œ๊ณ„ : ํŠธ๋ž˜ํ”ฝ ๋ฐ€๋„ ์ฆ๊ฐ€, ๋„์‹ฌ ํ•ญ๊ณต๋ชจ๋นŒ๋ฆฌํ‹ฐ(UAM) ๋“ฑ ์ƒˆ๋กœ์šด ์šด์šฉ ํ™˜๊ฒฝ์—์„œ ํ™•์žฅ์„ฑยทํƒ„๋ ฅ์„ฑ ๋ถ€์กฑ์ด ๋‘๋“œ๋Ÿฌ์ง„๋‹ค. ๋ถ„์‚ฐํ˜• ATM์˜ ํ˜„์‹ค : ํ•ญ๊ณต์‚ฌยท๊ตฌ์—ญยท์ง€์—ญ ๋‹น๊ตญ ๋“ฑ ๋‹ค์ˆ˜ ์ดํ•ด๊ด€๊ณ„์ž๊ฐ€ ๋…๋ฆฝ์ ์ธ ๋ชฉํ‘œ์™€ ์‚ฌ์  ๋น„์šฉ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๋ฏผ๊ฐํ•œ ์ •๋ณด๋ฅผ ๊ณต์œ ํ•˜๊ธฐ๋ฅผ ๊บผ๋ฆฐ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์€ ์ค‘์•™ ์ตœ์ ํ™”๊ฐ€ ์•„๋‹ˆ๋ผ ์ดํ•ด๊ด€๊ณ„์ž ๊ฐ„ ์ „๋žต์  ์ƒํ˜ธ์ž‘์šฉ์— ์˜ํ•ด ๊ฒฐ์ •๋œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ์ฃผ์š” ์•„์ด๋””์–ด | ๊ธฐ์ˆ ์  ํ•ต์‹ฌ | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | | ๊ท ํ˜• ์—”์ง€๋‹ˆ์–ด๋ง | Reduced

Electrical Engineering and Systems Science
No Image

Nonlinear Computation with Linear Optics via Source-Position Encoding

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ด‘ํ•™ ์ปดํ“จํŒ…์˜ ์žฅ์  : ๊ณ ๋Œ€์—ญํญ, ์ €์ง€์—ฐ, ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ์— ์œ ๋ฆฌํ•˜๋ฉฐ, ์ „์ž ๊ธฐ๋ฐ˜ ๊ฐ€์†๊ธฐ ๋Œ€๋น„ ์ „๋ ฅ ์†Œ๋ชจ๊ฐ€ ๋‚ฎ๋‹ค. ๋น„์„ ํ˜•์„ฑ ๋ถ€์žฌ : ์‹ ๊ฒฝ๋ง์—์„œ ํ™œ์„ฑํ™” ํ•จ์ˆ˜์™€ ๊ฐ™์€ ๋น„์„ ํ˜• ์—ฐ์‚ฐ์€ ํ•„์ˆ˜์ ์ด๋ฉฐ, ๊ธฐ์กด ๊ด‘ํ•™ ์‹œ์Šคํ…œ์€ ์ฃผ๋กœ ์„ ํ˜• ๋ณ€ํ™˜(ํ”„๋ฆฌ์ฆ˜, ํšŒ์ ˆ, ์œ„์ƒ ๋ฐฐ์—ด ๋“ฑ)๋งŒ ์ œ๊ณตํ•œ๋‹ค. ๋น„์„ ํ˜• ์†Œ์ž๋ฅผ ๋„์ž…ํ•˜๋ ค๋ฉด ๊ณ ์ „๋ ฅ ๋ ˆ์ด์ €, ๋น„์„ ํ˜• ๊ฒฐ์ •, ํ˜น์€ ์ „์žโ€‘๊ด‘ ๋ณ€ํ™˜์ด ํ•„์š”ํ•ด ์‹œ์Šคํ…œ ๋ณต์žก๋„๊ฐ€ ๊ธ‰์ฆํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ์†Œ์Šคโ€‘ํฌ์ง€์…˜ ์ธ์ฝ”๋”ฉ ๋ฐ์ดํ„ฐโ€‘์˜์กด์  ์œ„์น˜ ์ œ์–ด : ์ž…๋ ฅ ๋ฒกํ„ฐ๋ฅผ ๊ด‘ํ•™ ์†Œ์Šค(์˜ˆ: ๋ ˆ์ด์ € ํฌ์ธํ„ฐ)์˜ ์œ„์น˜ ์ขŒํ‘œ์— ๋งคํ•‘ํ•œ

No Image

Numerical study of non-relativistic quantum systems and small oscillations induced in a helically twisted geometry

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์œ„์ƒ ๊ฒฐํ•จ๊ณผ ์–‘์ž์—ญํ•™ : ์ฝ”์Šค๋ฏน ์ŠคํŠธ๋งยท๊ธ€๋กœ๋ฒŒ ๋ชจ๋…ธํด ๋“ฑ ์œ„์ƒ ๊ฒฐํ•จ์ด ์–‘์ž ์ž…์ž์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์˜ค๋ž˜์ „๋ถ€ํ„ฐ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋ผ ์™”๋‹ค. ํŠนํžˆ torsion (๋น„ํ‹€๋ฆผ)์€ Einsteinโ€‘Cartan ์ด๋ก ์ด๋‚˜ ๊ณ ์ฒด ๋ฌผ๋ฆฌํ•™์˜ ๊ฒฐํ•จ ๋ชจ๋ธ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ํ—ฌ๋ฆฌ์ปฌ ํŠธ์œ„์ŠคํŠธ ๊ธฐํ•˜ : ๋‚˜์„ ํ˜• ์ขŒํ‘œ ๋ณ€ํ™˜์„ ํ†ตํ•ด ํ† ์…˜์„ ๊ฐ„๋‹จํžˆ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ๋กœ, ๊ธฐ์กด ์—ฐ๊ตฌ(Refs.

System Quantum Physics

< Category Statistics (Total: 5461) >

Electrical Engineering and Systems Science
107
General
4490
General Relativity
4
HEP-EX
3
HEP-LAT
1
HEP-PH
6
HEP-TH
7
MATH-PH
12
NUCL-TH
1
Quantum Physics
22

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut