KOINEU Logo
No Image

Finding the Sweet Spot: Optimal Data Augmentation Ratio for Imbalanced Credit Scoring Using ADASYN

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜• : ์‹ ์šฉ์ ์ˆ˜ ๋ชจ๋ธ์€ ๋””ํดํŠธ(๋ถˆ๋Ÿ‰) ์‚ฌ๋ก€๊ฐ€ ์ „์ฒด์˜ 5~10% ์ˆ˜์ค€์œผ๋กœ ๋งค์šฐ ํฌ์†Œํ•˜๋‹ค. ์ด๋กœ ์ธํ•ด ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋‹ค์ˆ˜ ํด๋ž˜์Šค์— ํŽธํ–ฅ๋˜๊ณ , ์†Œ์ˆ˜ ํด๋ž˜์Šค(๋””ํดํŠธ) ์˜ˆ์ธก๋ ฅ์ด ์ €ํ•˜๋œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ : SMOTE, ADASYN ๋“ฑ ํ•ฉ์„ฑ ์˜ค๋ฒ„์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์€ ์†Œ์ˆ˜ ํด๋ž˜์Šค๋ฅผ ์ธ์œ„์ ์œผ๋กœ ๋Š˜๋ ค ๊ท ํ˜•์„ ๋งž์ถ”์ง€๋งŒ, โ€œ์–ผ๋งˆ๋‚˜ ๋งŽ์ดโ€ ์ฆ๊ฐ•ํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ค์ฆ์  ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค. ์‹ค๋ฌด์—์„œ๋Š” ํ”ํžˆ 1:1(์™„์ „ ๊ท ํ˜•) ๋น„์œจ์„ ๋ฌด์กฐ๊ฑด ์ ์šฉํ•œ๋‹ค. 2. ๋ฐ์ดํ„ฐ ๋ฐ ์‹คํ—˜ ์„ค๊ณ„ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ์…‹

Data
No Image

FinSight: Towards Real-World Financial Deep Research

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ธˆ์œต ๋ณด๊ณ ์„œ ์ž๋™ํ™”์˜ ๋‚œ์ œ : ๋ฐ์ดํ„ฐ ์–‘์ด ๋ฐฉ๋Œ€ํ•˜๊ณ , ์ตœ์‹  ํšŒ๊ณ„ยท์žฌ๋ฌด ๊ทœ์ œ์— ๋งž๋Š” ์ •ํ™•ํ•œ ํ•ด์„ยท์‹œ๊ฐํ™”๊ฐ€ ํ•„์š”ํ•จ. ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์€ ํ…์ŠคํŠธ ์ƒ์„ฑ์€ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ์—ฐ๋™ยท์ •๋ฐ€ ์‹œ๊ฐํ™”ยท์ธ์šฉ ๊ด€๋ฆฌ์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฉ€ํ‹ฐโ€‘์—์ด์ „ํŠธ ์ ‘๊ทผ ํ•„์š”์„ฑ : ํ•˜๋‚˜์˜ ๋ชจ๋ธ์ด ๋ชจ๋“  ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ๋ณด๋‹ค, ์ „๋ฌธํ™”๋œ ์—์ด์ „ํŠธ๊ฐ€ ํ˜‘์—…ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜๋ฉด ๋ณต์žกํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ํšจ์œจ์ ์œผ๋กœ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | CAVM (Code Agent with Variab

No Image

Focal Modulation and Bidirectional Feature Fusion Network for Medical Image Segmentation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ CNN์˜ ํ•œ๊ณ„ : ์ปจ๋ณผ๋ฃจ์…˜์€ ๊ณ ์ •๋œ ์ˆ˜์šฉ ์˜์—ญ์œผ๋กœ ์ธํ•ด ์ „์—ญ์ ์ธ ๋ฌธ๋งฅ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์˜๋ฃŒ ์˜์ƒ์€ ์ข…์ข… ๋ณต์žกํ•œ ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ์™€ ๋‹ค์–‘ํ•œ ์Šค์ผ€์ผ์„ ํฌํ•จํ•˜๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ๊ฒฝ๊ณ„ ํ๋ฆผยท์†Œ๊ทœ๋ชจ ๋ณ‘๋ณ€ ๋ˆ„๋ฝ์œผ๋กœ ์ด์–ด์ง„๋‹ค. Transformer์˜ ์žฅ์  : ์…€ํ”„โ€‘์–ดํ…์…˜์€ ๋ชจ๋“  ์œ„์น˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ง์ ‘ ๋ชจ๋ธ๋งํ•ด ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ˆœ์ˆ˜ ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ์—ฐ์‚ฐ๋Ÿ‰ยท๋ฉ”๋ชจ๋ฆฌ ๋ถ€๋‹ด์ด ํฌ๊ณ , ์ €ํ•ด์ƒ๋„ ํŠน์ง•์— ๋Œ€ํ•œ ๋กœ์ปฌ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋†“์น˜๊ธฐ ์‰ฝ๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ํ•ต์‹ฌ ์•„์ด๋””์–ด

Network
Foundation Models for Medical Imaging: Status, Challenges, and Directions

Foundation Models for Medical Imaging: Status, Challenges, and Directions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ AI ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜ : ๊ธฐ์กด์˜ taskโ€‘specific ๋ชจ๋ธ์—์„œ โ€œ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต โ†’ ์†Œ๊ทœ๋ชจ ํŒŒ์ธํŠœ๋‹โ€์ด๋ผ๋Š” ๊ธฐ์ดˆ ๋ชจ๋ธ ํŒจ๋Ÿฌ๋‹ค์ž„์œผ๋กœ ์ „ํ™˜ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ผ๋ฒจ์ด ํฌ์†Œํ•˜๊ณ  ๋น„์šฉ์ด ๋†’์€ ์˜๋ฃŒ ์˜์ƒ์—์„œ ํฐ ์žฅ์ ์ด๋‹ค. ์‹œ์  : 2021๋…„ Stanford CRFM์—์„œ โ€œFoundation Modelโ€ ์šฉ์–ด๋ฅผ ์ •์˜ํ•œ ์ดํ›„, 2023โ€‘2025๋…„ ์‚ฌ์ด์— ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์— ํŠนํ™”๋œ FM ์—ฐ๊ตฌ๊ฐ€ ๊ธ‰์ฆํ–ˆ์œผ๋ฉฐ, 2025๋…„ IEEE TMI ํŠน์ง‘ํ˜ธ๊ฐ€ ์ด๋ฅผ ์ง‘๋Œ€์„ฑํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์„ค๊ณ„ ์›์น™ | ๊ตฌ๋ถ„ | ์ฃผ์š” ๋‚ด์šฉ | ์žฅ์  | ํ•œ

Electrical Engineering and Systems Science Model Image Processing
No Image

Fourier analysis of the physics of transfer learning for data-driven subgrid-scale models of ocean turbulence

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ์ „์ดํ•™์Šต(TL)์˜ ํ•„์š”์„ฑ : ํ•ด์–‘ยท๋Œ€๊ธฐ์™€ ๊ฐ™์€ ๋ณต์žกํ•œ ํ๋ฆ„์€ ์‹คํ—˜ยท๊ด€์ธก ๋ฐ์ดํ„ฐ๊ฐ€ ์ œํ•œ์ ์ด๋ฉฐ, ๋ชจ๋ธ์ด ์ƒˆ๋กœ์šด ๋ฌผ๋ฆฌ์  ์กฐ๊ฑด์— ๋น ๋ฅด๊ฒŒ ์ ์‘ํ•ด์•ผ ํ•œ๋‹ค. TL์€ ๊ธฐ์กด์— ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์ตœ์†Œํ•œ์˜ ์ถ”๊ฐ€ ํ•™์Šต์œผ๋กœ ์ƒˆ๋กœ์šด ๋ ˆ์ง์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค. ์„œ๋ธŒ๊ทธ๋ฆฌ๋“œ ์Šค์ผ€์ผ ๋ชจ๋ธ๋ง : ์ „ํ†ต์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐํ™”๋Š” ๊ฒฝํ—˜์ /์ด๋ก ์  ๊ทผ์‚ฌ์— ์˜์กดํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐโ€‘๊ตฌ๋™ ์ ‘๊ทผ์€ ๊ณ ํ•ด์ƒ๋„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์–ป์€ ์ •๋ณด๋ฅผ ์ง์ ‘ ํ•™์Šตํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. 2. ๋ชจ๋ธ ๋ฐ ์‹คํ—˜ ์„ค๊ณ„ | ์š”์†Œ | ์„ค๋ช… | | | | | ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ | 9โ€‘layer 2โ€‘D conv

Model Analysis Data Learning
No Image

FPGA Innovation Research in the Netherlands: Present Landscape and Future Outlook

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ FPGA์˜ ์ „๋žต์  ๊ฐ€์น˜ : ์ „ํ†ต์ ์ธ ASIC ๋Œ€๋น„ ์„ค๊ณ„ ์ฃผ๊ธฐ๊ฐ€ ์งง๊ณ , ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ•˜๋“œ์›จ์–ด ์‚ฌ์ด์˜ ๊ฒฝ๊ณ„๋ฅผ ํ—ˆ๋ฌผ์–ด ํด๋ผ์šฐ๋“œ, AI, ์—ฃ์ง€ ์ปดํ“จํŒ… ๋“ฑ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์—์„œ ํ•ต์‹ฌ ๊ฐ€์†๊ธฐ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ๋„ค๋œ๋ž€๋“œ์˜ ์œ„์น˜ : ์œ ๋Ÿฝ ๋‚ด์—์„œ ๋ฐ˜๋„์ฒด ์„ค๊ณ„ยท์ œ์กฐ ์—ญ๋Ÿ‰์ด ๋น„๊ต์  ์ง‘์ค‘๋œ ๊ตญ๊ฐ€์ด๋ฉฐ, ASML, NXP, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ˆ˜์˜ ๋Œ€ํ•™(์˜ˆ: Delft University of Technology, Eindhoven University of Technology)๊ณผ ์Šคํƒ€ํŠธ์—…์ด ํ™œ๋ฐœํžˆ ํ˜‘์—…ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํƒœ๊ณ„๋Š” FPGA ์—ฐ๊ตฌ์™€

No Image

Fractional neural attention for efficient multiscale sequence processing

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ž๊ธฐโ€‘์ฃผ์˜์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ๋ชจ๋“  ํ† ํฐ ์Œ์„ ๋™์ผํ•˜๊ฒŒ ๊ณ ๋ คํ•˜๋Š” ์ „์—ญ์  ์–ดํ…์…˜์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ๊ณ„์‚ฐ ๋ณต์žก๋„(O(Nยฒ))์™€ ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ ํ•™์Šต์˜ ๋น„ํšจ์œจ์„ฑ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ์ƒ๋ฌผํ•™์  ์˜๊ฐ : ์ธ๊ฐ„์˜ ์‹œ๊ฐยท์ฒญ๊ฐ ์ฃผ์˜๋Š” ๋‹ค์ค‘ ์Šค์ผ€์ผ ๋กœ ์ž‘๋™ํ•œ๋‹ค(์งง์€ ์‹œ๊ฐ„ยท๊ฑฐ๋ฆฌ์—์„œ ๋น ๋ฅด๊ฒŒ ๋ฐ˜์‘ํ•˜๊ณ , ๋™์‹œ์— ๋ฉ€๋ฆฌ ์žˆ๋Š” ์ž๊ทน์„ ๋А๋ฆฐ ํ™•์‚ฐ ํ˜•ํƒœ๋กœ ํƒ์ƒ‰). ์ด๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋ฉด ๋ ˆ๋น„ ๋น„์ •์ƒ ํ™•์‚ฐ ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์„ ํƒ์ด ๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ Fractional Neural Attention (FNA) | ์š”์†Œ | ๊ธฐ์กด ์ž๊ธฐ

No Image

Frobenius method for Mahler equations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋งˆํ๋Ÿฌ ๋ฐฉ์ •์‹ ์€ (f(z^p) A(z)f(z)) ํ˜•ํƒœ(๋˜๋Š” ๊ทธ ์ผ๋ฐ˜ํ™”)๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ํ•จ์ˆ˜ ๋ฐฉ์ •์‹์œผ๋กœ, ์ž๋™์ˆ˜ ์ด๋ก , ์ „์‚ฐ์ˆ˜๋ก , ๊ทธ๋ฆฌ๊ณ  ์ดˆ์ง€์ˆ˜ ํ•จ์ˆ˜์™€ ๊นŠ์€ ์—ฐ๊ด€์ด ์žˆ๋‹ค. ๊ธฐ์กด์—๋Š” ๋งˆํ๋Ÿฌ ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ Hahn ๊ธ‰์ˆ˜ (์ง€์ˆ˜ ์ง‘ํ•ฉ์ด ์ž˜ ์ •๋ ฌ๋œ ์ „ํ˜•์ ์ธ ์ผ๋ฐ˜ํ™” ๋ฉฑ๊ธ‰์ˆ˜)๋กœ ์ „๊ฐœํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•จ์ด ์•Œ๋ ค์กŒ์ง€๋งŒ, ์‹ค์ œ๋กœ ํ•ด์˜ ๊ธฐ์ € ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์€ ๋ถ€์กฑํ–ˆ๋‹ค. ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ ์ด๋ก ์—์„œ ์ •๊ทœ ํŠน์ด์  (regular singular point)์—์„œ์˜ ํ‘ธ๋ฆฌ์—๋ฒ ๋‹ˆ์šฐ์Šค(Frobenius) ์ „๊ฐœ๋Š” ํ•ด์˜ ๊ตฌ์กฐ๋ฅผ ๋ช…ํ™•ํžˆ ํŒŒ

No Image

From Measurement to Expertise: Empathetic Expert Adapters for Context-Based Empathy in Conversational AI Agents

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ณต๊ฐ์˜ ์—ญํ•  : ์‚ฌ์šฉ์ž ๋งŒ์กฑ๋„, ์‹ ๋ขฐ ํ˜•์„ฑ, ๋ฌธ์ œ ํ•ด๊ฒฐ ํšจ์œจ์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์—์„œ ํ•ต์‹ฌ. ํ˜„์กด ํ•œ๊ณ„ : ๋Œ€๋ถ€๋ถ„์˜ LLM ๊ธฐ๋ฐ˜ ์ฑ—๋ด‡์€ โ€œ์ผ๋ฐ˜์ ์ธโ€ ๊ณต๊ฐ ํ‘œํ˜„์— ๋จธ๋ฌผ๋Ÿฌ, ๊ณผ์—… ํŠน์„ฑ(์˜ˆ: ์˜๋ฃŒ ์ƒ๋‹ด vs. ์‡ผํ•‘ ๊ฐ€์ด๋“œ)์ด๋‚˜ ๋Œ€ํ™” ๋งฅ๋ฝ์— ๋งž๋Š” ๋ฏธ์„ธ ์กฐ์ •์ด ๋ถ€์กฑํ•จ. 2. ๋ฐ์ดํ„ฐ ๋ถ„์„ | ํ•ญ๋ชฉ | ๋‚ด์šฉ | | | | | ๋ฐ์ดํ„ฐ ๊ทœ๋ชจ | 672๊ฐœ์˜ ๋‹ค์ค‘ ํ„ด ๋Œ€ํ™”, 8๊ฐœ ๊ณผ์—… (์˜ˆ: ๊ณ ๊ฐ์ง€์›, ์˜๋ฃŒ ์ƒ๋‹ด, ๊ต์œก ๋“ฑ) | | ๋ถ„์„ ๊ฒฐ๊ณผ | ๋Œ€ํ™” ์ „(์˜ˆ์ƒ)๊ณผ ๋Œ€ํ™” ํ›„(์‹ค์ œ) ๊ณต๊ฐ ์ ์ˆ˜ ์ฐจ์ด๊ฐ€ ๊ณผ์—…๋งˆ๋‹ค ํฌ๊ฒŒ ๋‹ค๋ฆ„. ํŠนํžˆ ๊ฐ์ •

No Image

Gabor-Enhanced Physics-Informed Neural Networks for Fast Simulations of Acoustic Wavefields

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์  PINN์€ ๋ฌผ๋ฆฌ ๋ฒ•์น™์„ ์†์‹ค ํ•จ์ˆ˜์— ์ง์ ‘ ํฌํ•จ์‹œ์ผœ PDE๋ฅผ ํ’€ ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด์ง€๋งŒ, ๊ณ ์ฃผํŒŒ ์˜์—ญ์—์„œ๋Š” โ€œlowโ€‘frequency biasโ€๋ผ ๋ถˆ๋ฆฌ๋Š” ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์ง„๋™์ด ์ถฉ๋ถ„ํžˆ ํ‘œํ˜„๋˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Š” ํŠนํžˆ ์ง€์ง„ยท์Œํ–ฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ฒ˜๋Ÿผ ํŒŒ์žฅ์˜ ๋ฏธ์„ธํ•œ ๋ณ€๋™์„ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ๋ถ„์•ผ์—์„œ ํฐ ์ œ์•ฝ์ด ๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๊ฐ€๋ณด๋ฅด ํ•จ์ˆ˜ ๋„์ž… : ๊ฐ€๋ณด๋ฅด ํ•จ์ˆ˜๋Š” ๋ณต์†Œ ์ง€์ˆ˜์™€ ๊ฐ€์šฐ์‹œ์•ˆ ์œˆ๋„์šฐ์˜ ๊ณฑ์œผ๋กœ, ๊ณ ์ฃผํŒŒ ์ง„๋™์„ ๊ตญ์†Œํ™”๋œ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋ฅผ ๋„คํŠธ์›Œํฌ ์ถœ๋ ฅ์— ์ง์ ‘ ๊ฒฐํ•ฉํ•˜๋ฉด, ๋„คํŠธ์›Œํฌ๊ฐ€ โ€œ์ง„๋™ ํŒจํ„ดโ€์„ ๋ณ„๋„๋กœ ํ•™

Network
No Image

GATMesh: Clock Mesh Timing Analysis using Graph Neural Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํด๋Ÿญ ๋ฉ”์‰ฌ ๋ณต์žก์„ฑ : ํ˜„๋Œ€ ๊ณ ์„ฑ๋Šฅ ASIC/SoC ์„ค๊ณ„์—์„œ ํด๋Ÿญ ๋ฉ”์‰ฌ๋Š” ์ˆ˜๋ฐฑ~์ˆ˜์ฒœ ๊ฐœ์˜ ๋ฒ„ํผ์™€ ๋‹ค์ค‘ ๋“œ๋ผ์ด๋ฒ„๋ฅผ ํฌํ•จํ•œ๋‹ค. ์žฌ์ˆ˜๋ ด ๊ฒฝ๋กœ์™€ PVT ๋ณ€๋™์— ๋”ฐ๋ฅธ ๋น„์„ ํ˜• ํšจ๊ณผ๊ฐ€ ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•ด ์ „ํ†ต์ ์ธ RCโ€‘๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋กœ๋Š” ์ •ํ™•ํ•œ ํƒ€์ด๋ฐ ์˜ˆ์ธก์ด ์–ด๋ ต๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„ SPICE ์‹œ๋ฎฌ๋ ˆ์ด์…˜ : ์ „๊ธฐ์  ํ˜„์ƒ์„ ๋ฏธ์„ธํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•˜์ง€๋งŒ, ์ˆ˜์ฒœ ๊ฐœ์˜ ๋…ธ๋“œ์™€ ์—ฃ์ง€๋ฅผ ๊ฐ€์ง„ ๋ฉ”์‰ฌ์— ๋Œ€ํ•ด ์ˆ˜์‹œ๊ฐ„์—์„œ ์ˆ˜์ผ์ด ์†Œ์š”๋œ๋‹ค. ์„ค๊ณ„ ๋ฐ˜๋ณต ์ฃผ๊ธฐ์— ํฐ ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. ๋‹จ์ˆœ ๋ชจ๋ธ : RCโ€‘ํŠธ๋ฆฌ, ์„ ํ˜•ํ™”๋œ ์Šคํยท์Šฌ๋ฃจ ๋ชจ๋ธ์€ ๋น ๋ฅด์ง€๋งŒ, ์ž…๋ ฅ ๋ฒ„ํผ

Analysis Network
No Image

Gauge symmetry and the arrow of time: How to count what counts

1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๊ฒŒ์ด์ง€ ๋Œ€์นญ๊ณผ ๋ฌผ๋ฆฌ ์ด๋ก ์˜ ์ตœ์†Œํ™” ๋ฌผ๋ฆฌํ•™์—์„œ โ€œ๊ฒŒ์ด์ง€ ๋Œ€์นญโ€์€ ์‹ค์ œ ๊ด€์ธก์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š” ์ž์œ ๋„(์˜ˆ: ์ „์œ„์˜ ์ ˆ๋Œ€๊ฐ’)์™€ ๋ฌผ๋ฆฌ์  ์‹ค์ฒด๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ํ•ต์‹ฌ ๊ฐœ๋…์ด๋‹ค. ์ €์ž๋Š” ์ด ๊ฐœ๋…์„ ํ™•์žฅํ•ด ์šฐ์ฃผ๋ก ์  ์ž์œ ๋„ (์ „์ฒด ๊ทœ๋ชจ)๊นŒ์ง€ ์ตœ์†Œํ™” ๋Œ€์ƒ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ์ด๋Š” โ€œ์‹ค์ œ ๋ฌผ๋ฆฌ์  ๋‚ด์šฉโ€์„ ์ •์˜ํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐ์ค€์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์‹œ๊ฐ„์˜ ํ™”์‚ด๊ณผ ํ†ต๊ณ„์—ญํ•™ ์ „ํ†ต์ ์œผ๋กœ ์‹œ๊ฐ„์˜ ๋น„๋Œ€์นญ์„ฑ์€ ์ดˆ๊ธฐ ์กฐ๊ฑด(์ €์—”ํŠธ๋กœํ”ผ ์ƒํƒœ)์ด๋‚˜ ์—ด์—ญํ•™ ์ œ2๋ฒ•์น™์— ๊ท€์†๋œ๋‹ค. ์ €์ž๋Š” ๊ด€์ธก์ž ์ค‘์‹ฌ์˜ ํ†ต๊ณ„์  ํŽธํ–ฅ ์„ ํ†ตํ•ด, ์ดˆ๊ธฐ ์กฐ๊ฑด์ด ์•„๋‹ˆ๋ผ ๊ด€์ธก

No Image

General Strong Bound on the Uncrossed Number which is Tight for the Edge Crossing Number

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ uncrossed collection ์€ ๊ธฐ์กด์˜ thickness ๊ฐœ๋…์„ ์ผ๋ฐ˜ํ™”ํ•œ๋‹ค. Thickness ๋Š” ๋ชจ๋“  ๊ฐ„์„ ์„ ํ”Œ๋ž˜๋„ˆ๋ฆฌ ์„œ๋ธŒ๊ทธ๋ž˜ํ”„๋“ค์— ์™„์ „ํžˆ ๋ถ„ํ• ํ•˜์ง€๋งŒ, uncrossed collection์€ ๊ฐ ๊ฐ„์„ ์ด ์ตœ์†Œ ํ•˜๋‚˜์˜ ๊ทธ๋ฆผ์—์„œ ๊ต์ฐจ๋˜์ง€ ์•Š์Œ ์„ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ (unc(G))๋Š” thickness๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์„ ์ˆ˜ ์žˆ๋‹ค (์˜ˆ: ์™„์ „ ๊ทธ๋ž˜ํ”„ (K n)์—์„œ thickness๋Š” (lceilfrac{n+7}{6}rceil)์ด์ง€๋งŒ uncrossed number๋Š” ๋” ์ž‘์„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค)

No Image

Generalizable Reasoning through Compositional Energy Minimization

| ํ•ญ๋ชฉ | ๋‚ด์šฉ ๋ฐ ํ‰๊ฐ€ | | | | | ์—ฐ๊ตฌ ๋™๊ธฐ | ์ถ”๋ก  ๋ชจ๋ธ์ด ํ›ˆ๋ จ๋ณด๋‹ค ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ’€์–ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ๊ธฐ์กด ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ๋ฐฉ์‹์€ โ€œํ•™์Šต๋œ ํœด๋ฆฌ์Šคํ‹ฑโ€์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•ด ์ผ๋ฐ˜ํ™”๊ฐ€ ์–ด๋ ค์›€. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌธ์ œ ์ž์ฒด๋ฅผ ์ž‘์€ ์„œ๋ธŒ๋ฌธ์ œ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ ์„œ๋ธŒ๋ฌธ์ œ์— ๋Œ€ํ•œ ์—๋„ˆ์ง€ ํ•จ์ˆ˜๋ฅผ ํ•™์Šต ํ•˜๋Š” ์•„์ด๋””์–ด๋Š” ๋งค์šฐ ์ง๊ด€์ ์ด๋ฉฐ, ๋ฌผ๋ฆฌยทํ™”ํ•™์—์„œ ์—๋„ˆ์ง€ ์ตœ์†Œํ™” ์›๋ฆฌ๋ฅผ ์ฐจ์šฉํ•œ ์ ์ด ํ˜์‹ ์ ์ด๋‹ค. | | ํ•ต์‹ฌ ์•„์ด๋””์–ด | 1. Subproblem Energy Landscape : ์ž‘์€ ํ•˜์œ„ ๋ฌธ์ œ๋“ค์˜ ํ•ด ๊ณต๊ฐ„์„ ์—๋„ˆ์ง€ ํ•จ์ˆ˜๋กœ ๋ชจ๋ธ๋ง โ†’ ์ƒ˜ํ”Œ

No Image

Generating Fair Consensus Statements with Social Choice on Token-Level MDPs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ•ฉ์˜๋ฌธ ์ƒ์„ฑ์˜ ๊ณต์ •์„ฑ ๋ฌธ์ œ : ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ํ•ฉ์˜๋ฌธ ์ƒ์„ฑ์€ โ€œ๋‹ค์ˆ˜๊ฒฐโ€ ํ˜น์€ โ€œ๊ฐ€์ค‘ ํ‰๊ท โ€ ๊ฐ™์€ ๋‹จ์ˆœ ์ง‘๊ณ„ ๋ฐฉ์‹์— ์˜์กดํ•ด, ์†Œ์ˆ˜ ์˜๊ฒฌ์ด ์†Œ์™ธ๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์‚ฌํšŒ์„ ํƒ ์ด๋ก ๊ณผ MDP์˜ ๊ฒฐํ•ฉ : ์‚ฌํšŒ์„ ํƒ ์ด๋ก ์€ ๋‹ค์ˆ˜์˜ ์„ ํ˜ธ๋ฅผ ๊ณต์ •ํ•˜๊ฒŒ ํ†ตํ•ฉํ•˜๋Š” ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ์ด๋ฉฐ, MDP๋Š” ์ˆœ์ฐจ์  ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๋ชจ๋ธ๋งํ•œ๋‹ค. ๋‘ ์ด๋ก ์„ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ โ€œ๊ณต์ •์„ฑ + ์ˆœ์ฐจ์  ์ƒ์„ฑโ€ ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ํ† ํฐโ€‘๋ ˆ๋ฒจ ๋‹ค๋ชฉ์  MDP ๋ชจ๋ธ๋ง | ๊ฐ

No Image

Generating Sizing Fields for Mesh Generation via GCN-based Simplification of Adaptive Background Grids

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์‚ฌ์ด์ง• ํ•„๋“œ ๋Š” ๋ฉ”์‰ฌ ์ƒ์„ฑ ๋‹จ๊ณ„์—์„œ ๊ฐ ์œ„์น˜์˜ ๋ชฉํ‘œ ์š”์†Œ ํฌ๊ธฐ๋ฅผ ์ •์˜ํ•ด, ๋ฉ”์‰ฌ ํ’ˆ์งˆยทํ•ด์„ ์ •ํ™•๋„ยท๊ณ„์‚ฐ ๋น„์šฉ์„ ๊ท ํ˜• ์žˆ๊ฒŒ ์กฐ์ ˆํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ๊ณ ๋ฐ€๋„ ๋ฐฐ๊ฒฝ ๊ฒฉ์ž ๋ฅผ ์‚ฌ์šฉํ•ด ์ •ํ™•์„ฑ์„ ํ™•๋ณดํ•˜์ง€๋งŒ, ๋ฉ”๋ชจ๋ฆฌยท์‹œ๊ฐ„ ๋น„์šฉ์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ , ๋ฐด๋”ฉ ํ˜„์ƒ (ํฌ๊ธฐ ๋ณ€๋™์ด ๊ธ‰๊ฒฉํžˆ ์ผ์–ด๋‚˜๋Š” ์˜์—ญ)์œผ๋กœ ์ธํ•œ ํ’ˆ์งˆ ์ €ํ•˜๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฒฝ๋Ÿ‰์ด๋ฉด์„œ ๊ธฐํ•˜ํ•™์  ์ ํ•ฉ์„ฑ์„ ์œ ์ง€ ํ•˜๋Š” ๋ฐฐ๊ฒฝ ๊ฒฉ์ž ์ƒ์„ฑ์ด ํ•ต์‹ฌ ๊ณผ์ œ๋กœ ๋Œ€๋‘๋œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ์„ค๋ช… | | | | | ๋ฌธ์ œ ์žฌ์ •์˜ | ๊ฒฉ์ž ๋‹จ์ˆœํ™”๋ฅผ โ€œ ์—ฃ์ง€

No Image

Generative Machine Learning in Adaptive Control of Dynamic Manufacturing Processes: A Review

1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋™์  ์ œ์กฐ ๊ณต์ •์˜ ๋ณตํ•ฉ์„ฑ : ์‹œ๊ฐ„โ€‘๊ฐ€๋ณ€ ํŒŒ๋ผ๋ฏธํ„ฐ, ๋น„์„ ํ˜•์„ฑ, ์™ธ๋ž€ยท๋…ธ์ด์ฆˆ ๋“ฑ์€ ์ „ํ†ต์ ์ธ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ œ์–ด(PID, MPC ๋“ฑ)๊ฐ€ ์‹ค์‹œ๊ฐ„ ์ ์‘์— ํ•œ๊ณ„๋ฅผ ๋ณด์ด๋Š” ์ฃผ์š” ์›์ธ์ด๋‹ค. ์ƒ์„ฑํ˜• ML์˜ ๋“ฑ์žฅ : VAE, GAN, Diffusion Model ๋“ฑ์€ ๊ณ ์ฐจ์› ์„ผ์„œ ๋ฐ์ดํ„ฐ์˜ ์ž ์žฌ ๋ถ„ํฌ๋ฅผ ํ•™์Šตํ•˜๊ณ , ์‹ค์ œ ๊ณต์ •์—์„œ ๋ฐœ์ƒํ•˜๊ธฐ ์–ด๋ ค์šด โ€œ๊ทน๋‹จ ์ƒํ™ฉโ€ ๋ฐ์ดํ„ฐ๋ฅผ ํ•ฉ์„ฑํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•œ๋‹ค. 2. ๊ธฐ๋Šฅโ€‘์ง€ํ–ฅ์  ๋ถ„๋ฅ˜ ์ฒด๊ณ„ | ๋ถ„๋ฅ˜ | ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๊ธฐ์กด ์ ์šฉ ์‚ฌ๋ก€ | ์ƒ์„ฑํ˜• ML๊ณผ์˜ ์—ฐ๊ณ„ ๊ฐ€๋Šฅ์„ฑ | | | |

Learning
No Image

GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ „์‹  ์ œ์Šค์ฒ˜ ์ƒ์„ฑ ์€ ์ธ๊ฐ„โ€‘์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ, ๊ฐ€์ƒ ์•„๋ฐ”ํƒ€, ๋””์ง€ํ„ธ ํœด๋จผ ๋“ฑ์—์„œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์†ยทํŒ” ์ค‘์‹ฌ์ด๊ฑฐ๋‚˜ ์‹ ์ฒด ๋ถ€์œ„๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•ด, ์ž์—ฐ์Šค๋Ÿฌ์šด ์ „์‹  ๋™์ž‘์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ์ž๋™ํšŒ๊ท€ยทํ™•์‚ฐ ๋ชจ๋ธ ์€ ๊ณ ํ’ˆ์งˆ ์ƒ˜ํ”Œ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ˆ˜์‹ญ ๋‹จ๊ณ„์˜ ๋ฐ˜๋ณต ์—ฐ์‚ฐ์ด ํ•„์š”ํ•ด ์‹ค์‹œ๊ฐ„ ์„œ๋น„์Šค์— ๋ถ€์ ํ•ฉํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | โ‘  | ๊ณต๊ฐ„โ€‘์‹œ๊ฐ„ ์–ดํ…์…˜ ์„ ์ด์šฉํ•œ ํ† ํฐํ™”๋œ ์‹ ์ฒด ๋ถ€์œ„ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๋ง | ๋ถ€์œ„ ๊ฐ„ ์—ฐ๊ณ„์„ฑ์„ ํ•™์Šตํ•ด ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์šด ๋‹จ์ ˆ์„ ์ตœ

Model
No Image

Graph Unlearning Meets Influence-aware Negative Preference Optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ทธ๋ž˜ํ”„ ์–ธ๋Ÿฌ๋‹ ์€ GDPRยทCCPA ๋“ฑ ๋ฐ์ดํ„ฐ ์‚ญ์ œ ์š”๊ตฌ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ํŠน์ • ๋…ธ๋“œยท์—์ง€๋ฅผ โ€œ์žŠํžˆ๊ฒŒโ€ ํ•˜๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŸ ์…‹์— ๋Œ€ํ•ด gradient ascent ๋ฅผ ์ ์šฉํ•ด ์†์‹ค์„ ์ฆ๊ฐ€์‹œ์ผœ ๋ชจ๋ธ์„ โ€œ์žŠ๊ฒŒโ€ ๋งŒ๋“ ๋‹ค. ๋ฌธ์ œ์  : gradient ascent๋Š” ์†์‹ค์„ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€์‹œ์ผœ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋น ๋ฅด๊ฒŒ ๋ฐœ์‚ฐ, ์ด ๊ณผ์ •์—์„œ ์ „์ฒด ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ํ•™์Šต๋œ ํ‘œํ˜„์ด ํฌ๊ฒŒ ์†์ƒ๋ผ ์œ ํ‹ธ๋ฆฌํ‹ฐ(์˜ˆ์ธก ์ •ํ™•๋„) ๊ฐ€ ๊ธ‰๋ฝํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ INPO | ์š”์†Œ | ์„ค๋ช… | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | N

Learning
No Image

Graph-Coarsening Approach for the Capacitated Vehicle Routing Problem with Time Windows

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ CVRPTW ๋Š” ๋ฌผ๋ฅ˜ยท๋ฐฐ๋‹ฌ ์„œ๋น„์Šค์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ๋งˆ์ฃผํ•˜๋Š” NPโ€‘hard ๋ฌธ์ œ์ด๋ฉฐ, ํŠนํžˆ ๊ณ ๊ฐ ์ˆ˜๊ฐ€ ์ˆ˜์ฒœ์— ๋‹ฌํ•  ๊ฒฝ์šฐ ์ „ํ†ต์ ์ธ exact solver๋Š” ์‹œ๊ฐ„ยท๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„์— ๋ถ€๋”ชํžŒ๋‹ค. ๊ธฐ์กด ํœด๋ฆฌ์Šคํ‹ฑยท๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ์€ ์ข‹์€ ํ•ด๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์Šค์ผ€์ผ๋ง ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฌธ์ œ ์ฐจ์›์„ ํšจ๊ณผ์ ์œผ๋กœ ์ถ•์†Œํ•˜๋Š” ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ์„ค๋ช… | | | | | ๊ทธ๋ž˜ํ”„ ์ฝ”์–ด์‹ฑ | ๊ณ ๊ฐ๋“ค์„ ์ •์ ์œผ๋กœ, ์‹œ๊ณต๊ฐ„ ๊ฑฐ๋ฆฌ(๊ฑฐ๋ฆฌ + ์‹œ๊ฐ„์ฐฝ ์ฐจ์ด) ๊ธฐ๋ฐ˜ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฐ–๋Š” ์™„์ „ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , ํด๋Ÿฌ์Šคํ„ฐ๋ง(์˜ˆ:

No Image

Graph-Enhanced Policy Optimization in LLM Agent Training

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๊ตฌ์กฐ์  ๋งน์  : ๊ธฐ์กด ๊ทธ๋ฃน ๊ธฐ๋ฐ˜ RL์€ ์ƒํƒœ ๊ฐ„ ์—ฐ๊ฒฐ์„ฑ์„ ๋ฌด์‹œํ•˜๊ณ , ์—์ด์ „ํŠธ๊ฐ€ โ€œํ‰๋ฉด์ ์ธโ€ ๋ณด์ƒ ์‹ ํ˜ธ๋งŒ์„ ๋”ฐ๋ผ๊ฐ€๊ฒŒ ๋œ๋‹ค. ์„ธ ๊ฐ€์ง€ ๊ตฌ์ฒด์  ๋ฌธ์ œ 1. ํƒ์ƒ‰ ๋น„ํšจ์œจ โ€“ ๋ฌด์ž‘์œ„ ํ˜น์€ ๋‹จ์ˆœํ•œ ํƒ์ƒ‰ ๋ณด์ƒ์— ์˜์กด, ์ค‘์š”ํ•œ ์ „์ด(ํ•ต์‹ฌ ์ƒํƒœ)๋ฅผ ๋†“์นจ. 2. ํฌ๋ ˆ๋”ง ํ• ๋‹น ์˜ค๋ฅ˜ โ€“ TDโ€‘error ๊ธฐ๋ฐ˜ ์–ด๋“œ๋ฐดํ‹ฐ์ง€ ํ•จ์ˆ˜๊ฐ€ ์ƒํƒœ ๊ฐ„ ๊ฑฐ๋ฆฌ์™€ ์ค‘์š”๋„๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•จ. 3. ๊ทผ์‹œ์•ˆ์  ๊ณ„ํš โ€“ ๊ณ ์ •๋œ ฮณ(๊ฐ๊ฐ€์œจ)๋กœ ์ธํ•ด ์žฅ๊ธฐ ์ „๋žต์„ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์›€. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ GEPO | ๊ตฌ์„ฑ ์š”์†Œ | ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ• | ์—ญํ•  |

Ground state energy of the dilute Bose-Hubbard gas on Bravais lattices

Ground state energy of the dilute Bose-Hubbard gas on Bravais lattices

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ณดํŽธ์„ฑ ๋ฌธ์ œ : ์—ฐ์†์ฒด 3์ฐจ์› ๋ณด์Šค ๊ฐ€์Šค์—์„œ๋Š” ์ €๋ฐ€๋„ ํ•œ๊ณ„์—์„œ ๊ธฐ์ € ์—๋„ˆ์ง€๊ฐ€ ๋‹จ์ผ ํŒŒ๋ผ๋ฏธํ„ฐ์ธ ์Šค์บํ„ฐ๋ง ๊ธธ์ด (a) ๋กœ๋งŒ ๊ฒฐ์ •๋œ๋‹ค๋Š” ๊ฒƒ์ด Dyson(1957)๊ณผ Liebโ€‘Yngvason(1998)์˜ ์ •๋ฆฌ๋กœ ํ™•๋ฆฝ๋ผ ์žˆ๋‹ค. ๊ฒฉ์ž ์‹œ์Šคํ…œ : ๊ด‘ํ•™ ๊ฒฉ์ž์—์„œ ๊ตฌํ˜„๋˜๋Š” ๋ณด์Šค ํ—ˆ๋ฐ”๋“œ ๋ชจ๋ธ์€ ์‹คํ—˜์ ์œผ๋กœ ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ, ๊ฒฉ์ž ๊ตฌ์กฐ๊ฐ€ ๋‹ค์–‘ํ•ด์ง์— ๋”ฐ๋ผ ๋‹จ์ผ ์ž…์ž ๋ถ„์‚ฐ ๊ด€๊ณ„ (varepsilon(p)) ๊ฐ€ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง„๋‹ค. ๋”ฐ๋ผ์„œ โ€œ๋ณดํŽธ์„ฑโ€์ด ๊ฒฉ์ž์—์„œ๋„ ์œ ์ง€๋˜๋Š”๊ฐ€๊ฐ€ ํ•ต์‹ฌ ์งˆ๋ฌธ์ด๋‹ค. 2. ์ฃผ์š” ๊ฒฐ๊ณผ ์š”์•ฝ | ํ•ญ๋ชฉ | ๋‚ด์šฉ |

MATH-PH
No Image

Growing Mathlib: maintenance of a large scale mathematical library

[Cโ€‹atchy Title KO] ์ˆ˜ํ•™ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ ๊ธ‰์„ฑ์žฅ, ์–ด๋–ป๊ฒŒ ๊ด€๋ฆฌํ• ๊นŒ? โ€“ Mathlib ์œ ์ง€ยท๋ณด์ˆ˜ ์ „๋žต ์ด์ •๋ฆฌ [โ€‹Abstract KO] Lean ๊ธฐ๋ฐ˜ ์ˆ˜ํ•™ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ Mathlib ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ํ™•์žฅ๋˜๋Š” ํ˜•์‹ํ™” ์ˆ˜ํ•™ ์ €์žฅ์†Œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ทœ๋ชจ๊ฐ€ ์ปค์ง€๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๋ณ€๊ฒฝ์„ ํ—ˆ์šฉํ•˜๋ฉด์„œ๋„ ์œ ์ง€๋ณด์ˆ˜์ž์˜ ๊ณผ๋ถ€ํ•˜๋ฅผ ๋ฐฉ์ง€ ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ด€๋ฆฌ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ์€ (1) ํ๊ธฐ(deprecation) ์‹œ์Šคํ…œ ์„ ํ†ตํ•œ ํŒŒ๊ดด์  ๋ณ€๊ฒฝ ๊ด€๋ฆฌ, (2) ๋ฆฐํ„ฐ(linter) ๊ธฐ๋ฐ˜ ์ฝ”๋“œ ํ’ˆ์งˆ ๋ถ„์„ ์œผ๋กœ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” ์‹ค์ˆ˜๋ฅผ ์ฆ‰

No Image

Handwritten Text Recognition of Historical Manuscripts Using Transformer-Based Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์—ญ์‚ฌ์  ๋ฌธ์„œ ๋””์ง€ํ„ธํ™”์˜ ๋‚œ์ œ : ์ „์‚ฌ๋ณธ์ด ๊ฑฐ์˜ ์—†๊ณ , ๋ผํ‹ด์–ด์™€ ๊ฐ™์€ ๊ณ ์ „ ์–ธ์–ด๋Š” ํ˜„๋Œ€ OCR์— ๋น„ํ•ด ์ธ์‹ ๋‚œ์ด๋„๊ฐ€ ๋†’๋‹ค. ์†๊ธ€์”จ ๋‹ค์–‘์„ฑ : 16์„ธ๊ธฐ ํ•„์‚ฌ๋ณธ์€ ํ•„์ฒด, ์ž‰ํฌ ๋ฒˆ์ง, ์ข…์ด ์†์ƒ ๋“ฑ ๋ฌผ๋ฆฌ์  ๋ณ€์ด๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์ผ๋ฐ˜ OCR/HTR ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋ณ€์ด๋ฅผ ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์ง€ ๋ชปํ•œ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | TrOCR(Transformerโ€‘based) ๋ชจ๋ธ์„ 16์„ธ๊ธฐ ๋ผํ‹ด์–ด ์›๊ณ ์— ์ ์šฉ | ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ HTR์˜ ์‹ค์ œ ์—ญ์‚ฌ ๋ฌธ์„œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ ๊ฒ€์ฆ | | 2

Model
No Image

HeatGen: A Guided Diffusion Framework for Multiphysics Heat Sink Design Optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐํ”ผ์ง์Šค ์„ค๊ณ„ ๋‚œ์ œ : ํžˆํŠธ์‹ฑํฌ ์„ค๊ณ„๋Š” ์—ด ์ „๋‹ฌ๊ณผ ์œ ์ฒด ํ๋ฆ„(์••๋ ฅ ๊ฐ•ํ•˜)์ด๋ผ๋Š” ๋‘ ๋ฌผ๋ฆฌ ํ˜„์ƒ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•ด์•ผ ํ•˜๋Š” ๋ณตํ•ฉ ๋ฌธ์ œ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํ† ํด๋กœ์ง€ ์ตœ์ ํ™”๋Š” ์—ด ์ „๋‹ฌ์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„ ์••๋ ฅ ์†์‹ค์„ ์ถฉ๋ถ„ํžˆ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™”์˜ ํ•œ๊ณ„ : CMAโ€‘ES ๋“ฑ ์ง„ํ™” ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ๋†’์€ ๊ณ„์‚ฐ ๋น„์šฉ๊ณผ ์Šค์ผ€์ผ๋ง ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์„ค๊ณ„ ๋ณ€์ˆ˜ ์ฐจ์›์ด ์ปค์งˆ์ˆ˜๋ก ํƒ์ƒ‰ ํšจ์œจ์ด ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• | ๋‹จ๊ณ„ | ์„ค๋ช… | ์ฃผ์š” ๊ธฐ์ˆ  | | | | | | ๋ฐ์ดํ„ฐ ์ƒ์„ฑ | ๋‹ค์ค‘ ์ •๋ฐ€๋„ ์‹œ๋ฎฌ

Framework
No Image

HERO: Hardware-Efficient RL-based Optimization Framework for NeRF Quantization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์  NeRF ๋Š” ๊ณ ํ•ด์ƒ๋„ 3D ์žฅ๋ฉด์„ ๋ Œ๋”๋งํ•˜์ง€๋งŒ, ์—ฐ์‚ฐ๋Ÿ‰ยท๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๊ฐ€ ๋งค์šฐ ์ปค์„œ ์‹ค์‹œ๊ฐ„ AR/VR ์ ์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ์–‘์žํ™” ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๋ชจ๋ธ ์ •ํ™•๋„์™€ ์—ฐ์‚ฐ๋Ÿ‰ ๊ฐ์†Œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ , ํ•˜๋“œ์›จ์–ด ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ, ์—ฐ์‚ฐ ์œ ๋‹› ๋ฐฐ์น˜) ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š”๋‹ค. NeRF ์ „์šฉ ๊ฐ€์†๊ธฐ ์„ค๊ณ„๋Š” ์ „๋ฌธ๊ฐ€์˜ ์ˆ˜์ž‘์—… ํƒ์ƒ‰์— ์˜์กดํ•ด ์„ค๊ณ„ ๊ณต๊ฐ„(์ •๋ฐ€๋„, ํŒŒ์ดํ”„๋ผ์ธ ์Šค์ผ€์ค„๋ง, ์ „๋ ฅ ์ œํ•œ ๋“ฑ)์ด ๋ฐฉ๋Œ€ํ•จ์—๋„ ์ตœ์ ํ•ด๋ฅผ ์ฐพ๊ธฐ ์–ด๋ ต๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ HERO | ์š”์†Œ | ์„ค๋ช… | | | | | RL ๊ธฐ๋ฐ˜ ์ •์ฑ… ํƒ์ƒ‰

Framework
No Image

How News Feels: Understanding Affective Bias in Multilingual Headlines for Human-Centered Media Design

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๊ฐ์ • ํŽธํ–ฅ๊ณผ ๊ณต๊ณต ์—ฌ๋ก  : ๋‰ด์Šค ํ—ค๋“œ๋ผ์ธ์€ ์ •๋ณด ์ „๋‹ฌ์„ ๋„˜์–ด ๊ฐ์ •์  โ€˜ํ”„๋ ˆ์ด๋ฐโ€™ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋ถ€์ •์  ๊ฐ์ •์ด ๊ฐ•์กฐ๋œ ๋ณด๋„๋Š” ํด๋ฆญ๋ฅ ยท๊ณต์œ ์œจ์„ ๋†’์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ์ถ”์ฒœ ์‹œ์Šคํ…œ์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋‹ค๊ตญ์–ดยท๋‹ค๋ฌธํ™” ๊ด€์  : ๊ธฐ์กด ๊ฐ์ • ๋ถ„์„ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์˜์–ดยท์œ ๋Ÿฝ ์–ธ์–ด์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ๋ฐฉ๊ธ€๋ผ์–ด์™€ ๊ฐ™์€ ์ €์ž์› ์–ธ์–ด์— ๋Œ€ํ•œ ์ฒด๊ณ„์  ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ–ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฐฉ๊ธ€๋ผ์–ด๋ผ๋Š” ์ €์ž์› ์–ธ์–ด์— ์ดˆ์ ์„ ๋งž์ถฐ ๊ฐ์ • ํŽธํ–ฅ์„ ํƒ์ƒ‰ํ•จ์œผ๋กœ์จ ๋‹ค๋ฌธํ™” ๋ฏธ๋””์–ด ์—ฐ๊ตฌ์— ์ค‘์š”ํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šด๋‹ค. 2. ๋ฐ์ดํ„ฐ ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ํ•ญ๋ชฉ | ๋‚ด์šฉ | |

No Image

How to Auto-optimize Prompts for Domain Tasks? Adaptive Prompting and Reasoning through Evolutionary Domain Knowledge Adaptation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๊ณผ ๋„๋ฉ”์ธ ์ง€์‹ ํ†ตํ•ฉ ์€ ํ˜„์žฌ LLM ํ™œ์šฉ์˜ ํ•ต์‹ฌ ๊ณผ์ œ์ด๋ฉฐ, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ์ง๊ด€์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ •์ ์ธ ํ”„๋กฌํ”„ํŠธ ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ์ง€์‹ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•ด LLM์— ์ „๋‹ฌํ•˜์ง€๋งŒ, ์ง€์‹ ๋ถˆ์™„์ „์„ฑ ๊ณผ ๋ชจ๋ธ๋ณ„ ์ตœ์  ํ™œ์šฉ ๋ฐฉ์‹ ์ฐจ์ด ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ์š”์†Œ | ์„ค๋ช… | ํ˜์‹ ์„ฑ | | | | | | EGOโ€‘Prompt ํ”„๋ ˆ์ž„์›Œํฌ | ์ดˆ๊ธฐ ์ผ๋ฐ˜ ํ”„๋กฌํ”„ํŠธ + ์ „๋ฌธ๊ฐ€๊ฐ€ ๋งŒ๋“  SCG โ†’ ์ž๋™ ์ •์ œยท์ตœ์ ํ™” โ†’ LLM์— ์ธ๊ณผโ€‘๊ฐ€์ด๋“œ ์ œ๊ณต | ํ”„๋กฌํ”„ํŠธ์™€

No Image

Hybrid DeepONet Surrogates for Multiphase Flow in Porous Media

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค๊ณต์„ฑ ๋งค์งˆ์˜ ๋‹ค์ค‘์ƒ ํ๋ฆ„ ์€ ์„์œ ยท๊ฐ€์Šค, ์ง€์—ด, ํƒ„์†Œ ํฌ์ง‘ ๋“ฑ ํ•ต์‹ฌ ์‚ฐ์—…์—์„œ ํ•ต์‹ฌ ๋ชจ๋ธ๋ง ๋Œ€์ƒ์ด๋ฉฐ, ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ฒœ๋ฌธํ•™์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. Neural Operator ๋Š” ์ „ํ†ต์ ์ธ CFD์™€ ๋‹ฌ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐโ€‘ํ•ด ๋งคํ•‘์„ ์ง์ ‘ ํ•™์Šตํ•ด ์‹ค์‹œ๊ฐ„ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๊ธฐ์กด FNO๋Š” ์ „์—ญ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜์— ์˜์กดํ•ด ๋ฉ”๋ชจ๋ฆฌยท์—ฐ์‚ฐ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ณ , DeepONet์€ ์‹œ๊ฐ„ ์ฐจ์› ์ฒ˜๋ฆฌ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ์ œ์•ˆ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์žฅ์  | | | | | | Branch ๋„คํŠธ์›Œํฌ (FNO

No Image

IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ถ„๋ฆฌ ํ‘œํ˜„ ํ•™์Šต ์€ ํ•˜๋‚˜์˜ ์ž ์žฌ ๋ณ€์ˆ˜ ๋ณ€ํ™”๊ฐ€ ๋ฐ์ดํ„ฐ์˜ ํŠน์ • ์š”์ธ๋งŒ์„ ๋ณ€ํ™”์‹œํ‚ค๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ด๋ฉฐ, ์ด๋Š” ํ•ด์„ ๊ฐ€๋Šฅ AI์™€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ์ œ์–ด์„ฑ์„ ๋†’์ด๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ฮฒโ€‘VAE , InfoGAN ๋“ฑ์ด ์žˆ์œผ๋ฉฐ, ๊ฐ๊ฐ KL ๋ฐœ์‚ฐ ์„ ํ†ตํ•œ ์ •๊ทœํ™”์™€ ์ƒํ˜ธ ์ •๋ณด ์ตœ๋Œ€ํ™”๋ฅผ ์ด์šฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ฮฒโ€‘VAE๋Š” ์žฌ๊ตฌ์„ฑ ํ’ˆ์งˆ ์ €ํ•˜, InfoGAN์€ ๋ถˆ์•ˆ์ •ํ•œ ํ•™์Šต๊ณผ ์ œํ•œ๋œ ๋ถ„๋ฆฌ ์„ฑ๋Šฅ์ด๋ผ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ •๋ณด ๋ณ‘๋ชฉ(IB) ์ด๋ก ์€ ์ž…๋ ฅ ์ •๋ณด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ๋ชฉํ‘œ ๋ณ€์ˆ˜์™€์˜ ์ƒํ˜ธ ์ •๋ณด๋ฅผ ์œ ์ง€ํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ํ‘œํ˜„ ์••์ถ• ๊ณผ

Network Learning
No Image

Idefix-Closed Languages and Their Application in Contextual Grammars

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๋ฌธ๋งฅ ๋ฌธ๋ฒ•(Contextual Grammars) ์€ ์„ ํƒ ์–ธ์–ด์™€ ์‚ฝ์ž…(๋˜๋Š” ์‚ญ์ œ) ๊ทœ์น™์„ ํ†ตํ•ด ์–ธ์–ด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ˜•์‹ ์ฒด๊ณ„๋กœ, ์„ ํƒ ์–ธ์–ด์˜ ๋ณต์žก๋„์— ๋”ฐ๋ผ ์ƒ์„ฑ ๋Šฅ๋ ฅ์ด ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •๊ทœ ์–ธ์–ด ํ˜น์€ ํŠน์ • ์„œ๋ธŒ๋ ˆ๊ทค๋Ÿฌ ํด๋ž˜์Šค(์˜ˆ: ์œ ํ•œ, ์Šคํƒ€, ์ฝ”๋ฉง) ๋ฅผ ์„ ํƒ ์–ธ์–ด๋กœ ๋‘๊ณ  ๊ณ„์ธต์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด ๋…ผ๋ฌธ์€ โ€œidefixโ€‘closedโ€ ๋ผ๋Š” ์ƒˆ๋กœ์šด ํ์‡„์„ฑ ๊ฐœ๋…(์ธํ”ฝ์Šคยทํ”„๋ฆฌํ”ฝ์Šคยท์„œํ”ฝ์Šค ํ์‡„)์„ ๋„์ž…ํ•ด, ๋ณด๋‹ค ๋ฏธ์„ธํ•œ ๊ตฌ๋ถ„์ด ๊ฐ€๋Šฅํ•œ ์„œ๋ธŒ๋ ˆ๊ทค๋Ÿฌ ํด๋ž˜์Šค๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ์„ ํƒ ์–ธ์–ด์˜ ๊ตฌ์กฐ์  ์ œ์•ฝ์„ ํ†ตํ•ด ๋ฌธ๋งฅ

No Image

Implementing Keyword Spotting on the MCUX947 Microcontroller with Integrated NPU

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์Œ์„ฑ ์ธํ„ฐํŽ˜์ด์Šค ๋Š” ์Šค๋งˆํŠธ ํ™ˆ, ์›จ์–ด๋Ÿฌ๋ธ”, IoT ๋””๋ฐ”์ด์Šค ๋“ฑ์—์„œ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค์ง€๋งŒ, ์—ฐ์‚ฐยท์ „๋ ฅ ์ œํ•œ ์ด ํฐ ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ(MCU)์—์„œ๋Š” ๊ตฌํ˜„์ด ์–ด๋ ค์› ๋‹ค. ์ตœ๊ทผ MCU์— NPU ๊ฐ€ ํ†ตํ•ฉ๋˜๋ฉด์„œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œ์„ฑ ์ธ์‹ ๋ชจ๋ธ์„ ์˜จ๋””๋ฐ”์ด์Šค์—์„œ ์‹คํ–‰ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ตœ์‹  ํ•˜๋“œ์›จ์–ด๋ฅผ ์‹ค์ œ KWS์— ์ ์šฉํ•œ ์ฒซ ์‚ฌ๋ก€ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. 2. ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ๊ตฌํ˜„ ์ƒ์„ธ | | | | | | ์˜ค๋””์˜ค ์ž…๋ ฅ | 16 kHz, 16โ€‘bit PCM | ๋งˆ์ดํฌ ์ „์ฒ˜๋ฆฌ ํ›„ ๋ฒ„

No Image

Implicature in Interaction: Understanding Implicature Improves Alignment in Human-LLM Interaction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ํ•จ์ถ•(implicature) ์€ ํšŒํ™” ์˜๋ฏธ๋ก ์—์„œ ํ•ต์‹ฌ ๊ฐœ๋…์œผ๋กœ, ๋ฐœํ™”์ž๊ฐ€ ์˜๋„ํ•œ ์˜๋ฏธ๊ฐ€ ๋ช…์‹œ์  ๋ฌธ์žฅ๋ณด๋‹ค ๋” ํ’๋ถ€ํ•˜๊ฒŒ ์ „๋‹ฌ๋˜๋Š” ํ˜„์ƒ์„ ๋งํ•œ๋‹ค. ํ˜„์žฌ LLM์€ ํ‘œ๋ฉด์  ํ…์ŠคํŠธ ์— ๊ฐ•์ ์„ ๋ณด์ด์ง€๋งŒ, ์ธ๊ฐ„๊ณผ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™”์—์„œ๋Š” ๋งฅ๋ฝยท์•”์‹œ์  ์˜๋ฏธ ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ๋น„ํŒ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ โ€œ ํ•จ์ถ• ์ดํ•ด๊ฐ€ HAI ์ •๋ ฌ(alignment) ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ค์ฆ์ ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ, ์–ธ์–ดํ•™์  ์›๋ฆฌ ๋ฅผ HCI ์„ค๊ณ„์— ์ง์ ‘ ์ ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. 2. ์—ฐ๊ตฌ ์„ค๊ณ„ | ์š”์†Œ | ๋‚ด์šฉ | | | | | ๋Œ€์ƒ

No Image

Improving VANET Simulation Channel Model in an Urban Environment via Calibration Using Real-World Communication Data

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ VANET ํŠน์„ฑ : ์ด๋™์„ฑ์ด ๋†’๊ณ , ๋„์‹œ ํ™˜๊ฒฝ์—์„œ๋Š” ๊ฑด๋ฌผยท์ฐจ๋Ÿ‰์— ์˜ํ•œ ๋‹ค์ค‘ ๊ฒฝ๋กœ์™€ ์ฐจ๋‹จ ํ˜„์ƒ์ด ๋นˆ๋ฒˆํ•ด ์ „ํŒŒ ์†์‹ค์ด ํฌ๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•œ๊ณ„ : ๊ธฐ์กด OMNeT++/Veins๋Š” ๊ธฐ๋ณธ ์ „ํŒŒ ๋ชจ๋ธ(์˜ˆ: Twoโ€‘Ray Ground, Logโ€‘Normal Shadowing)๊ณผ ๊ณ ์ • ๋ฌผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ์‹ค์ œ ํ™˜๊ฒฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ณด์ • ํ•„์š”์„ฑ : ์‹ค์ œ ํ˜„์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํŠœ๋‹ํ•˜๋ฉด, ํ”„๋กœํ† ์ฝœยท์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ ˆ๋ฒจ ์„ฑ๋Šฅ ํ‰๊ฐ€์˜ ์‹ ๋ขฐ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. 2. ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ |

Model Data
No Image

Interaction Dynamics as a Reward Signal for LLMs

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ธฐ์กด ๋ณด์ƒ ์„ค๊ณ„์˜ ํ•œ๊ณ„ : ํ˜„์žฌ LLM ์ •๋ ฌ์—์„œ๋Š” ์ฃผ๋กœ ํ…์ŠคํŠธ ๋‚ด์šฉ(์˜ˆ: ์ •๋‹ต ์ผ์น˜, ์ธ๊ฐ„ ํ”ผ๋“œ๋ฐฑ) ๊ธฐ๋ฐ˜ ๋ณด์ƒ์ด ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋Š” ๋Œ€ํ™”์˜ ํ๋ฆ„, ์‘๋‹ต ๊ฐ„ ๊ฑฐ๋ฆฌ, ๋Œ€ํ™” ์ „๋ฐ˜์˜ ๊ตฌ์กฐ์  ๋ณ€ํ™” ๋“ฑ์„ ๋ฌด์‹œํ•œ๋‹ค. ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ : ํ…์ŠคํŠธ ์ž์ฒด๋ฅผ ์ €์žฅยท๋ถ„์„ํ•˜๋ฉด ๊ฐœ์ธ์ •๋ณด ์œ ์ถœ ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์ž„๋ฒ ๋”ฉ ๊ถค์ ์€ ์›๋ณธ ํ…์ŠคํŠธ๋ฅผ ๋ณต์›ํ•˜๊ธฐ ์–ด๋ ค์›Œ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ณดํ˜ธ์— ์œ ๋ฆฌํ•˜๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ โ€œ๋Œ€ํ™” ๊ธฐํ•˜ํ•™โ€ ๋Œ€ํ™” ์ž„๋ฒ ๋”ฉ ๊ถค์  : ๋Œ€ํ™”๊ฐ€ ์ง„ํ–‰๋ ์ˆ˜๋ก ๊ฐ ํ„ด์˜ ํ…์ŠคํŠธ๋ฅผ ์‚ฌ์ „ ํ•™์Šต๋œ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ(์˜ˆ: Sentenceโ€‘B

No Image

Interpretable Recognition of Cognitive Distortions in Natural Language Texts

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ธ์ง€ ์™œ๊ณก(Cognitive Distortions) ์€ ๋น„ํ•ฉ๋ฆฌ์  ์‚ฌ๊ณ  ํŒจํ„ด์œผ๋กœ, ์šฐ์šธยท๋ถˆ์•ˆ ๋“ฑ ์ •์‹ ๊ฑด๊ฐ• ๋ฌธ์ œ์™€ ๋ฐ€์ ‘ํ•œ ์—ฐ๊ด€์ด ์žˆ๋‹ค. ๊ธฐ์กด ์ž๋™ ํƒ์ง€ ์‹œ์Šคํ…œ์€ ๋ธ”๋ž™๋ฐ•์Šค ํ˜•ํƒœ๊ฐ€ ๋งŽ์•„ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๋”ฐ๋ผ์„œ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ(interpretability) ๊ณผ ํˆฌ๋ช…์„ฑ(transparency) ์„ ๋™์‹œ์— ๋งŒ์กฑํ•˜๋Š” ๋ชจ๋ธ์ด ์š”๊ตฌ๋œ๋‹ค. 2. ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  | ๊ตฌ์„ฑ ์š”์†Œ | ์„ค๋ช… | ํ˜์‹  ํฌ์ธํŠธ | | | | | | ๊ฐ€์ค‘ ๊ตฌ์กฐ ํŒจํ„ด(Weighted Structured Patterns) | Nโ€‘gr

No Image

Investigating Thinking Behaviours of Reasoning-Based Language Models for Social Bias Mitigation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ถ”๋ก  ๊ธฐ๋ฐ˜ LLM ์€ โ€œChainโ€‘ofโ€‘Thoughtโ€(CoT)์™€ ๊ฐ™์€ ๋‹จ๊ณ„์  ์‚ฌ๊ณ ๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ๋…ผ๋ฆฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌํšŒ์  ํŽธํ–ฅ (์˜ˆ: ์„ฑ๋ณ„ยท์ธ์ข…ยท์—ฐ๋ น ๊ณ ์ •๊ด€๋…)๊ณผ ๊ฒฐํ•ฉ๋  ๊ฒฝ์šฐ, ๋ชจ๋ธ์ด โ€œ์ƒ๊ฐโ€ ๊ณผ์ •์—์„œ ํŽธํ–ฅ์„ ์ฆํญ ์‹œํ‚ค๋Š” ์œ„ํ—˜์ด ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํŽธํ–ฅ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ฑฐ๋‚˜ ์‚ฌํ›„ ๊ต์ •ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ท„์ง€๋งŒ, ์™œ ์‚ฌ๊ณ  ๊ณผ์ • ์ž์ฒด๊ฐ€ ํŽธํ–ฅ์„ ๊ฐ•ํ™”ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋ถ„์„์€ ๋ถ€์กฑํ–ˆ๋‹ค. 2. ํ•ต์‹ฌ ์—ฐ๊ตฌ ์งˆ๋ฌธ 1. ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ชจ๋ธ์ด ํŽธํ–ฅ์„ ์–ด๋–ป๊ฒŒ ์ง‘ํ•ฉ ํ•˜๋Š”๊ฐ€? 2. ํŽธํ–ฅ์„ ์œ ๋ฐœํ•˜๋Š” ๊ตฌ์ฒด์ 

Model
No Image

Is string field theory background independent?

1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฌธ์ž์žฅ ์ด๋ก ์˜ ์œ„์น˜ : ๊ต๋ž€์  ๋ฌธ์ž์—ด ์ด๋ก ์€ ๊ณ ์ •๋œ 2์ฐจ์› ์›”๋“œ์‹œํŠธ์™€ ํŠน์ • ๋ฐฐ๊ฒฝ(์˜ˆ: 10์ฐจ์› ์ดˆ๋Œ€์นญ ๊ณต๊ฐ„) ์œ„์—์„œ ์ •์˜๋œ๋‹ค. SFT๋Š” ์ด ๊ต๋ž€์  ์ ‘๊ทผ์„ โ€˜ํ•„๋“œโ€™ ํ˜•ํƒœ๋กœ ์žฌ๊ตฌ์„ฑํ•ด, ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ๋ฌธ์ž์—ด ์ƒํƒœ๋ฅผ ํ•˜๋‚˜์˜ ์žฅ(field)์œผ๋กœ ๋ฌถ๋Š”๋‹ค. ์ด๋Š” ์–‘์ž์žฅ ์ด๋ก ์ด ์ž…์ž๋“ค์„ ํ•„๋“œ๋กœ ๋ฌถ๋Š” ๋ฐฉ์‹๊ณผ ์ง์ ‘์ ์ธ ์œ ์‚ฌ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋ฐฐ๊ฒฝ ๋…๋ฆฝ์„ฑ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€ : ์ผ๋ฐ˜ ์ƒ๋Œ€์„ฑ ์ด๋ก (GR)์€ ๋ฐฐ๊ฒฝ ๋…๋ฆฝ์ ์ธ ์ด๋ก ์œผ๋กœ ํ‰๊ฐ€๋ฐ›๋Š”๋‹ค. ๋ฌผ๋ฆฌํ•™ ์ฒ ํ•™์ž์™€ ์ด๋ก  ๋ฌผ๋ฆฌํ•™์ž๋“ค์€ SFT๊ฐ€ GR๊ณผ ๊ฐ™์€ ์ˆ˜์ค€์˜ ๋ฐฐ๊ฒฝ ๋…๋ฆฝ์„ฑ์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋ฌธ์ž์—ด ์ด

No Image

It Takes Two: A Dual Stage Approach for Terminology-Aware Translation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์šฉ์–ด ์ผ๊ด€์„ฑ ์€ ์ „๋ฌธ ๋ถ„์•ผ ๋ฒˆ์—ญ(์˜ํ•™, ๋ฒ•๋ฅ , ๊ธฐ์ˆ  ๋“ฑ)์—์„œ ํ’ˆ์งˆ์„ ์ขŒ์šฐํ•˜๋Š” ํ•ต์‹ฌ ์š”์†Œ์ด๋ฉฐ, ๊ธฐ์กด NMT์€ ์ข…์ข… ์šฉ์–ด๋ฅผ ๋ฌด์‹œํ•˜๊ฑฐ๋‚˜ ์ž˜๋ชป ๋ฒˆ์—ญํ•œ๋‹ค. ๊ธฐ์กด์˜ ์ œ์•ฝ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ• (lexical constraints, forced decoding ๋“ฑ)์€ ์šฉ์–ด๋ฅผ ๋ฐ˜๋“œ์‹œ ์‚ฝ์ž…ํ•˜์ง€๋งŒ, ๋ฌธ๋งฅ์— ๋งž์ง€ ์•Š๋Š” ์–ด์ƒ‰ํ•œ ๋ฒˆ์—ญ์„ ์ดˆ๋ž˜ํ•  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ตœ๊ทผ LLM์˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๊ณผ ํ›„ํŽธ์ง‘ ๋Šฅ๋ ฅ ์ด ์ฃผ๋ชฉ๋ฐ›์œผ๋ฉฐ, ์ด๋ฅผ ์šฉ์–ด ์ œ์•ฝ์— ์ ์šฉํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์ œ๊ธฐ๋˜์—ˆ๋‹ค. 2. DuTerm ์•„ํ‚คํ…์ฒ˜ | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ๊ธฐ์ˆ  | ์—ญํ•  | | | |

No Image

Knowledge and Common Knowledge of Strategies

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ „๋žต์  ์ถ”๋ก ์˜ ์ด๋ถ„๋ฒ• : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์™„์ „ ์ •๋ณด (informed)์™€ ๋ถˆ์™„์ „ ์ •๋ณด (uninformed) ๋‘ ๊ฐ€์ง€ ์˜๋ฏธ๋ก ์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋‹ค. ์ด๋Š” ์‹ค์ œ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋ณตํ•ฉ์ ์ธ ์ธ์‹ ์ˆ˜์ค€์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ณ ์ฐจ ์ง€์‹์˜ ํ•„์š”์„ฑ : ์ธ๊ฐ„์ด ๊ฒŒ์ž„์ด๋‚˜ ํ˜‘์ƒ์—์„œ โ€œ๋‚ด๊ฐ€ ์ƒ๋Œ€๊ฐ€ ๋‚ด ์ „๋žต์„ ์•ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹คโ€์™€ ๊ฐ™์€ ๊ณ ์ฐจ์ ์ธ ๋ฏฟ์Œ์„ ํ™œ์šฉํ•˜๋Š” ์‚ฌ๋ก€๋Š” ๋งŽ๋‹ค. ์ด๋ฅผ ํ˜•์‹ํ™”ํ•˜์ง€ ๋ชปํ•˜๋ฉด ์ค‘์š”ํ•œ ์ „๋žต์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋†“์น˜๊ฒŒ ๋œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์ „๋žต

No Image

Knowledge-based anomaly detection for identifying network-induced shape artifacts

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋„คํŠธ์›Œํฌโ€‘์œ ๋ฐœ ํ˜•์ƒ ์•„ํ‹ฐํŒฉํŠธ ๋ž€ ๋ฐ์ดํ„ฐ๊ฐ€ ์ „์†ก๋˜๋Š” ๊ณผ์ •์—์„œ ํŒจํ‚ท ์†์‹ค, ์ง€์—ฐ, ์žฌ์กฐํ•ฉ ์˜ค๋ฅ˜ ๋“ฑ์œผ๋กœ ์ธํ•ด ์›๋ณธ ์‹ ํ˜ธ์˜ ํ˜•ํƒœ๊ฐ€ ๋ณ€ํ˜•๋˜๋Š” ํ˜„์ƒ์„ ๋งํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ˜•์€ ์˜๋ฃŒ ์˜์ƒ, CAD, 3D ํ”„๋ฆฐํŒ… ๋“ฑ ํ˜•ํƒœ๊ฐ€ ์ค‘์š”ํ•œ ๋„๋ฉ”์ธ์—์„œ ํ’ˆ์งˆ ์ €ํ•˜์™€ ์‹ฌ๊ฐํ•œ ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๊ธฐ์กด ์ด์ƒ ํƒ์ง€ ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ํ†ต๊ณ„์  ์ž„๊ณ„๊ฐ’ ํ˜น์€ ๋จธ์‹ ๋Ÿฌ๋‹(์˜ˆ: SVM, ๋”ฅ๋Ÿฌ๋‹) ๊ธฐ๋ฐ˜์œผ๋กœ, ๋„คํŠธ์›Œํฌ ํ™˜๊ฒฝ์˜ ๋™์  ํŠน์„ฑ๊ณผ ๋„๋ฉ”์ธ ์ง€์‹์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. 2. ์ œ์•ˆ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ํ•ต์‹ฌ ๋‚ด์šฉ | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | โ‘  ๋„๋ฉ”

Network Detection
No Image

KPZ-like transport in long-range interacting spin chains proximate to integrability

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ†ต๊ณ„ ๋ฌผ๋ฆฌํ•™์˜ ํ•ต์‹ฌ ์งˆ๋ฌธ : ์œ ๋‹ˆํ„ฐ๋ฆฌ ์–‘์ž ์‹œ์Šคํ…œ์ด ์–ด๋–ป๊ฒŒ ๊ณ ์ „์  ์ˆ˜์†Œ๋™์—ญํ•™(ํ™•์‚ฐ)์œผ๋กœ ์ˆ˜๋ ดํ•˜๋Š”๊ฐ€. ์˜ˆ์™ธ์  ํ˜„์ƒ : 1โ€‘์ฐจ์› Heisenberg ์ฒด์ธ์—์„œ ๋ฌดํ•œ ์˜จ๋„ ์Šคํ•€ ์ „์†ก์ด KPZ ์ดˆํ™•์‚ฐ์„ ๋ณด์ด๋ฉฐ, ์ด๋Š” โ€œ์—ฐ์†์ ์ธ ๋น„์•„๋ฒจ๋ฆฌ์•ˆ ๋Œ€์นญ์„ ๊ฐ€์ง„ ์ ๋ถ„๊ฐ€๋Šฅ ๋ชจ๋ธโ€์— ์ผ๋ฐ˜ํ™”๋  ๊ฐ€๋Šฅ์„ฑ์ด ์ œ๊ธฐ๋ผ ์™”๋‹ค. ๋ฐ˜์ฆ ์‚ฌ๋ก€ : HS ๋ชจ๋ธ์€ ์žฅ๊ฑฐ๋ฆฌ ์ƒํ˜ธ์ž‘์šฉ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ „์ด(ballistic) ์ „์†ก์„ ๋ณด์ด๋ฉฐ, ์ด๋Š” โ€œ์žฅ๊ฑฐ๋ฆฌ ์ƒํ˜ธ์ž‘์šฉ์ด ์ฆ‰์‹œ KPZ๋ฅผ ์–ต์ œํ•˜๋Š”๊ฐ€?โ€๋ผ๋Š” ์งˆ๋ฌธ์„ ๋‚จ๊ธด๋‹ค. 2. ๋ชจ๋ธ ์„ค์ • ๋ฐ ์ˆ˜์น˜ ๋ฐฉ๋ฒ• | ๊ตฌ๋ถ„ | ์ƒํ˜ธ์ž‘์šฉ

Quantum Physics
No Image

Languages of Words of Low Automatic Complexity Are Hard to Compute

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ž๋™ ๋ณต์žก๋„ ๋Š” Kolmogorov ๋ณต์žก๋„์˜ ์ž๋™์ž ๋ฒ„์ „์œผ๋กœ, ๋ฌธ์ž์—ด์„ ๊ฐ€์žฅ ์ž‘์€ ์ƒํƒœ ์ˆ˜์˜ ์œ ํ•œ ์ž๋™์ž๋กœ โ€œ๊ตฌ๋ณ„โ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋„๋ฅผ ์ธก์ •ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๊ฒฐ์ •์  ์ž๋™ ๋ณต์žก๋„($A D$)์— ์ดˆ์ ์„ ๋งž์ท„์œผ๋ฉฐ, ๋น„๊ฒฐ์ •์  ๋ฒ„์ „($A {Ne}$)์€ ์•„์ง ๊ตฌ์กฐ์ ยท๋ณต์žก๋„ ์ด๋ก ์—์„œ ์ถฉ๋ถ„ํžˆ ํƒ๊ตฌ๋˜์ง€ ์•Š์•˜๋‹ค. Kjosโ€‘Hanssen์€ $A {Ne}$๊ฐ€ ์ผ์ • ๋น„์œจ ์ดํ•˜์ธ ๋ฌธ์ž์—ด ์ง‘ํ•ฉ $L {1/3}$์„ ์ •์˜ํ•˜๊ณ , ๊ทธ ๋ณต์žก๋„ ๊ณ„์ธต์„ ์งˆ๋ฌธํ–ˆ์ง€๋งŒ, ๊ตฌ์ฒด์ ์ธ ํšŒ๋กœ ํ•˜์œ„๊ณ„์ธต์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ๋Š” ์—†์—ˆ๋‹ค. 2. ํ•ต์‹ฌ ์ •์˜์™€ ๊ฐœ๋… | ๊ฐœ

No Image

Large Language Models (LLMs) for Electronic Design Automation (EDA)

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ณต์žก๋„ ํญ์ฆ : 7nm ์ดํ•˜ ๊ณต์ •, 3Dโ€‘IC, ์‹œ์Šคํ…œโ€‘์ธโ€‘์นฉ(SoC) ๋“ฑ์œผ๋กœ ์„ค๊ณ„ ๋ณ€์ˆ˜์™€ ์ œ์•ฝ ์กฐ๊ฑด์ด ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ๋Š˜์–ด๋‚˜ ๊ธฐ์กด EDA ํˆด๋งŒ์œผ๋กœ๋Š” ์„ค๊ณ„โ€‘๊ฒ€์ฆ ์ฃผ๊ธฐ๊ฐ€ ๊ธธ์–ด์ง. ์ธ์  ๋น„์šฉ : ์„ค๊ณ„์žยท๊ฒ€์ฆ์ž๊ฐ€ ์ˆ˜์ฒœ~์ˆ˜๋งŒ ์ค„์˜ ์Šคํฌ๋ฆฝํŠธ์™€ ๋งคํฌ๋กœ๋ฅผ ์ˆ˜์ž‘์—…์œผ๋กœ ๊ด€๋ฆฌยท์ˆ˜์ •ํ•ด์•ผ ํ•˜๋Š” ๋ถ€๋‹ด์ด ์ปค์ง. AIโ€‘EDA ์œตํ•ฉ ํ๋ฆ„ : ๊ธฐ์กด์—๋„ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํƒ€์ด๋ฐ ์˜ˆ์ธก, ์ „๋ ฅ ์ถ”์ • ๋“ฑ์ด ์—ฐ๊ตฌ๋์œผ๋‚˜, ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์„ค๊ณ„ ํ๋ฆ„ ์ „์ฒด๋ฅผ ํฌ๊ด„ํ•˜๋Š” ๋ฒ”์šฉ ๋ชจ๋ธ์€ ๋ถ€์žฌํ•จ. 2. LLM ์ ์šฉ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์„ค๊ณ„ ํ‘œํ˜„ : HDL(V

Model
No Image

Laser Scan Path Design for Controlled Microstructure in Additive Manufacturing with Integrated Reduced-Order Phase-Field Modeling and Deep Reinforcement Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ Lโ€‘PBF๋Š” ๊ณ ํ’ˆ์งˆ ๊ธˆ์† ๋ถ€ํ’ˆ ์ƒ์‚ฐ์— ํ•ต์‹ฌ์ด์ง€๋งŒ, ๋ ˆ์ด์ €์™€ ์žฌ๋ฃŒ์˜ ๋ณตํ•ฉ ์—ด์—ญํ•™ยท์—ญํ•™์  ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋ฏธ์„ธ๊ตฌ์กฐ๊ฐ€ ๋ณต์žกํ•˜๊ฒŒ ๋ณ€ํ•œ๋‹ค. ๊ธฐ์กด์˜ ์‹คํ—˜ยท์ˆ˜์น˜ ์ตœ์ ํ™”๋Š” ์‹œ๊ฐ„ยท๋น„์šฉ์ด ๋งŽ์ด ์†Œ์š”๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๊ณผ ๋ฐ์ดํ„ฐโ€‘๋“œ๋ฆฌ๋ธ ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•ด ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ์˜ˆ์ธกยท์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์ˆ ยท๋ฐฉ๋ฒ•๋ก  ์œ„์ƒ์žฅ๋ฒ•(PFM) : ๊ฒฐ์ •๋ฆฝ ์„ฑ์žฅยท์žฌ๊ฒฐ์ • ๊ณผ์ •์„ ์—ฐ์†์ ์ธ ์žฅ ๋ณ€์ˆ˜๋กœ ๊ธฐ์ˆ , ๋ฏธ์„ธ๊ตฌ์กฐ ํ˜•์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ•ด์„. 3D Uโ€‘Net ๋Œ€๋ฆฌ ๋ชจ๋ธ : ๋‹จ์ผ ํŠธ๋ž™ PFM ์‹œ๋ฎฌ๋ ˆ์ด์…˜(๋‹ค์–‘ํ•œ

Model Learning
No Image

Latent Diffusion Model without Variational Autoencoder

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ VAE + ๋””ํ“จ์ „์˜ ํ•œ๊ณ„ ํ•™์Šต ํšจ์œจ์„ฑ : VAE๊ฐ€ ๊ณ ์ฐจ์› ์ด๋ฏธ์ง€ โ†’ ์ €์ฐจ์› ๋ผํ‹ดํŠธ ๋ณ€ํ™˜ ๊ณผ์ •์—์„œ ์ •๋ณด ์†์‹ค๊ณผ ๋ณต์žกํ•œ ์—ญ์ „ํŒŒ๊ฐ€ ๋ฐœ์ƒ, ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์ด ๋А๋ ค์ง. ์ถ”๋ก  ์†๋„ : ๋””ํ“จ์ „ ๊ณผ์ • ์ž์ฒด๊ฐ€ ์ˆ˜๋ฐฑ ๋‹จ๊ณ„ ํ•„์š” โ†’ ์‹ค์‹œ๊ฐ„ ์‘์šฉ์— ๋ถ€์ ํ•ฉ. ์ „์ด์„ฑ ๋ถ€์กฑ : VAE ๋ผํ‹ดํŠธ๋Š” ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ์— ์ตœ์ ํ™”๋ผ ์žˆ์–ด, ๊ฐ์ฒด ์ธ์‹ยท์„ธ๋ถ„ํ™” ๋“ฑ ๋‹ค๋ฅธ ๋น„์ „ ๊ณผ์ œ๋กœ ๋ฐ”๋กœ ํ™œ์šฉํ•˜๊ธฐ ์–ด๋ ค์›€. ํ•ต์‹ฌ ๊ฐ€์„ค : ๋ผํ‹ดํŠธ ๊ณต๊ฐ„์ด โ€˜์˜๋ฏธ์  ๊ตฌ๋ถ„(semiโ€‘semantic separation)โ€™ ๊ณผ โ€˜ํŒ๋ณ„ ๊ตฌ์กฐ(discriminative struc

Model
Lattice XBAR Filters in Thin-Film Lithium Niobate

Lattice XBAR Filters in Thin-Film Lithium Niobate

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๊ณ ์ฃผํŒŒ(>10 GHz) RF ํ”„๋ก ํŠธ์—”๋“œ ์—์„œ SAW ํ•„ํ„ฐ๋Š” ํŒŒ์žฅ ์ œํ•œ์œผ๋กœ ์‚ฌ์šฉ์ด ์–ด๋ ค์›Œ์ง€๊ณ , ๊ธฐ์กด FBAR๋Š” ์ดˆ๋ฐ•๋ง‰ ํ”ผ์—์กฐ์ธตยท๋ฌด๊ฑฐ์šด ๋ฉ”ํƒˆ๋งยท๊ธฐ๊ณ„ ์†์‹ค ๋•Œ๋ฌธ์— 10 GHz ์ด์ƒ์œผ๋กœ ์Šค์ผ€์ผ๋ง์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. Xโ€‘BAR ๋Š” ์ธก๋ฉด ์ „๊ทน์„ ์ด์šฉํ•ด ์–‡์€ TFLN์„ ์„œ์ŠคํŽœ์…˜ ๊ตฌ์กฐ๋กœ ๋งŒ๋“ค๋ฉด์„œ๋„ ๋†’์€ kยฒ์™€ Q๋ฅผ ์œ ์ง€ํ•ด 100 GHz๊นŒ์ง€ ํ™•์žฅ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์—์„œ ์ฐจ์„ธ๋Œ€ ๊ณ ์ฃผํŒŒ ํ•„ํ„ฐ ํ›„๋ณด๋กœ ๋– ์˜ค๋ฅธ๋‹ค. P3F(TFLN) ๋Š” ์ฃผ๊ธฐ์  ํด๋ง์„ ํ†ตํ•ด ์ „๊ธฐโ€‘๊ธฐ๊ณ„ ๊ฒฐํ•ฉ์„ ๋”์šฑ ๊ฐ•ํ™”ํ•˜๊ณ , ๋‘ ์ธต์˜ ๋‘๊ป˜๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์กฐ์ •ํ•จ์œผ๋กœ์จ ์ฃผํŒŒ์ˆ˜ ์Šค์ผ€

Electrical Engineering and Systems Science
No Image

Laugh, Relate, Engage: Stylized Comment Generation for Short Videos

| ๋ถ„์„ ํ•ญ๋ชฉ | ๋‚ด์šฉ ๋ฐ ํ‰๊ฐ€ | | | | | ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ํ•„์š”์„ฑ | โ€ข ์งง์€ ๋™์˜์ƒ์€ ํ˜„์žฌ ๊ฐ€์žฅ ํ™œ๋ฐœํ•œ ์‚ฌ์šฉ์ž ์ƒ์„ฑ ์ฝ˜ํ…์ธ  ํ˜•ํƒœ์ด๋ฉฐ, ๋Œ“๊ธ€์€ ํ”Œ๋žซํผ ์ƒํƒœ๊ณ„์˜ ํ•ต์‹ฌ ์ƒํ˜ธ์ž‘์šฉ ์ˆ˜๋‹จ์ด๋‹ค.<br>โ€ข ๊ธฐ์กด ์ž๋™ ๋Œ“๊ธ€ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์ฃผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์ด๋ฉฐ, ์˜์ƒ ํ…์ŠคํŠธ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ดํ•ด๊ฐ€ ๋ถ€์กฑํ•˜๊ณ  ์Šคํƒ€์ผ ์ œ์–ด๊ฐ€ ์ œํ•œ์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ โ€œ์Šคํƒ€์ผ๋ฆฌ์‹œยท์ปจํ…์ŠคํŠธ ์ธ์‹โ€์ด๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ชจ๋ธ์ด ์ ˆ์‹คํžˆ ํ•„์š”ํ•จ. | | ์‹œ์Šคํ…œ ๊ตฌ์กฐ (LOLGORITHM) | 1. Video Segmentation Agent โ€“ ์˜์ƒ์„ ์˜๋ฏธ ๋‹จ์œ„(์ƒท)๋กœ ๋‚˜๋ˆ„์–ด

No Image

Learning electromagnetic fields based on finite element basis functions

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ „๊ธฐ๊ธฐ๊ณ„ ์„ค๊ณ„์—์„œ๋Š” ์ˆ˜์ฒœ~์ˆ˜๋งŒ ๊ฐœ์˜ ์„ค๊ณ„ ๋ณ€์ˆ˜์— ๋Œ€ํ•ด ๋ฐ˜๋ณต์ ์ธ ์ „์ž๊ธฐ ํ•ด์„์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ์œ ํ•œ์š”์†Œ(FEM) ํ•ด์„์€ ์ •ํ™•ํ•˜์ง€๋งŒ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋†’์•„ ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™”๋‚˜ ์˜จ๋ผ์ธ ๋ชจ๋‹ˆํ„ฐ๋ง์— ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ์„œํ”„๋ผ์ด์ฆˆ ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜์ง€๋งŒ, ํ˜•์ƒ ๋ณ€ํ™”๋ฅผ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•˜๋ ค๋ฉด CAD์™€ ํ•ด์„ ๊ฐ„์˜ ๋งคํ•‘์ด ์ผ๊ด€๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์Šคํ”Œ๋ผ์ธ ๊ธฐ๋ฐ˜ CAD๋Š” ๋งค๋„๋Ÿฌ์šด ํ˜•์ƒ ๋ณ€ํ™”๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ‘œํ˜„ํ•˜์ง€๋งŒ, ๊ธฐ์กด FEM๊ณผ์˜ ๊ฒฐํ•ฉ์€ ๋ณดํ†ต ๋ฉ”์‰ฌ ์žฌ์ƒ์„ฑ์ด๋ผ๋Š” ๋น„์šฉ์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ๋ฒ• Isogeometric

Learning
No Image

Learning Explainable Stock Predictions with Tweets Using Mixture of Experts

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ์˜ ์ค‘์š”์„ฑ : ์ „ํ†ต์ ์ธ ์‹œ๊ณ„์—ด ๋ชจ๋ธ์€ ๊ฐ€๊ฒฉ ์ž์ฒด์—๋งŒ ์˜์กดํ•˜์ง€๋งŒ, ์‹œ์žฅ์€ ๋‰ด์Šค์™€ ์†Œ์…œ ๋ฏธ๋””์–ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ๊ฐ์„ฑยท์ด๋ฒคํŠธ์— ํฌ๊ฒŒ ๋ฐ˜์‘ํ•œ๋‹ค. ํŠนํžˆ ํŠธ์œ„ํ„ฐ๋Š” ์งง๊ณ  ์ฆ‰๊ฐ์ ์ธ ์˜๊ฒฌ์„ ์ œ๊ณตํ•ด โ€˜์‹œ๊ทธ๋„โ€™ ์—ญํ• ์„ ํ•œ๋‹ค. LLM ํ•œ๊ณ„ : ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์€ ํ’๋ถ€ํ•œ ์–ธ์–ด ์ดํ•ด ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์—ˆ์ง€๋งŒ, ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์€ ์ž…๋ ฅ ํ† ํฐ ์ˆ˜ ์ œํ•œ(๋ณดํ†ต 4k~8k)๊ณผ ์‹œ๊ณ„์—ด ์˜ˆ์ธก์„ ์œ„ํ•œ ์—ฐ์†์ ์ธ ์ถœ๋ ฅ ์ƒ์„ฑ์— ๋น„ํšจ์œจ์ ์ด๋‹ค. 2. ์ œ์•ˆ ๋ชจ๋ธ ๊ตฌ์กฐ | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ์žฅ์  | | | | | | Point Embed

Learning

< Category Statistics (Total: 5461) >

Electrical Engineering and Systems Science
107
General
4490
General Relativity
4
HEP-EX
3
HEP-LAT
1
HEP-PH
6
HEP-TH
7
MATH-PH
12
NUCL-TH
1
Quantum Physics
22

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut