KOINEU Logo
No Image

RoboSafe: Safeguarding Embodied Agents via Executable Safety Logic

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์‹œ๊ฐโ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ๊ธฐ๋ฐ˜ ๊ตฌํ˜„ ์—์ด์ „ํŠธ๊ฐ€ ์‹ค์ œ ๋ฌผ๋ฆฌ ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜๋Š” ๋ณต์žกํ•œ ์ž‘์—…์„ ์•ˆ์ „ํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋ณด์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ •์  ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์ด๋‚˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์„ ํ†ตํ•ด ์œ„ํ—˜ ๋ช…๋ น์„ ์ฐจ๋‹จํ•˜๋ ค ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ์ •์  ๊ทœ์น™์€ ์‚ฌ์ „์— ์ •์˜๋œ ์œ„ํ—˜ ์ƒํ™ฉ์—๋งŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ์–ด, ์ƒˆ๋กœ์šด ํ˜น์€ ๋ณ€ํ˜•๋œ ์œ„ํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค์— ์ทจ์•ฝํ•˜๋‹ค. ๋‘˜์งธ, ํ”„๋กฌํ”„ํŠธ ์ˆ˜์ค€ ์ œ์–ด๋Š” ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์ถ”๋ก  ๊ณผ์ •์„ ์ง์ ‘ ๊ด€์ฐฐํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์—, ์‹œ๊ฐ„์—

PAACE: A Plan-Aware Automated Agent Context Engineering Framework

PAACE: A Plan-Aware Automated Agent Context Engineering Framework

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์—์ด์ „ํŠธ์˜ ๋ณต์žกํ•œ ๋‹ค๋‹จ๊ณ„ ์›Œํฌํ”Œ๋กœ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ปจํ…์ŠคํŠธ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์š”์•ฝ ๋ฐ ์••์ถ• ๋ฐฉ๋ฒ•๋“ค์ด ๊ณ„ํš ์ธ์‹์„ฑ๊ณผ ๋‹ค๋‹จ๊ณ„ ์‚ฌ๊ณ ๋ฅผ ๋ฌด์‹œํ•ด ์™”๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด PAACE๋ผ๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. PAACE๋Š” ๋‹ค์Œ k ๋‹จ๊ณ„ ๊ด€๋ จ์„ฑ ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋ฏธ๋ž˜์˜ ์ž‘์—…์— ํ•„์š”ํ•œ ์ •๋ณด๋งŒ ์œ ์ง€ํ•˜๊ณ  ๋ถˆํ•„์š”ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๊ณ„ํš ๊ตฌ์กฐ ๋ถ„์„๊ณผ ์ง€์‹œ์–ด ๊ณต๋™ ์ •์ œ๋ฅผ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”

Framework
Towards Robust Protective Perturbation against DeepFake Face Swapping

Towards Robust Protective Perturbation against DeepFake Face Swapping

๋”ฅํŽ˜์ดํฌ ๊ธฐ์ˆ ์ด ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ•˜๋ฉด์„œ ์–ผ๊ตด ๊ตํ™˜์„ ํ†ตํ•œ ์‹ ์› ์œ„์กฐ๊ฐ€ ์‹ค์‹œ๊ฐ„ ์˜์ƒยท์ด๋ฏธ์ง€์—์„œ ๊ฑฐ์˜ ๊ตฌ๋ถ„์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์— ์ด๋ฅด๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ์–ด ์ „๋žต์€ ์ด๋ฏธ์ง€์— ์ธ๊ฐ„์ด ๊ฐ์ง€ํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฏธ์„ธ ๊ต๋ž€(perturbation)์„ ์‚ฝ์ž…ํ•ด ๋”ฅํŽ˜์ดํฌ ํƒ์ง€ ๋ชจ๋ธ์ด๋‚˜ ๋ณ€์กฐ ๋ฐฉ์ง€ ๋ชจ๋ธ์„ ์†์ด๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต๋ž€์€ JPEG ์••์ถ•, ๋ฆฌ์‚ฌ์ด์ง•, ํšŒ์ „, ์ƒ‰์ƒ ๋ณ€ํ™˜ ๋“ฑ ์ผ์ƒ์ ์ธ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์—์„œ ์‰ฝ๊ฒŒ ์‚ฌ๋ผ์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ๋ณ€ํ™˜์— ๋Œ€ํ•œ ๊ฐ•์ธ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด Expectation over Transformation(EOT)

A 3D virtual geographic environment for flood representation towards risk communication

A 3D virtual geographic environment for flood representation towards risk communication

๋ณธ ์—ฐ๊ตฌ๋Š” ์žฌ๋‚œ ์œ„ํ—˜์†Œํ†ต ๋ถ„์•ผ์—์„œ โ€˜์ „๋ฌธ๊ฐ€์™€ ๋น„์ „๋ฌธ๊ฐ€ ์‚ฌ์ด์˜ ์ •๋ณด ๊ฒฉ์ฐจโ€™๋ฅผ ํ•ด์†Œํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๋กœ์„œ, ๊ธฐ์ˆ ์  ๋ณต์žก์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ๋„ ๊ณผํ•™์  ์ •ํ™•์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ํ™์ˆ˜ ๋ชจ๋ธ๋ง ๋‹จ๊ณ„์—์„œ ๊ธฐ์กด์˜ 1์ฐจ์› ํ˜น์€ 2์ฐจ์› ์ˆ˜์น˜ ๋ชจ๋ธ์„ ๋„˜์–ด 3์ฐจ์› ์ง€ํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ณ ํ•ด์ƒ๋„ ๋””์ง€ํ„ธ ๊ณ ๋„ ๋ชจ๋ธ(DEM)๊ณผ GIS ๊ธฐ๋ฐ˜ ํ† ์ง€ ์ด์šฉ ์ •๋ณด๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ , ์œ ์—ญ ๋‚ด ๊ฐ•์šฐโ€‘์œ ์ถœโ€‘์ „ํŒŒ ๊ณผ์ •์„ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฐฉ์ •์‹์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ๋ณ‘๋ ฌ ์ปดํ“จํŒ…์„ ๋„์ž…ํ•ด ๊ณ„์‚ฐ ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ๋‹จ์ถ•ํ•œ ๊ฒƒ์ด๋‹ค

A Mechanistic Analysis of Transformers for Dynamical Systems

A Mechanistic Analysis of Transformers for Dynamical Systems

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์„ ๊ธฐ์กด์˜ ๊ณ ์ „์  ์ž๊ธฐํšŒ๊ท€(AR) ๋ฐ ์ƒํƒœ๊ณต๊ฐ„ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜๋ฉด์„œ, ํŠนํžˆ ๋™์—ญํ•™ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ•ด์„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์ธ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์ธ๊ณผ์  ์ž๊ธฐโ€‘์ฃผ์˜(causal selfโ€‘attention)โ€™๋ฅผ โ€œ์„ ํ˜•์ด๋ฉฐ ๊ณผ๊ฑฐ์— ์˜์กดํ•˜๋Š” ์žฌ๊ท€ ์—ฐ์‚ฐโ€์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ, ํŠธ๋žœ์Šคํฌ๋จธ๊ฐ€ ์‹œ๊ฐ„ ์ถ•์„ ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ์ •๋ณด๋ฅผ ์ถ•์ ํ•˜๊ณ  ์ „๋‹ฌํ•˜๋Š”์ง€๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ช…์‹œํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋จผ์ € ์„ ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋ถ„์„์—์„œ๋Š”, ์†Œํ”„ํŠธ๋งฅ์Šค ํ•จ์ˆ˜๊ฐ€ ์ถœ๋ ฅ ๊ฐ€์ค‘์น˜๋ฅผ ํ™•๋ฅ  ๋ถ„ํฌ ํ˜•ํƒœ๋กœ

Analysis System
A Women's Health Benchmark for Large Language Models

A Women's Health Benchmark for Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)๋“ค์ด ์—ฌ์„ฑ ๊ฑด๊ฐ• ์ •๋ณด์˜ ์ฃผ์š” ์ถœ์ฒ˜๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋“ค์˜ ์ •ํ™•์„ฑ์ด ์ œ๋Œ€๋กœ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜์Œ์„ ์ง€์ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Women's Health Benchmark (WHB)์„ ๊ฐœ๋ฐœํ•˜์—ฌ LLM์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. WHB์€ ๋‹ค์„ฏ ๊ฐ€์ง€ ์˜๋ฃŒ ์ „๋ฌธ ๋ถ„์•ผ์™€ ์„ธ ๊ฐ€์ง€ ์ฟผ๋ฆฌ ์œ ํ˜•, ๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿ ๊ฐ€์ง€ ์˜ค๋ฅ˜ ์œ ํ˜•์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด, ์—ฌ์„ฑ ๊ฑด๊ฐ• ์ •๋ณด ์ œ๊ณต์—์„œ LLM์ด ์–ด๋–ค ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ๋Š”์ง€ ์ž์„ธํžˆ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํ‰๊ฐ€ ๊ฒฐ๊ณผ, ํ˜„์žฌ์˜ LLM๋“ค์€ WHB์—์„œ ์•ฝ 60%์˜ ์‹คํŒจ์œจ์„

Model
Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction

Adaptive Regime-Switching Forecasts with Distribution-Free Uncertainty: Deep Switching State-Space Models Meet Conformal Prediction

๋ ˆ์ง ์ „ํ™˜(regime transition)์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ํ‰๊ท , ๋ถ„์‚ฐ, ์ž๊ธฐ์ƒ๊ด€ ๊ตฌ์กฐ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ฐ”๋€Œ๋Š” ํ˜„์ƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„์ •์ƒ์„ฑ์€ ์ „ํ†ต์ ์ธ ์‹œ๊ณ„์—ด ๋ชจ๋ธ์ด ๊ฐ€์ •ํ•˜๋Š” ์ •์ (stationary) ํŠน์„ฑ์„ ์œ„๋ฐฐํ•˜๋ฏ€๋กœ, ์˜ˆ์ธก๊ฐ’ ์ž์ฒด์˜ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ์˜ˆ์ธก ๋ถˆํ™•์‹ค์„ฑ์˜ ์ •ํ™•ํ•œ ์ถ”์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ํŠนํžˆ, ์‹ค์‹œ๊ฐ„ ์˜์‚ฌ๊ฒฐ์ •์ด๋‚˜ ์œ„ํ—˜ ๊ด€๋ฆฌ์™€ ๊ฐ™์ด ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์‹ ๋ขฐ ๊ตฌ๊ฐ„์ด ์ง์ ‘์ ์ธ ๋น„์šฉยท์ด์ต์— ์—ฐ๊ฒฐ๋˜๋Š” ๋ถ„์•ผ์—์„œ๋Š” โ€œ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๋œโ€ ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ •์ด ํ•ต์‹ฌ ์š”๊ตฌ์‚ฌํ•ญ์ด ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ์ˆ ์„ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Deep Swi

Model
Adversarial Attack-Defense Co-Evolution for LLM Safety Alignment via Tree-Group Dual-Aware Search and Optimization

Adversarial Attack-Defense Co-Evolution for LLM Safety Alignment via Tree-Group Dual-Aware Search and Optimization

๋ณธ ๋…ผ๋ฌธ์€ LLM ์•ˆ์ „์„ฑ ์—ฐ๊ตฌ์—์„œ โ€œ๊ณต๋™์ง„ํ™”(coโ€‘evolution)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ํƒˆ์˜ฅ ๊ณต๊ฒฉ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •์ ์ธ ํ”„๋กฌํ”„ํŠธ ๋ณ€ํ˜•์ด๋‚˜ ์‚ฌ์ „ ์ •์˜๋œ ๊ณต๊ฒฉ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ๋ฐฉ์–ด ์ธก๋ฉด์—์„œ๋„ ์‚ฌํ›„ ์ฐจ๋‹จ ํ•„ํ„ฐ๋‚˜ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์— ์˜์กดํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๊ณต๊ฒฉ์ž๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ƒˆ๋กœ์šด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ , ๋ฐฉ์–ด ์‹œ์Šคํ…œ์ด ์ด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋”ฐ๋ผ์žก๊ธฐ ์–ด๋ ค์šด โ€˜๋™์  ๊ฒฝ์Ÿ ๊ตฌ๋„โ€™๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ACEโ€‘Safety๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋‘ ๋‹จ๊ณ„์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ

AMS-IO-Bench and AMS-IO-Agent: Benchmarking and Structured Reasoning for Analog and Mixed-Signal Integrated Circuit Input/Output Design

AMS-IO-Bench and AMS-IO-Agent: Benchmarking and Structured Reasoning for Analog and Mixed-Signal Integrated Circuit Input/Output Design

AMSโ€‘IOโ€‘Agent๋Š” ๊ธฐ์กด์˜ ์•„๋‚ ๋กœ๊ทธยทํ˜ผํ•ฉ์‹ ํ˜ธ(IC) ์„ค๊ณ„ ํ๋ฆ„์—์„œ ๊ฐ€์žฅ ์‹œ๊ฐ„๊ณผ ์ธ๋ ฅ์ด ๋งŽ์ด ์†Œ๋ชจ๋˜๋Š” I/O ์„œ๋ธŒ์‹œ์Šคํ…œ ์„ค๊ณ„ ๋‹จ๊ณ„์— LLM(๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ)์„ ์ ์šฉํ•œ ํ˜์‹ ์ ์ธ ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์š”์†Œ๋Š” ๋„๋ฉ”์ธ ์ง€์‹๋ฒ ์ด์Šค์ด๋‹ค. ์„ค๊ณ„ ๊ทœ์น™, ๋ ˆ์ด์•„์›ƒ ์ œ์•ฝ, ์ „๊ธฐ์  ์ŠคํŽ™, ํŒจํ‚ค์ง• ๊ด€๋ก€ ๋“ฑ AMS ์„ค๊ณ„์— ํŠนํ™”๋œ ์ •๋ณด๋ฅผ ๊ตฌ์กฐํ™”๋œ ํ˜•ํƒœ(์˜ˆ: ํŠธ๋ฆฌํ˜• ์Šคํ‚ค๋งˆ)๋กœ ์ €์žฅํ•จ์œผ๋กœ์จ LLM์ด โ€œํ๋ฆฟํ•œโ€ ์ž์—ฐ์–ด ๋ช…๋ น์„ ๋ฐ›๋”๋ผ๋„ ์ผ๊ด€๋œ ์„ค๊ณ„ ํŒ๋‹จ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์ด๋Š” ์ „ํ†ต์ ์ธ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์— ์˜์กดํ•˜๋Š” ์ผ๋ฐ˜ LLM๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋Š” ์ ์ด๋‹ค. ๋‘

Anatomy-Guided Representation Learning Using a Transformer-Based Network for Thyroid Nodule Segmentation in Ultrasound Images

Anatomy-Guided Representation Learning Using a Transformer-Based Network for Thyroid Nodule Segmentation in Ultrasound Images

SSMT Net์€ ์ดˆ์ŒํŒŒ ์ด๋ฏธ์ง€์—์„œ ๊ฐ‘์ƒ์„  ์ข…์–‘์˜ ๋ถ„ํ• ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ํŠนํžˆ ์–ด๋…ธํ…Œ์ด์…˜์ด ๋ถ€์กฑํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ๋Š” ๋ฏธํ‘œ์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ณ€ํ™˜๊ธฐ ๊ธฐ๋ฐ˜ ์ธ์ฝ”๋”์˜ ํŠน์ง• ์ถ”์ถœ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ˜๊ฐ๋… ํ•™์Šต์„ ์ ์šฉํ•œ๋‹ค. ์ด๋กœ์จ ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ์ข…์–‘ ํฌ๊ธฐ์™€ ํ˜•ํƒœ์— ๋Œ€ํ•ด ๋” ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, SSMT Net์€ ๊ฐ‘์ƒ์„  ์„ ์ฒด์˜ ์ „์ฒด์ ์ธ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ „์—ญ์  ๋ฌธ๋งฅ ์ •๋ณด์™€ ์ข…์–‘์˜ ์„ธ๋ถ€ ํŠน์ง•์„ ํŒŒ์•…ํ•˜๋Š” ์ง€์—ญ์  ๋ฌธ๋งฅ

Network Learning
AQUA-Net: Adaptive Frequency Fusion and Illumination Aware Network for Underwater Image Enhancement

AQUA-Net: Adaptive Frequency Fusion and Illumination Aware Network for Underwater Image Enhancement

๋ณธ ๋…ผ๋ฌธ์€ ์ˆ˜์ค‘ ์ด๋ฏธ์ง€ ๋ณต์› ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๊ด‘ํ•™์  ์™œ๊ณก๊ณผ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ˆ˜์ค‘ ์ด๋ฏธ์ง€ ํ–ฅ์ƒ ๋ชจ๋ธ์€ RGB ๊ณต๊ฐ„์—์„œ๋งŒ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , ์ƒ‰ ์™œ๊ณก์„ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด๋‚˜ ๋Œ€๊ทœ๋ชจ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ด์— ๋น„ํ•ด AQUAโ€‘Net์€ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜์„ ์ด์šฉํ•œ ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ ์ •๋ณด๋ฅผ ์ธ์ฝ”๋”์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ, ์ €์ฃผํŒŒ์—์„œ๋Š” ์ „๋ฐ˜์ ์ธ ์ƒ‰์กฐ์™€ ์กฐ๋ช…์„, ๊ณ ์ฃผํŒŒ์—์„œ๋Š” ํ…์Šค์ฒ˜์™€ ๊ฐ€์žฅ์ž๋ฆฌ ์ •๋ณด๋ฅผ ๋ณ„๋„๋กœ ๊ฐ•ํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฃผํŒŒ์ˆ˜ ์œตํ•ฉ์€ ํŠนํžˆ ๊นŠ์€

Network
ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization

ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization

ARIAL์€ ๋ฌธ์„œ VQA ๋ฌธ์ œ๋ฅผ โ€œํ…์ŠคํŠธ ์ถ”์ถœ โ†’ ์ปจํ…์ŠคํŠธ ๊ฒ€์ƒ‰ โ†’ ๋‹ต๋ณ€ ์ƒ์„ฑ โ†’ ์œ„์น˜ ์ง€์ •โ€์ด๋ผ๋Š” ๋„ค ๋‹จ๊ณ„๋กœ ๋ช…ํ™•ํžˆ ๋ถ„ํ•ดํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ ๋ชจ๋ธ๊ณผ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ TrOCR๋ฅผ ์ด์šฉํ•ด ๊ณ ํ•ด์ƒ๋„ ๋ฌธ์„œ ์ด๋ฏธ์ง€์—์„œ ๋ฌธ์ž ์ˆ˜์ค€์˜ ํ…์ŠคํŠธ๋ฅผ ์ถ”์ถœํ•˜๋Š”๋ฐ, ์ด๋Š” ์ตœ์‹  OCR ๋ชจ๋ธ์ด ์ œ๊ณตํ•˜๋Š” ๋†’์€ ์ธ์‹๋ฅ ์„ ๊ทธ๋Œ€๋กœ ํ™œ์šฉํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ์˜๋ฏธ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ ์—”์ง„์„ ํ†ตํ•ด ์งˆ๋ฌธ๊ณผ ๊ฐ€์žฅ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ ๋ฌธ์„œ ๊ตฌ๊ฐ„์„ ์„ ๋ณ„ํ•จ์œผ๋กœ์จ, ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต ์–ธ์–ด ๋ชจ๋ธ์ด ๋ถˆํ•„์š”ํ•œ ์ •๋ณด์— ๋…ธ์ถœ๋˜๋Š” ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” Gemma

Framework
BugSweeper: Function-Level Detection of Smart Contract Vulnerabilities Using Graph Neural Networks

BugSweeper: Function-Level Detection of Smart Contract Vulnerabilities Using Graph Neural Networks

BugSweeper ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ๊ณ„์•ฝ ๋ณด์•ˆ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์ „์ฒ˜๋ฆฌ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” Functionโ€‘Level Abstract Syntax Graph(FLAG)๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ทธ๋ž˜ํ”„ ํ‘œํ˜„์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ AST ํ˜น์€ ๋‹จ์ˆœํ•œ ์ œ์–ด ํ๋ฆ„ ๊ทธ๋ž˜ํ”„(CFG)๋งŒ์„ ์‚ฌ์šฉํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์ฝ”๋“œ์˜ ๊ตฌ์กฐ์  ์ •๋ณด๋Š” ํฌ์ฐฉํ•˜์ง€๋งŒ ๋ณ€์ˆ˜ ๊ฐ„ ์˜์กด์„ฑ์ด๋‚˜ ๋ฐ์ดํ„ฐ ํ๋ฆ„์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. FLAG๋Š” AST๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉด์„œ, ๊ฐ ๋…ธ๋“œ์— ๋Œ€ํ•ด ๋ณ€์ˆ˜ ์ •์˜ยท์‚ฌ์šฉ, ํ•จ์ˆ˜ ํ˜ธ์ถœ, ์กฐ๊ฑด ๋ถ„๊ธฐ ๋“ฑ ๋ฐ์ดํ„ฐ ํ

Network Detection
Chat with UAV -- Human-UAV Interaction Based on Large Language Models

Chat with UAV -- Human-UAV Interaction Based on Large Language Models

์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ž์—ฐ์–ด๋ฅผ ๊ณ ๋„์ ์œผ๋กœ ์ดํ•ดํ•˜๊ณ  ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ ์ธ๊ฐ„โ€‘๋กœ๋ด‡(HRI) ๋ฐ ์ธ๊ฐ„โ€‘UAV ์ƒํ˜ธ์ž‘์šฉ(HUI) ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ์ „ํ™˜์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด HUI ์‹œ์Šคํ…œ์€ ์ฃผ๋กœ ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์‚ฌ์ „์— ์ •์˜ํ•œ ์ธํ„ฐํŽ˜์ด์Šค์™€ ์ž‘์—… ํ๋ฆ„์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์‚ฌ์šฉ์ž๊ฐ€ ๋ณต์žกํ•œ UAV ์ž„๋ฌด๋ฅผ ์ง๊ด€์ ์œผ๋กœ ์ง€์ •ํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ๋Š” โ€œ์ด์ค‘ ์—์ด์ „ํŠธโ€๋ผ๋Š” ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์šฉ์ž์˜ ์ž์—ฐ์–ด ์ž…๋ ฅ์„ ํ•ด์„ํ•ด ๊ณ ์ˆ˜์ค€์˜ ์ž„๋ฌด ๋ชฉํ‘œ์™€

Model
No Image

CogniSNN: Enabling Neuron-Expandability, Pathway-Reusability, and Dynamic-Configurability with Random Graph Architectures in Spiking Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ์ŠคํŒฉํ‚น ์‹ ๊ฒฝ๋ง(SNNs)์˜ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ธ CogniSNN์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋Š” ๋‡Œ์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ฐฉํ•˜๋ ค๋Š” ์‹œ๋„์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด SNN ์—ฐ๊ตฌ์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์ธ๊ณต์‹ ๊ฒฝ๋ง(ANNs)์˜ ๊ฒฝ์ง๋œ ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ๊ทธ๋Œ€๋กœ ๋”ฐ๋ฅด๊ณ  ์žˆ์ง€๋งŒ, CogniSNN์€ ๋žœ๋ค ๊ทธ๋ž˜ํ”„ ์•„ํ‚คํ…์ฒ˜(RGA)๋ฅผ ํ†ตํ•ด ์ƒ๋ฌผํ•™์  ๋‰ด๋Ÿฐ์˜ ํ™•๋ฅ ์  ์—ฐ๊ฒฐ์„ฑ์„ ๋ฐ˜์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋„คํŠธ์›Œํฌ๋Š” Neuron Expandability(๋‰ด๋Ÿฐ ํ™•์žฅ์„ฑ), Pathway Reusability(๊ฒฝ๋กœ ์žฌ์‚ฌ์šฉ์„ฑ), Dynamic Configurability(๋™์  ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ์„)๋ฅผ ๊ฐ–๊ฒŒ ๋˜์–ด,

Network
Composite Classifier-Free Guidance for Multi-Modal Conditioning in Wind Dynamics Super-Resolution

Composite Classifier-Free Guidance for Multi-Modal Conditioning in Wind Dynamics Super-Resolution

๋ณธ ๋…ผ๋ฌธ์€ ํ’์† ๋ฐ์ดํ„ฐ์™€ ๊ฐ™์€ ๋‹ค์ฑ„๋„ ์‹œ๊ณ„์—ดยท๊ณต๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ ํ•ด์ƒ๋„๋กœ ๋ณต์›ํ•˜๋Š” ๋ฌธ์ œ์— ํ™•์‚ฐ ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋ฉด์„œ, ๊ธฐ์กด ํด๋ž˜์Šคํ”„๋ฆฌ ๊ฐ€์ด๋˜์Šค(CFG)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ CFG๋Š” ํ•˜๋‚˜์˜ ์กฐ๊ฑด(์˜ˆ: ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ)๋งŒ์„ ๊ณ ๋ คํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ๋‹ค์ค‘ ์กฐ๊ฑด์ด ๋™์‹œ์— ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ๊ฐ€์ด๋“œ ํšจ๊ณผ๊ฐ€ ํฌ์„๋œ๋‹ค. ํ’์† ์ดˆํ•ด์ƒ๋„์—์„œ๋Š” ์ง€ํ˜• ๊ณ ๋„, ์˜จ๋„, ์Šต๋„, ๋Œ€๊ธฐ์•• ๋“ฑ 10๊ฐœ ์ด์ƒ์˜ ๋ณด์กฐ ๋ณ€์ˆ˜๋“ค์ด ๋ชจ๋ธ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๋ฉฐ, ์ด๋“ค ๊ฐ๊ฐ์ด ์žฌ๊ตฌ์„ฑ ํ’ˆ์งˆ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ์กฐ๊ฑด์„ ํ•˜๋‚˜์˜ ๋ณตํ•ฉ

Compressed Causal Reasoning: Quantization and GraphRAG Effects on Interventional and Counterfactual Accuracy

Compressed Causal Reasoning: Quantization and GraphRAG Effects on Interventional and Counterfactual Accuracy

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ณ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๊ฒฝ๋Ÿ‰ํ™”ยท์–‘์žํ™”๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉ๋˜๋Š” ์ถ”์„ธ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ์—ฐ๊ตฌ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ํŠนํžˆ ์ธ๊ณผ ์ถ”๋ก ์„ Pearl์ด ์ œ์‹œํ•œ โ€˜์ธ๊ณผ ์‚ฌ๋‹ค๋ฆฌโ€™(์—ฐ๊ด€ โ†’ ๊ฐœ์ž… โ†’ ๋ฐ˜์‚ฌ์‹ค)๋ผ๋Š” ์‚ผ๋‹จ๊ณ„ ๊ตฌ์กฐ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๋ณ„๋กœ ์–‘์žํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰ํ™”ํ•œ ์ ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ฒซ์งธ, ์‹คํ—˜์— ์‚ฌ์šฉ๋œ CLadder ๋ฒค์น˜๋งˆํฌ๋Š” 3,000๊ฐœ์˜ ์งˆ์˜๋ฅผ ์ธตํ™” ์ถ”์ถœ(stratified sampling)ํ•˜์—ฌ ๊ฐ ์‚ฌ๋‹ค๋ฆฌ ๋‹จ๊ณ„์™€ ๋‹ค์–‘ํ•œ ์ธ๊ณผ ๊ตฌ์กฐ(์˜ˆ: ์ง์ ‘ ํšจ๊ณผ, ๋งค๊ฐœ ํšจ๊ณผ, ์ฝœ

Contemporary Shrinking of Colombia's Highest Mountains: Pico Simon Bolivar and Pico Cristobal Colon

Contemporary Shrinking of Colombia's Highest Mountains: Pico Simon Bolivar and Pico Cristobal Colon

์ด ๋…ผ๋ฌธ์€ ์ฝœ๋Ÿผ๋น„์•„์˜ ์ตœ๊ณ ๋ด‰์ธ ํฌ๋ฆฌ์Šคํ†  ์ฝœ๋ก ๊ณผ ์‹œ๋ฉ”์˜จ ๋ณผ๋ฆฌ๋ฐ”๋ฅด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ณ ๋„ ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ๊ธฐํ›„ ๋ณ€ํ™”๋กœ ์ธํ•ด ๋‘ ์‚ฐ ์ •์ƒ์˜ ๋น™ํ•˜๊ฐ€ ํฌ๊ฒŒ ์ค„์–ด๋“ค์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” 1939๋…„ ์ดํ›„ ์ฒ˜์Œ์œผ๋กœ ์ •ํ™•ํ•œ ์ธก์ •์„ ์ˆ˜ํ–‰ํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ฐจ๋“ฑ GPS์™€ ์•„๋ธŒ๋‹ˆ ๋ ˆ๋ฒจ์ด๋ผ๋Š” ๊ณ ๋„ ์ธก์ • ์žฅ๋น„๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์˜ ํ™œ์šฉ์€ ๊ณผ๊ฑฐ์— ๋น„ํ•ด ํ›จ์”ฌ ๋” ์ •๋ฐ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, ์‹œ๋ฉ”์˜จ ๋ณผ๋ฆฌ๋ฐ”๋ฅด์™€ ํฌ๋ฆฌ์Šคํ†  ์ฝœ๋ก ์˜ ๋น™ํ•˜๊ฐ€ ๊ฐ๊ฐ 53m์™€ 62m ์ค„์–ด๋“ค์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐํ›„

Context-Aware Agentic Power Resources Optimisation in EV using Smart2ChargeApp

Context-Aware Agentic Power Resources Optimisation in EV using Smart2ChargeApp

๋ณธ ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ(EV) ์ถฉ์ „ ์ƒํƒœ๊ณ„๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ CAMAC DRA ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ์ƒํ™ฉ ์ธ์‹ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์กฐ์ •์„ ํ†ตํ•ด ๋™์ ์ธ ํ™˜๊ฒฝ ์กฐ๊ฑด์— ์ ์‘ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์˜ ์š”๊ตฌ๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. CAMAC DRA ํ”„๋ ˆ์ž„์›Œํฌ๋Š” 250๋Œ€์˜ EV์™€ 45๊ฐœ์˜ ์ถฉ์ „์†Œ ๋„คํŠธ์›Œํฌ์— ๊ฑธ์ณ ์ž์œจ์ ์ธ ์ถฉ์ „ ์—์ด์ „ํŠธ๋ฅผ ์กฐ์ •ํ•˜๊ณ , ๋‚ ์”จ ํŒจํ„ด, ๊ตํ†ต ์ƒํ™ฉ, ์ „๋ ฅ๋ง ๋ถ€ํ•˜ ๋ณ€๋™, ์ „๊ธฐ ์š”๊ธˆ ๋“ฑ ๋‹ค์–‘ํ•œ ์ปจํ…์ŠคํŠธ ํŠน

Crack detection by holomorphic neural networks and transfer-learning-enhanced genetic optimization

Crack detection by holomorphic neural networks and transfer-learning-enhanced genetic optimization

์ด ๋…ผ๋ฌธ์€ ๋ณ€ํ˜•๋ฅ  ์ธก์ •๊ฐ’๋งŒ์„ ์ด์šฉํ•ด 2์ฐจ์› ๊ณ ์ฒด ๋‚ด๋ถ€์˜ ๊ท ์—ด์„ ์‹๋ณ„ํ•˜๋Š” ์ „ํ˜€ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ท ์—ด ํƒ์ง€๋ฅผ ์—ญ๋ฌธ์ œ๋กœ ์ •์˜ํ•˜๊ณ , ํ•ด๋‹ต์„ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm, GA)์œผ๋กœ ํƒ์ƒ‰ํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€ ์ „ํ†ต์ ์ธ ์ง์ ‘ ํ•ด์„ ๋ฐฉ์‹๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ „์—ญ ์ตœ์ ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํ˜์‹ ์ ์ธ ๋ถ€๋ถ„์€ ํ‰๋ฉด ํƒ„์„ฑ ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ์ „๋‹จ(holomorphic) ํผํ…์…œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด๋ฅผ ๋‘ ๊ฐœ์˜ ์ „๋‹จ ์‹ ๊ฒฝ๋ง(holomorphic neural networks, HNN)์œผ๋กœ ํ•™์Šตํ•œ๋‹ค๋Š”

Network Learning Detection
CryptoQA: A Large-scale Question-answering Dataset for AI-assisted Cryptography

CryptoQA: A Large-scale Question-answering Dataset for AI-assisted Cryptography

CryptoQA ํ”„๋กœ์ ํŠธ๋Š” ์•”ํ˜ธํ•™์ด๋ผ๋Š” ๊ณ ๋„๋กœ ์ „๋ฌธํ™”๋œ ๋ถ„์•ผ์— ๋Œ€ํ•œ LLM์˜ ์‹ค์ œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์ดˆ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๊ณผ์ •์—์„œ ์—ฐ๊ตฌ์ž๋Š” ๊ต๊ณผ์„œ, ํ•™์ˆ  ๋…ผ๋ฌธ, ํ‘œ์ค€ ๋ฌธ์„œ ๋“ฑ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ถœ์ฒ˜๋ฅผ ์—„์„ ํ•˜๊ณ , ์งˆ๋ฌธโ€‘๋‹ต๋ณ€ ์Œ์„ ์ž๋™ยท์ˆ˜๋™์œผ๋กœ ์ •์ œํ•˜์˜€๋‹ค. ์ด๋•Œ ์งˆ๋ฌธ์€ ์ •์˜ยท์ •๋ฆฌยท์ฆ๋ช…ยท์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„ ๋“ฑ ๋‹ค์–‘ํ•œ ๋‚œ์ด๋„๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ๋‹ต๋ณ€์—๋Š” ์ˆ˜์‹, ์˜์‚ฌ์ฝ”๋“œ, ์ฐธ๊ณ  ๋ฌธํ—Œ ๋“ฑ ๋ฉ”ํƒ€์ •๋ณด๊ฐ€ ํฌํ•จ๋ผ ๋ชจ๋ธ์ด ๋‹จ์ˆœ ํ…์ŠคํŠธ ์ƒ์„ฑ์ด ์•„๋‹ˆ๋ผ ๊ตฌ์กฐํ™”๋œ ์ง€์‹์„ ์žฌํ˜„ํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋‘˜์งธ, ํ‰๊ฐ€ ํ”„

Data
DC-Biased Homogenized Harmonic Balance Finite Element Method

DC-Biased Homogenized Harmonic Balance Finite Element Method

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ ์ „์ž๊ธฐ ํ•ด์„์—์„œ ๊ฐ€์žฅ ํฐ ๋ณ‘๋ชฉ ํ˜„์ƒ ์ค‘ ํ•˜๋‚˜์ธ ์™€์ „๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํš๊ธฐ์ ์œผ๋กœ ๊ฐ€์†ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ์‹œ๊ฐ„ ์˜์—ญ ์ „์ด ํ•ด์„์€ ๋ฏธ์„ธํ•œ ๋ž˜๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๋ฅผ ์ง์ ‘ ๋ฉ”์‰ฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ž์œ ๋„๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ , ๋น„์„ ํ˜• ์žฌ๋ฃŒ ํŠน์„ฑ(ํŠนํžˆ ๊ฐ•์ž์„ฑ ํฌํ™”) ๋•Œ๋ฌธ์— ์ˆ˜๋ ด์ด ์–ด๋ ค์›Œ์ง„๋‹ค. ์ €์ž๋“ค์€ ์กฐํ™”๊ท ํ˜•(Harmonic Balance) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์„ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๋‹ค๋ฃจ๋ฉด์„œ, ๋™์‹œ์— ๋™์งˆํ™”(Homogenization) ๊ธฐ๋ฒ•์œผ๋กœ ๋ž˜๋ฏธ๋„ค์ดํŠธ ์ธต์„ ํ‰๊ท ํ™”ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์ „๋ฅ˜๊ฐ€ ํ๋ฅด๋Š” ๊ฐ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์— ๋Œ€ํ•ด ๋“ฑ๊ฐ€ ํˆฌ์ž์œจ

Decoding Human and AI Persuasion in National College Debate: Analyzing Prepared Arguments Through Aristotle's Rhetorical Principles

Decoding Human and AI Persuasion in National College Debate: Analyzing Prepared Arguments Through Aristotle's Rhetorical Principles

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต ์ง€๋Šฅ, ํŠนํžˆ GPT 4๊ฐ€ ์˜์–ด ์–ธ์–ด ์˜ˆ์ˆ (ELA)์—์„œ ํ† ๋ก ์˜ ์ค‘์š”ํ•œ ๊ตฌ์„ฑ ์š”์†Œ์ธ ๋…ผ์ฆ ๊ธฐ์ˆ ์— ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํ•™์ƒ๋“ค์ด ํšจ๊ณผ์ ์ธ ์ฆ๊ฑฐ ์นด๋“œ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ง€์›์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋น„ํŒ์  ์‚ฌ๊ณ ์™€ ๋…ผ์ฆ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ GPT 4๊ฐ€ ์ƒ์„ฑํ•œ ์ฆ๊ฑฐ ์นด๋“œ์™€ ์ธ๊ฐ„ ์ฐธ๊ฐ€์ž๊ฐ€ ๋งŒ๋“  ๊ฒƒ ์‚ฌ์ด์—์„œ ์งˆ์ ์ธ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์•„๋ฆฌ์Šคํ† ํ…”๋ ˆ์Šค์˜ ์ˆ˜์‚ฌํ•™ ์›์น™์ธ ์—ํ† ์Šค, ํŒŒํ† ์Šค, ๋กœ๊ณ ์Šค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ

Delta Sum Learning: an approach for fast and global convergence in Gossip Learning

Delta Sum Learning: an approach for fast and global convergence in Gossip Learning

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์—ฐํ•ฉ ํ•™์Šต(Federated Learning, FL)๊ณผ ๊ฐ€์‹ญ ํ•™์Šต(Gossip Learning)์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํ‰๊ท  ๊ธฐ๋ฐ˜ ์ง‘๊ณ„ ๋ฐฉ์‹์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ง‘๊ณ„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ โ€˜๋ธํƒ€ ํ•ฉ ํ•™์Šต(Delta Sum Learning)โ€™์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด ํ‰๊ท ํ™”๋Š” ๊ฐ ๋…ธ๋“œ๊ฐ€ ์ „์†กํ•˜๋Š” ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋‹จ์ˆœํžˆ ํ‰๊ท ๋‚ด๋Š” ๋ฐฉ์‹์œผ๋กœ, ๋…ธ๋“œ ๊ฐ„ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ์ฐจ์ด์™€ ํ†ต์‹  ์ง€์—ฐ์ด ํด ๊ฒฝ์šฐ ์ „์—ญ ๋ชจ๋ธ์˜ ์ˆ˜๋ ด ์†๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๊ณ , ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ํ† ํด๋กœ์ง€์—์„œ๋Š” ์ •ํ™•๋„ ์†์‹ค์ด ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค.

Learning
No Image

Differences That Matter: Auditing Models for Capability Gap Discovery and Rectification

์ด ๋…ผ๋ฌธ์€ ๋‹ค๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM)์˜ ํ‰๊ฐ€์™€ ๊ฐœ์„ ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ MLLM ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋“ค์€ ํ•ด์„์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ๋ชจ๋ธ ๊ฐ„์˜ ๋Šฅ๋ ฅ ๊ฒฉ์ฐจ๋ฅผ ๋ช…ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ด์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ AuditDM์ด๋ผ๋Š” ์ž๋™ํ™”๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. AuditDM์€ ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด MLLM์„ ๊ฐ์‚ฌ์›์œผ๋กœ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์—ฌ, ๋ชจ๋ธ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ์ตœ๋Œ€ํ•œ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์–ด๋ ค์šด ์งˆ๋ฌธ๊ณผ ๋ฐ˜์‚ฌ์‹ค์  ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹คํŒจ ์œ ํ˜•์„ ์ฐพ์•„๋‚ด๊ณ , ์ด๋Ÿฌํ•œ ์‹คํŒจ ์‚ฌ๋ก€๋“ค์€ ์ฃผ์„ ์—†์ด๋„ ๋ฐ

Model
Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test

Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test

์ด ๋…ผ๋ฌธ์€ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์ด ์ด๋ก ์ ์œผ๋กœ๋Š” ์ž…๋ ฅ ์ˆœ์„œ๋ฅผ ๋’ค์ง‘๋Š” ์ž‘์—…๊ณผ ์›๋ž˜ ์ˆœ์„œ๋ฅผ ์œ ์ง€ํ•˜๋Š” ์ž‘์—…์„ ๋™๋“ฑํ•˜๊ฒŒ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‹ค์ œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์‹คํ—˜์—์„œ๋Š” โ€œ์—ญ์ „(curse of reversal)โ€์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ํ˜„์ƒ์ด ์ง€์†์ ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์ด ๋ฐ์ดํ„ฐ ์ž์ฒด์— ๋‚ด์žฌ๋œ ์‹œ๊ฐ„์  ๋น„๋Œ€์นญ์„ฑโ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์„œ์ˆ ์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ์ •๋ณด๊ฐ€ ๋ˆ„์ ๋˜๋Š” ๊ตฌ์กฐโ€”์— ๊ธฐ์ธํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ–ˆ์ง€๋งŒ, ๋ฐ์ดํ„ฐ์˜ ํ†ต๊ณ„์  ํŠน์„ฑ๊ณผ ๋ชจ๋ธ ๊ตฌ์กฐ ์‚ฌ์ด์˜ ์›์ธ ๊ทœ๋ช…์„ ์œ„ํ•ด์„œ๋Š” ์™„์ „ํžˆ ํ†ต์ œ๋œ ์‹คํ—˜ ํ™˜๊ฒฝ์ด ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ์œ„ํ•ด โ€˜์—”ํŠธ๋กœํ”ผ

Dominating vs. Dominated: Generative Collapse in Diffusion Models

Dominating vs. Dominated: Generative Collapse in Diffusion Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ํ…์ŠคํŠธโ€‘์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ด ๋‹ค์ค‘ ๊ฐœ๋… ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” โ€˜์ง€๋ฐฐโ€‘์ง€๋ฐฐ๋ฐ›์Œ(Dominantโ€‘vsโ€‘Dominated, DvD) ๋ถˆ๊ท ํ˜•โ€™ ํ˜„์ƒ์„ ์‹ฌ์ธต์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ์ด ํ˜„์ƒ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒค์น˜๋งˆํฌ์ธ DominanceBench ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋‹ค์–‘ํ•œ ๊ฐœ๋… ์Œ(์˜ˆ: โ€œ๊ณ ์–‘์ด์™€ ์ž๋™์ฐจโ€, โ€œ์‚ฐ๊ณผ ๋ฐ”๋‹คโ€)์„ ํฌํ•จํ•˜๊ณ , ๊ฐ ๊ฐœ๋…๋ณ„๋กœ ๊ธฐ๋Œ€๋˜๋Š” ์‹œ๊ฐ์  ๋น„์ค‘์„ ์‚ฌ์ „์— ์ •์˜ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ๊ท ํ˜• ์žˆ๊ฒŒ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ์ธก๋ฉด์—์„œ๋Š” ํ•™์Šต ์ฝ”ํผ์Šค

Model
Dual Attention Guided Defense Against Malicious Edits

Dual Attention Guided Defense Against Malicious Edits

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋ฐœ์ „ํ•œ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ด ์ด๋ฏธ์ง€ ํŽธ์ง‘์— ํ˜์‹ ์„ ๊ฐ€์ ธ์™”์ง€๋งŒ, ์ด๋กœ ์ธํ•ด ์†์ž„์ˆ˜๋‚˜ ํ•ด๋กœ์šด ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์œค๋ฆฌ์  ๋„์ „์ด ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ์˜ ๋ฐฉ์–ด ๊ธฐ๋ฒ•๋“ค์€ ์•…์˜์ ์ธ ์กฐ์ž‘์— ๋Œ€ํ•œ ํšจ๊ณผ๊ฐ€ ์ œํ•œ์ ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋…ผ๋ฌธ์€ DANP๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. DANP๋Š” ๋ชจ๋ธ์˜ ์˜๋ฏธ ์ดํ•ด์™€ ์ƒ์„ฑ ๊ณผ์ •์„ ๋ฐฉํ•ดํ•˜๋Š” ์ธ์‹๋˜์ง€ ์•Š๋Š” ๋ณ€ํ˜•์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค. DANP๋Š” ๊ต์ฐจ ์ฃผ์˜๋„ ๋งต๊ณผ ๋…ธ์ด์ฆˆ ์˜ˆ์ธก ๊ณผ์ •์„ ์กฐ์ž‘ํ•˜์—ฌ ํ…์ŠคํŠธ ๊ด€๋ จ ๋ฐ ๋น„๊ด€๋ จ ์˜์—ญ์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž˜๋ชป๋œ ์˜์—ญ์œผ๋กœ ํŽธ

EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection

EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์—…์˜ ํ™˜๊ฒฝ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๋ถ€์ •ํ™•ํ•œ ์ฃผ์žฅ, ์ฆ‰ ๋…น์ƒ‰์„ธํƒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ AI ํ”„๋ ˆ์ž„์›Œํฌ์ธ Emerald Mind๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํŠน์ • ๋ถ„์•ผ์˜ ์ง€์‹ ๊ทธ๋ž˜ํ”„์™€ ๊ฒ€์ƒ‰ ๊ฐ•ํ™” ์ƒ์„ฑ์„ ํ†ตํ•ฉํ•˜์—ฌ ๋…น์ƒ‰์„ธํƒ ์ž๋™ ํƒ์ง€๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์—…๋“ค์˜ ESG ๋ณด๊ณ ์„œ์—์„œ ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌ์„ฑ๋œ EmeraldGraph๊ฐ€ ํ•ต์‹ฌ ์—ญํ• ์„ ํ•˜๋ฉฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ์ง€์‹ ๊ทธ๋ž˜ํ”„์— ๋ถ€์กฑํ•œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ์ฃผ์žฅ์˜ ์ •ํ™•์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. Emerald Mind ํ”„๋ ˆ์ž„์›Œ

Framework Detection
ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning

ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ–‰๋™ ๋ณต์ œ(Behaviorโ€‘Cloning) ๊ธฐ๋ฐ˜ ๋น„์ฃผ์–ผ๋ชจํ„ฐ ์ •์ฑ…์ด ์ธ๊ฐ„ ์‹œ์—ฐ์˜ ์ •๋ฐ€์„ฑ์„ ๊ทธ๋Œ€๋กœ ๋ฌผ๋ ค๋ฐ›๋Š” ๋™์‹œ์—, ์ธ๊ฐ„์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ทจํ•˜๋Š” ๋А๋ฆฐ ํ…œํฌ๊ฐ€ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ์ง€์ ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์‹œ์—ฐ์˜ ์†๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ‰๊ท  ์†๋„, ๊ฐ€์†๋„, ํ˜น์€ ์†๋ชฉ ๊ถค์ ๊ณผ ๊ฐ™์€ ํ†ต๊ณ„์  ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ๋‹จ์ˆœํžˆ ์ผ์ • ๊ฐ„๊ฒฉ์œผ๋กœ ํ”„๋ ˆ์ž„์„ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ํœด๋ฆฌ์Šคํ‹ฑ ๋ฐฉ์‹์„ ์ ์šฉํ•ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ž‘์—…์˜ ์˜๋ฏธ์  ๊ตฌ์กฐโ€”์˜ˆ๋ฅผ ๋“ค์–ด โ€œ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ์ˆœ๊ฐ„โ€์ด๋‚˜ โ€œ์ •๋ฐ€ํ•œ ์‚ฝ์ž… ๋‹จ๊ณ„โ€์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ตฌ๊ฐ„โ€”๋ฅผ ๋ฌด์‹œ

Learning Data
From In Silico to In Vitro: Evaluating Molecule Generative Models for Hit Generation

From In Silico to In Vitro: Evaluating Molecule Generative Models for Hit Generation

๋ณธ ๋…ผ๋ฌธ์€ ์‹ ์•ฝ ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ์ธ๊ณต์ง€๋Šฅ, ํŠนํžˆ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์–ด๋–ค ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ์•ฝ ๊ฐœ๋ฐœ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„ ์ค‘ ํ•˜๋‚˜์ธ 'ํƒ€๊ฒŸ ๋ถ„์ž ๋ฐœ๊ตด'์€ ์ „ํ†ต์ ์œผ๋กœ ๋Œ€๊ทœ๋ชจ ํ™”ํ•ฉ๋ฌผ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— ๋Œ€ํ•œ ๊ณ ์† ๊ฒ€์ƒ‰์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ์‹œ๊ฐ„๊ณผ ์ž์› ์†Œ๋น„๊ฐ€ ํฐ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๊ฐ€์ƒ ์Šคํฌ๋ฆฌ๋‹ ๊ธฐ์ˆ ์˜ ๋„์ž…์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์—ฌ์ „ํžˆ ๋งŽ์€ ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ๋ณต์žกํ•œ ๋ถ„์ž ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜๊ณ  ์ƒˆ๋กœ์šด ํ™”ํ•ฉ๋ฌผ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ์„ฑ ๋ชจ๋ธ๋“ค์ด ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋“ค์ด ์‹ ์•ฝ ๊ฐœ๋ฐœ ์ „์ฒด ๊ณผ์ •์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์€ ์•„์ง

Model
No Image

Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ˆ˜ํ•™์  ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด LLM๋“ค์€ ์ˆ˜ํ•™ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ํ”„๋กœ์„ธ์Šค ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด Generative Adversarial Reasoner๋ผ๋Š” ์˜จ ํด๋ฆฌ์‹œ ํ•ฉ๋™ ํ›ˆ๋ จ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋„์ž…ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ ๋Œ€ ๊ฐ•ํ™”ํ•™์Šต์„ ํ™œ์šฉํ•˜์—ฌ LLM ์ถ”๋ก ๊ธฐ์™€ ํŒ๋ณ„๊ธฐ๋ฅผ ๊ณต๋™์œผ๋กœ ์ง„ํ™”์‹œํ‚ค๋ฉฐ, ๊ฐ ์ถ”๋ก  ์ฒด์ธ์„ ๋…ผ๋ฆฌ์ ์œผ๋กœ ์™„์ „ํ•œ ์Šฌ๋ผ์ด์Šค๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ด๋ฅผ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” LLM ์ถ”๋ก ๊ธฐ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ๋‹ต๋ณ€์„ ์–ป๋Š” ๋ฐ ๋ณด

Learning
Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates

Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates

์ด ๋…ผ๋ฌธ์€ ์–‘์ž ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๊ฐ€์žฅ ์‹ค์งˆ์ ์ธ ์žฅ์• ๋ฌผ ์ค‘ ํ•˜๋‚˜์ธ ๋ณ€๋ถ„ ์–‘์ž ํšŒ๋กœ(VQC)์˜ ์„ค๊ณ„ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ํšŒ๋กœ๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์„ ์„œํ”„๋ผ์ด์ฆˆ ๋ชจ๋ธ๋กœ ํ™œ์šฉํ•œ ๊ฒƒ์€ ๊ธฐ์กด์˜ ๋ฒกํ„ฐ ๊ธฐ๋ฐ˜ ๋ฉ”ํƒ€๋ชจ๋ธ๋ณด๋‹ค ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ์— ๊ธฐ๋Œ€ ํ–ฅ์ƒ(Expected Improvement) ํš๋“ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜๊ณ , ์„œํ”„๋ผ์ด์ฆˆ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ๋“œ๋กญ์•„์›ƒ์œผ๋กœ ์ถ”์ •ํ•จ์œผ๋กœ์จ ํƒ์ƒ‰ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€๋‹ค. ์ด๋Š” ํƒ์ƒ‰ ๊ณต๊ฐ„์ด ๊ธฐํ•˜๊ธ‰์ˆ˜

Hardware Software Optimizations for Fast Model Recovery on Reconfigurable Architectures

Hardware Software Optimizations for Fast Model Recovery on Reconfigurable Architectures

MERINDA๊ฐ€ ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œ์—ฐ์‚ฐ์„ ์ŠคํŠธ๋ฆฌ๋ฐ ๋ฐ์ดํ„ฐํ”Œ๋กœ์šฐ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , FPGA ๋‚ด๋ถ€ ์ž์›์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•œ๋‹คโ€๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด GPU ๊ธฐ๋ฐ˜ MR ๊ตฌํ˜„์€ ๋ฐ˜๋ณต์ ์ธ ์˜์กด์„ฑ ๋•Œ๋ฌธ์— ์ปค๋„ ๊ฐ„ ๋™๊ธฐํ™”๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๊ณ , ์ด๋Š” ์ปค๋„ ๋Ÿฐ์น˜ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ ๋‚ญ๋น„๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ MR์€ ๋งค ๋ฐ˜๋ณต๋งˆ๋‹ค ์ „์ฒด ์ƒํƒœ ๋ฒกํ„ฐ๋ฅผ ์ฝ๊ณ  ์“ฐ๋Š” ํŒจํ„ด์ด ๊ฐ•ํ•ด, ๋ฉ”๋ชจ๋ฆฌ ๊ณ„์ธต ๊ฐ„ ๋ฐ์ดํ„ฐ ์ด๋™์ด ๋ณ‘๋ชฉ์ด ๋œ๋‹ค. MERINDA๋Š” ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ FPGA์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•œ๋‹ค. ์ฒซ์งธ, BRAM์„ ์ด์šฉํ•œ ํƒ€์ผ๋ง ๊ธฐ๋ฒ•์€ ๋Œ€๊ทœ๋ชจ ์ƒํƒœ ๊ณต๊ฐ„

Model
hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware

hls4ml: A Flexible, Open-Source Platform for Deep Learning Acceleration on Reconfigurable Hardware

hls4ml์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ FPGAยทASIC์— ์ง์ ‘ ํƒ‘์žฌํ•  ์ˆ˜ ์žˆ๋Š” HLS ์ฝ”๋“œ๋กœ ์ž๋™ ๋ณ€ํ™˜ํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ํ๋ฆ„๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ๋”ฅ๋Ÿฌ๋‹ ๊ฐœ๋ฐœ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ํฌ๊ฒŒ ์ค„์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ์š”์†Œ๋Š” โ€˜ํ”„๋ ˆ์ž„์›Œํฌ ์ถ”์ƒํ™” ๋ ˆ์ด์–ดโ€™์ด๋‹ค. TensorFlow, PyTorch, Keras ๋“ฑ ๋‹ค์–‘ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ์ •์˜๋œ ๋ชจ๋ธ์„ ๊ณตํ†ต๋œ ์ค‘๊ฐ„ ํ‘œํ˜„(IR)์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด IR์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ ๋ ˆ์ด์–ด(์™„์ „ ์—ฐ๊ฒฐ, ํ•ฉ์„ฑ๊ณฑ, ํ™œ์„ฑํ™” ๋“ฑ)๋ฅผ HLS ์ฝ”๋“œ ํ…œํ”Œ๋ฆฟ์— ๋งคํ•‘ํ•œ๋‹ค. ํ…œํ”Œ๋ฆฟ์€ ํŒŒ๋ผ๋ฏธํ„ฐํ™” ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ๋น„

Learning
Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models

ICAR๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ์˜ ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ณ ๋ คํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋น„์ „ ํŠธ๋žœ์Šคํฌ๋จธ๋Š” ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๋ณต์žก๋„์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ๊ณ ์ •๋œ ๊นŠ์ด์™€ ์—ฐ์‚ฐ๋Ÿ‰์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ๊ฐ„๋‹จํ•œ ํ’๊ฒฝ์ด๋‚˜ ๋‹จ์ผ ๊ฐ์ฒด ์ด๋ฏธ์ง€์—์„œ๋„ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ์ดˆ๋ž˜ํ•ด ์—๋„ˆ์ง€ ์†Œ๋น„์™€ ์ถ”๋ก  ์ง€์—ฐ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ICAR๋Š” ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด โ€˜์กฐ๊ธฐ ์ข…๋ฃŒ(earlyโ€‘exit)โ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋ฏธ์ง€๊ฐ€ โ€˜๋‹จ์ˆœโ€™ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋˜๋ฉด, ๋„คํŠธ์›Œํฌ๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ๋ฐ”๋กœ ์ž„๋ฒ ๋”ฉ์„ ์ถ”์ถœํ•˜๊ณ , ๋ณต์žกํ•œ ๊ฒฝ์šฐ์—๋งŒ ์ „์ฒด ๋ ˆ์ด์–ด๋ฅผ ํ†ต๊ณผํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํฐ ๋‚œ๊ด€์€ ์กฐ๊ธฐ ์ข…

Model
Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning

Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ™”ํ˜• ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋ฐ์ดํ„ฐ ์ธก๋ฉด์—์„œ โ€œ์ƒํ™ฉ ์ค‘์‹ฌโ€์ด๋ผ๋Š” ๊ธฐ์กด ํŒจ๋Ÿฌ๋‹ค์ž„์ด ์‚ฌ์šฉ์ž์˜ ์ง€์†์ ์ธ ์ •์ฒด์„ฑ ์ •๋ณด๋ฅผ ๊ฒฐ์—ฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์‹ค์ œ ์ธ๊ฐ„ ๋Œ€ํ™”์—์„œ๋Š” ๋Œ€ํ™” ์ƒ๋Œ€์˜ ๊ณผ๊ฑฐ ๊ฒฝํ—˜, ๊ฐ€์น˜๊ด€, ์„ฑ๊ฒฉ ํŠน์„ฑ ๋“ฑ์ด ๊ฐ์ • ํ‘œํ˜„๊ณผ ํ•ด์„์— ๊นŠ์ด ๊ด€์—ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„์˜ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹์€ ๋‹จ์ผ ๋ฐœํ™” ํ˜น์€ ์งง์€ ๋Œ€ํ™” ํ๋ฆ„์— ๊ตญํ•œ๋ผ ์žˆ์–ด, ๋ชจ๋ธ์ด ๊ฐœ์ธํ™”๋œ ์ •์„œ ๋ฏธ๋ฌ˜ํ•จ์„ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ํ•™์Šต ๋ชฉํ‘œ ์„ค์ •์—์„œ โ€œ๋ถˆํˆฌ๋ช…ํ•˜๊ณ  ๊ฑฐ์นœโ€ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๊ฐ์ •ยท๊ณต๊ฐ

Learning
Large Language Models as Pokรฉmon Battle Agents: Strategic Play and Content Generation

Large Language Models as Pokรฉmon Battle Agents: Strategic Play and Content Generation

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ํฌ์ผ“๋ชฌ ์ „ํˆฌ๋ผ๋Š” ํŠน์ • ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํฌ์ผ“๋ชฌ ์ „ํˆฌ๋Š” ๋‹ค์–‘ํ•œ ์š”์†Œ, ์ฆ‰ ํƒ€์ž… ํšจ๊ณผ์„ฑ, ํ†ต๊ณ„์  ํŠธ๋ ˆ์ด๋“œ์˜คํ”„, ์œ„ํ—˜ ํ‰๊ฐ€ ๋“ฑ์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ, ์ด๋Š” ์ธ๊ฐ„์˜ ์ „๋žต์  ์‚ฌ๊ณ ์™€ ์œ ์‚ฌํ•˜๋‹ค. ์—ฐ๊ตฌํŒ€์€ LLM์ด ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€ ํ…Œ์ŠคํŠธํ•˜๊ธฐ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ ํฌ์ผ“๋ชฌ ์ „ํˆฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. LLM์€ ์ „ํ†ต์ ์ธ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋กœ์ง ๋Œ€์‹  ์ „ํˆฌ ์ƒํƒœ์— ๋”ฐ๋ผ ์›€์ง์ž„์„ ์„ ํƒํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” LLM์ด ๊ฒŒ์ž„์˜ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜, ์ฆ‰ ํƒ€์ž… ํšจ๊ณผ์„ฑ ๋ฐฐ์œจ, ํ†ต๊ณ„

Model
LLM-Driven Feature-Level Adversarial Attacks on Android Malware Detectors

LLM-Driven Feature-Level Adversarial Attacks on Android Malware Detectors

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ํ˜„์žฌ ์•ˆ๋“œ๋กœ์ด๋“œ ์•…์„ฑ์ฝ”๋“œ ํƒ์ง€ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ ๋Œ€์  ์ทจ์•ฝ์„ฑโ€™์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ํŠน์„ฑ ๋ณ€ํ˜•์„ ์œ„ํ•œ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ต๋ž€์ด ๋น„ํ˜„์‹ค์ ์ด๊ฑฐ๋‚˜ ์•…์„ฑ์ฝ”๋“œ์˜ ๋™์ž‘์„ ์†์ƒ์‹œํ‚ฌ ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. LAMLAD๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ž์—ฐ์–ด ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ด์ค‘ ์—์ด์ „ํŠธ ๊ตฌ์กฐ์ด๋‹ค. โ€˜LLM ์กฐ์ž‘์žโ€™๋Š” Drebin๊ณผ ๊ฐ™์€ ์ •์  ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›์•„, ์‹ค์ œ ์•ˆ๋“œ

Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models

Mosaic Pruning: A Hierarchical Framework for Generalizable Pruning of Mixture-of-Experts Models

Sparse Mixtureโ€‘ofโ€‘Experts(MoE) ์•„ํ‚คํ…์ฒ˜๋Š” โ€œ์ „๋ฌธ๊ฐ€(expert)โ€๋ผ๋Š” ๋…๋ฆฝ์ ์ธ ์„œ๋ธŒ๋„คํŠธ์›Œํฌ ์ง‘ํ•ฉ์„ ๊ฐ€์ง€๊ณ , ์ž…๋ ฅ์— ๋”ฐ๋ผ ์ผ๋ถ€๋งŒ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ˆ˜์‹ญ ๋ฐฐ๊นŒ์ง€ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ฃผ์—ˆ์œผ๋ฉฐ, ์ตœ์‹  ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜์ฒœ ๊ฐœ ์ด์ƒ์˜ ์ „๋ฌธ๊ฐ€๋ฅผ ๋‘๊ณ ๋„ ์ถ”๋ก  ๋น„์šฉ์„ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ๋ชจ๋“  ์ „๋ฌธ๊ฐ€๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ๋กœ๋“œํ•ด์•ผ ํ•˜๋Š” ์ •์  ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ํฐ ์žฅ์• ๋ฌผ๋กœ

Model Framework
Multi-agent Adaptive Mechanism Design

Multi-agent Adaptive Mechanism Design

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ์ฃผ์ฒด๊ฐ€ ์—์ด์ „ํŠธ๋“ค์˜ ์‚ฌ์ „ ์‹ ๋…์„ ์ „ํ˜€ ๋ชจ๋ฅด๋Š” ์ƒํ™ฉ์—์„œ, ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์—์ด์ „ํŠธ๋“ค์ด ์ง„์‹ค๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ์œ ๋„ํ•˜๋ฉด์„œ๋„ ์ „์ฒด ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€โ€๋ผ๋Š” ์งˆ๋ฌธ์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์—์„œ๋Š” ์‚ฌ์ „ ๋ถ„ํฌ๊ฐ€ ์ฃผ์–ด์ง€๋ฉด ์ตœ์ ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ๋ถ€์žฌํ•˜๊ฑฐ๋‚˜ ๋ณ€๋™์„ฑ์ด ํฌ๋‹ค. ์ €์ž๋“ค์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๋ถ„์•ผโ€”๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์™€ ์˜จ๋ผ์ธ ํ•™์Šตโ€”์˜ ์•„์ด๋””์–ด๋ฅผ ์œตํ•ฉํ•œ๋‹ค. ๋จผ์ €, DRAM์€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์—์ด์ „ํŠธ๋“ค์˜ ๋ณด๊ณ ๋ฅผ ๊ด€์ฐฐํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ฒ ์ด์ง€์•ˆ ์ถ”์ •

Multi-Rigid-Body Approximation of Human Hands with Application to Digital Twin

Multi-Rigid-Body Approximation of Human Hands with Application to Digital Twin

์ด ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ถ„์•ผ์—์„œ ์ธ๊ฐ„ ์†์˜ ์‹ค์‹œ๊ฐ„ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง ํŒŒ์ดํ”„๋ผ์ธ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ๊ด‘ํ•™ ๋ชจ์…˜ ์บก์ฒ˜๋ฅผ ์ด์šฉํ•ด ๊ฐœ๋ณ„ ์‚ฌ์šฉ์ž์˜ ์† ํ˜•ํƒœ์™€ ์›€์ง์ž„์„ ์ •๋ฐ€ํžˆ ์ธก์ •ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ MANO(Multiโ€‘Abstracted hand model with Neural Operations)๋ผ๋Š” ๊ณ ์ฐจ์› ํŒŒ๋ผ๋ฏธํ„ฐํ™” ๋ชจ๋ธ์„ ๊ฐœ์ธํ™”ํ•œ๋‹ค. MANO๋Š” ๊ด€์ ˆ ํšŒ์ „์„ 3์ฐจ์› ํšŒ์ „๊ตฐ SO(3) ์ƒ์—์„œ ์ž์œ ๋กญ๊ฒŒ ํ‘œํ˜„ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋กœ๋ด‡ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ๋Š” ๊ฐ ๊ด€์ ˆ์ด ์ œํ•œ๋œ ์ž์œ ๋„(์˜ˆ: ๊ตด

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation

์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ํš๊ธฐ์ ์ธ ์„ฑ๊ณผ๋ฅผ ๋ณด์—ฌ ์™”์œผ๋ฉฐ, ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ยท๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ์˜ ํ•ฉ์„ฑ์— ๊ฐ•์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ํ™•์‚ฐ ๊ณผ์ •์€ ์ด๋ฏธ์ง€์˜ ๋ชจ๋“  ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ๋™์ผํ•˜๊ฒŒ ๋…ธ์ด์ฆˆํ™”ํ•˜๊ณ  ๋ณต์›ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๊ตฌ์กฐ์  ์ •๋ณด(ํŠนํžˆ ์œ„์ƒ)๋Š” ์†์‹ค๋˜๊ธฐ ์‰ฝ๋‹ค. ์œ„์ƒ์€ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ์™€ ๊ฒฝ๊ณ„, ํ…์Šค์ฒ˜์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•˜๋Š” ์š”์†Œ์ด๋ฉฐ, ํฌ๊ธฐ(magnitude)๋Š” ์ฃผ๋กœ ์ƒ‰์ƒยท๋ช…์•”๊ณผ ๊ฐ™์€ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋‹ด๋‹นํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์œ„์ƒ์„ ๋ณด์กดํ•˜๋ฉด์„œ ํฌ๊ธฐ๋งŒ ๋ฌด์ž‘์œ„ํ™”ํ•˜๋ฉด, ์ƒ์„ฑ ๊ณผ์ •์—์„œ ๊ตฌ์กฐ์  ์ผ

No Image

Optimal Software Pipelining and Warp Specialization for Tensor Core GPUs

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ GPU๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ํ•˜๋“œ์›จ์–ด ์ž์›์„ ํšจ์œจ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์†Œํ”„ํŠธ์›จ์–ด ํŒŒ์ดํ”„๋ผ์ด๋‹์€ ๋ฃจํ”„ ๋ ˆ๋ฒจ์—์„œ ์—ฐ์‚ฐ ๊ฐ„ ์˜์กด์„ฑ์„ ํ•ด์†Œํ•˜๊ณ , ํŒŒ์ดํ”„๋ผ์ธ ๋‹จ๊ณ„๋งˆ๋‹ค ์„œ๋กœ ๋‹ค๋ฅธ ์—ฐ์‚ฐ์„ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๋ฐ˜๋ฉด ์›Œํ”„ ํŠน์ˆ˜ํ™”๋Š” ๋™์ผํ•œ ์›Œํ”„ ๋‚ด์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์—ญํ• ์„ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์˜ˆ๋ฅผ ๋“ค์–ด ์ผ๋ถ€ ์Šค๋ ˆ๋“œ๊ฐ€ ๋ฉ”๋ชจ๋ฆฌ ๋กœ๋“œ์— ์ „๋…ํ•˜๊ณ  ๋‹ค๋ฅธ ์Šค๋ ˆ๋“œ๊ฐ€ ๊ณ„์‚ฐ์— ์ „๋…ํ•˜๋„๋ก ํ•˜๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ๋‘ ๊ธฐ๋ฒ•์€ ๊ฐ๊ฐ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๋™์‹œ์— ์ ์šฉํ•  ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ์ž์› ์ถฉ๋Œ, ๋ ˆ

PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

PULSE๋Š” ํ˜„์žฌ ์‹ฌ์žฅ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜ํ†ตํ•ฉ์ โ€™ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํ•ด๋ถ€ํ•™์  ๋ถ„ํ• , ์งˆ๋ณ‘ ๋ถ„๋ฅ˜, ๋ณด๊ณ ์„œ ์ƒ์„ฑ ๋“ฑ ๊ฐ๊ฐ์˜ ๊ณผ์ œ๋ฅผ ๋…๋ฆฝ์ ์ธ ๋„คํŠธ์›Œํฌ์— ๋งก๊ฒจ ์™”์œผ๋ฉฐ, ์ด๋Š” ๋ฐ์ดํ„ฐ ๋ผ๋ฒจ๋ง ๋น„์šฉ ์ฆ๊ฐ€์™€ ๋ชจ๋ธ ๊ฐ„ ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. PULSE๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ๊ณตํ†ต backbone์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ๊ณผ์ œ๋ฅผ ๋™์‹œ์— ํ•™์Šตํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ž์ฒด ์ง€๋„ํ•™์Šต(selfโ€‘supervised) ๋ฐฉ์‹์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ์ด๋ฏธ์ง€ ํ‘œํ˜„์ด๋‹ค. ๋Œ€๊ทœ๋ชจ ๋น„๋ผ๋ฒจ ์‹ฌ

Quantifying Uncertainty in Machine Learning-Based Pervasive Systems: Application to Human Activity Recognition

Quantifying Uncertainty in Machine Learning-Based Pervasive Systems: Application to Human Activity Recognition

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ์™€ ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์ธ๊ฐ„ ํ™œ๋™ ์ธ์‹(HAR) ์‹œ์Šคํ…œ์—์„œ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”(UQ)๋ฅผ ํ†ตํ•ด ๋Ÿฐํƒ€์ž„ ์‹ ๋ขฐ์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ตœ๊ทผ ํผ์ŠคํŽœ์‹œ ์ปดํ“จํŒ…๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹(ML)์˜ ๊ฒฐํ•ฉ์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ํ˜์‹ ์ ์ธ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ด์™€ ๋™์‹œ์— ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ํŠนํžˆ, ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋‚˜ ์žก์Œ ๋“ฑ์œผ๋กœ ์ธํ•ด ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค. 2. ์ฃผ์š” ์—ฐ๊ตฌ ๋ฌธ์ œ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”(UQ)์˜ ํ•„์š”์„ฑ: ML ๋ชจ๋ธ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ํ•™์Šต๋˜๋ฏ€๋กœ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

Learning System
Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ •์น˜์ ยท์‚ฌํšŒ์ ์œผ๋กœ ๋ฏผ๊ฐํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•ด โ€œ๊ฑฐ๋ถ€โ€ ํ˜น์€ โ€œ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜์ง€ ์•Š์Œโ€์ด๋ผ๋Š” ๋ฐ˜์‘์„ ๋ณด์ด๋Š” ํ˜„์ƒ์„, ๋ชจ๋ธ ์ž์ฒด๋ฅผ ์žฌํ•™์Šตํ•˜๊ฑฐ๋‚˜ ํŒŒ์ธํŠœ๋‹ํ•˜์ง€ ์•Š๊ณ ๋„ ์ธํผ๋Ÿฐ์Šค ๋‹จ๊ณ„์—์„œ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฑฐ๋ถ€ ํƒ์ง€๋Š” ์ •๊ทœํ‘œํ˜„์‹์ด๋‚˜ ํ‚ค์›Œ๋“œ ๋งค์นญ ๋“ฑ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์ƒˆ๋กœ์šด ํ‘œํ˜„์ด๋‚˜ ์€์œ ์  ์งˆ๋ฌธ์— ์ทจ์•ฝํ•˜๊ณ , ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ ์‹œ๋งˆ๋‹ค ์žฌ์กฐ์ •์ด ํ•„์š”ํ–ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด LLM ์ž์ฒด๋ฅผ โ€œํŒ์‚ฌ(judge)โ€ ์—ญํ• ๋กœ ํ™œ์šฉํ•œ๋‹ค. ๊ตฌ

SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks

SALVE: Sparse Autoencoder-Latent Vector Editing for Mechanistic Control of Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ์˜ ํ•ด์„์„ฑ๊ณผ ์ œ์–ด์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ SALVE๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” โ„“1 ์ •๊ทœํ™” ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋‚ด์—์„œ ์ค‘์š”ํ•œ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ๋ฐœ๊ฒฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ํ–‰๋™์„ ํ•ด์„์ ์ด๊ณ  ์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Grad FAM์ด๋ผ๋Š” ์‹œ๊ฐํ™” ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜๋Š”์ง€ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. SALVE์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด ์ค‘ ํ•˜๋‚˜๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„์—์„œ์˜ ์ •ํ™•ํ•œ ๊ฐœ์ž…์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํŠน์ • ํด๋ž˜์Šค๋ฅผ

Network
No Image

Seismology modeling agent: A smart assistant for geophysical researchers

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋ฃจ์—ˆ๋‹ค. MCP ์„œ๋ฒ„๋Š” SPECFEM์ด๋ผ๋Š” ๊ณ ๊ธ‰ ์ง€์ง„ ๋ชจ๋ธ๋ง ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ†ตํ•ฉ๋˜์–ด, ์ด๋ฅผ ํ˜„๋Œ€์ ์ธ AI ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์— ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ์ž๋™ํ™”๋œ ์ž‘์—…๊ณผ ์ธ๊ฐ„์˜ ์ฐธ์—ฌ๊ฐ€ ํ•„์š”ํ•œ ์ž‘์—…์„ ๋ชจ๋‘ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ ์›Œํฌํ”Œ๋กœ๋ฅผ ๊ฐœ๋ฐœํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ง€์ง„ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ ๋ณต์žกํ•˜๊ณ  ์ „๋ฌธ์ ์ธ ์ง€์‹์ด ์š”๊ตฌ๋˜๋Š” ์ž‘์—…์„ ๋‹จ์ˆœํ™”ํ•จ์œผ๋กœ์จ, ํ•ด๋‹น ๋ถ„์•ผ์— ๋Œ€ํ•œ ์ง„์ž… ์žฅ๋ฒฝ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ”๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค. ๋˜ํ•œ, ์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ž˜์˜ ๊ณผํ•™์  ์—ฐ๊ตฌ๊ฐ€ ์ž๋™ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด๋‘๊ณ  ์žˆ์–ด

Model

< Category Statistics (Total: 5502) >

Electrical Engineering and Systems Science
103
General
4467
General Relativity
6
HEP-EX
3
HEP-PH
4
HEP-TH
4
MATH-PH
6
Quantum Physics
20

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut