KOINEU Logo
No Image

Law in Silico: Simulating Legal Society with LLM-Based Agents

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฒ•์‚ฌํšŒ ์‹คํ—˜์˜ ํ•œ๊ณ„ : ์‹ค์ œ ์‚ฌํšŒ์—์„œ ๋ฒ•์ œ๋„ ๋ณ€ํ™”๋ฅผ ์‹คํ—˜ํ•˜๋ ค๋ฉด ๋Œ€๊ทœ๋ชจ ์ •์ฑ… ์‹œํ–‰ยท์‹œํ–‰ ํ›„ ํ‰๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๊ณ , ์ด๋Š” ๋น„์šฉยท์‹œ๊ฐ„ยท์œค๋ฆฌ์  ๋ฌธ์ œ๋ฅผ ๋™๋ฐ˜ํ•œ๋‹ค. AI ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๊ฐ€๋Šฅ์„ฑ : LLM์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ํ•™์Šตํ•ด ๋ฒ•๋ฅ  ์šฉ์–ด, ํŒ๋ก€, ๊ทœ๋ฒ” ๋“ฑ์„ ๋‚ด์žฌํ•˜๊ณ  ์žˆ์–ด, ์ธ๊ฐ„๊ณผ ์œ ์‚ฌํ•œ โ€œ๋ฒ•๋ฅ ๊ฐ€โ€ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ์˜์˜ | | | | | | ํ”„๋ ˆ์ž„์›Œํฌ ์„ค๊ณ„ | LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋ฅผ โ€œ์‹œ๋ฏผโ€, โ€œ์ž…๋ฒ•์žโ€, โ€œํŒ์‚ฌโ€, โ€œ์ง‘ํ–‰๊ด€โ€ ๋“ฑ ์—ญํ• ์— ๋งคํ•‘ํ•˜๊ณ , ์ด๋“ค ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ํ”„๋กœ

No Image

LLM-based Fusion of Multi-modal Features for Commercial Memorability Prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ ๊ด‘๊ณ ยท๋ธŒ๋žœ๋“œ ๊ธฐ์–ต๋ ฅ์€ ๋งˆ์ผ€ํŒ… ROI๋ฅผ ์ง์ ‘์ ์œผ๋กœ ์ขŒ์šฐํ•˜๋Š” ํ•ต์‹ฌ ์ง€ํ‘œ์ด๋ฉฐ, ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‹œ๊ฐ์  ํŠน์ง•์— ์˜์กดํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ๋ชจ๋‹ฌ(ํ…์ŠคํŠธยท์ด๋ฏธ์ง€)๋งŒ์„ ํ™œ์šฉํ–ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ๋™์‹œ์— ํ™œ์šฉํ•˜๋ฉด์„œ, LLM์„ ์œตํ•ฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ โ€œ์ธ์ง€์  ๊ฐ€์ด๋“œโ€๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„์„ฑ์„ ๊ฐ€์ง„๋‹ค. 2. ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ๋ฐฑ๋ณธ : Gemmaโ€‘3 LLM์„ ํ•ต์‹ฌ์œผ๋กœ ์‚ฌ์šฉํ•ด ํ…์ŠคํŠธ์™€ ์‹œ๊ฐ ํŠน์ง•์„ ๋™์ผํ•œ ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์— ๋งคํ•‘ํ•œ๋‹ค. ํŠน์ง• ์ถ”์ถœ : ์‚ฌ์ „ ํ•™์Šต๋œ Vision Transformer(ViT)์™€ ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ(E5)์—์„œ ๊ฐ๊ฐ

No Image

Node Preservation and its Effect on Crossover in Cartesian Genetic Programming

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ CGP์™€ ๊ต์ฐจ์˜ ๋”œ๋ ˆ๋งˆ : CGP๋Š” ์ฃผ๋กœ ๋ณ€์ด ๊ธฐ๋ฐ˜ $(1+ฮป)$ ์ „๋žต์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ๊ต์ฐจ๊ฐ€ ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค๋Š” ๊ฒฝํ—˜์  ๋ณด๊ณ ๊ฐ€ ๋งŽ๋‹ค. ์ด๋Š” CGP์˜ ํ‘œํ˜„ ๋ฐฉ์‹(๋…ธ๋“œ ๊ธฐ๋ฐ˜, ๋น„์—ฐ์†์ ์ธ ์—ฐ๊ฒฐ ๊ตฌ์กฐ) ๋•Œ๋ฌธ์— ๊ต์ฐจ๊ฐ€ ์œ ํšจํ•œ ์„œ๋ธŒ๊ตฌ์กฐ๋ฅผ ํŒŒ๊ดดํ•˜๊ธฐ ์‰ฝ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋…ธ๋“œ ๋ณด์กด ๊ฐœ๋… : ๊ธฐ์กด ๊ต์ฐจ ์—ฐ์‚ฐ์€ ๋…ธ๋“œ(์—ฐ์‚ฐ์ž+์ž…๋ ฅ) ๋‹จ์œ„๊ฐ€ ์•„๋‹Œ, ์œ ์ „์ž์˜ ์—ฐ์†์ ์ธ ๋น„ํŠธ ํ˜น์€ ์ธ๋ฑ์Šค ๊ตฌ๊ฐ„์„ ์„ž๋Š”๋‹ค. โ€œ๋…ธ๋“œ ๋ณด์กดโ€์€ ๊ต์ฐจ ์‹œ ๊ฐ ๋…ธ๋“œ๊ฐ€ ์™„์ „ํ•œ ์ƒํƒœ(์—ฐ์‚ฐ์ž์™€ ๊ทธ ์ž…๋ ฅ ์—ฐ๊ฒฐ)๋กœ ์œ ์ง€๋˜๋„๋ก ์ œํ•œํ•œ๋‹ค. ์ด๋Š” ๊ต์ฐจ๊ฐ€ ์˜๋ฏธ ์žˆ๋Š” ๊ธฐ๋Šฅ ๋ธ”๋ก์„

No Image

Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ทœ๋ฒ”์  ์ถ”๋ก ์˜ ์ค‘์š”์„ฑ : ๋ฒ•๋ฅ ยท์œค๋ฆฌยท์ธ๊ณต์ง€๋Šฅ ์•ˆ์ „์„ฑ ๋“ฑ ์‹ค์„ธ๊ณ„ ์‘์šฉ์—์„œ โ€˜๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”๊ฐ€โ€™๋ฅผ ํŒ๋‹จํ•˜๋Š” ๋Šฅ๋ ฅ์€ ํ•„์ˆ˜์ ์ด๋‹ค. LLM์˜ ํ˜„์žฌ ํ•œ๊ณ„ : ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ์ฃผ๋กœ ์‚ฌ์‹คยท๋…ผ๋ฆฌยท์ˆ˜ํ•™์  ์ถ”๋ก ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๊ทœ๋ฒ”ยท๋ช…๋ น์  ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋Š” ์ถฉ๋ถ„ํžˆ ํ…Œ์ŠคํŠธ๋˜์ง€ ์•Š์•˜๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ์„ค๊ณ„ (NeuBAROCO) | ๊ตฌ๋ถ„ | ๋‚ด์šฉ | ํŠน์ง• | | | | | | ํ˜•์‹์  ํŒจํ„ด | ๊ทœ๋ฒ”ยท์ธ์‹ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์˜ ์ „ํ˜•์ ์ธ ๋…ผ๋ฆฌ ๊ตฌ์กฐ (์˜ˆ: โ–กp โ†’ p, โ—‡p โ†’ ยฌโ–กยฌp ๋“ฑ) | ๋…ผ๋ฆฌ์  ํƒ€๋‹น์„ฑ ๊ฒ€์ฆ ๊ฐ€๋Šฅ | | ๋น„ํ˜•์‹์  ์ธ์ง€ ์š”์ธ

Model
No Image

RobotArena $infty$: Scalable Robot Benchmarking via Real-to-Sim Translation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์‹ค์„ธ๊ณ„ ํ…Œ์ŠคํŠธ์˜ ํ•œ๊ณ„ : ๋กœ๋ด‡ ์‹คํ—˜์€ ๋ฌผ๋ฆฌ์  ์žฅ๋น„ยท์ธ๋ ฅยท์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๊ณ , ์‚ฌ๊ณ  ์œ„ํ—˜์ด ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ์ •์ฑ…(์˜ˆ: ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ ๊ธฐ๋ฐ˜ VLA) ํ‰๊ฐ€ ์‹œ ๋ฐ˜๋ณต ์‹คํ—˜์ด ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฒค์น˜๋งˆํฌ์˜ ๋ฌธ์ œ์  : ๊ธฐ์กด ์‹œ๋ฎฌ์€ โ€œ์‹œ๋ฎฌโ€‘์‹œ๋ฎฌโ€ ๋ฃจํ”„์— ๋จธ๋ฌผ๋Ÿฌ, ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šต๋œ ์ •์ฑ…์ด๋‚˜ ๋‹ค๋ฅธ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์™€์˜ ๊ต์ฐจ ๊ฒ€์ฆ์ด ์–ด๋ ค์›€. ์ด๋Š” โ€œ์‹œ๋ฎฌโ€‘ํ˜„์‹ค ๊ฒฉ์ฐจโ€(simโ€‘toโ€‘real gap)๋ฅผ ์€ํํ•œ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ์š”์†Œ | ๊ธฐ์กด ์ ‘๊ทผ | ์ œ์•ˆ ๋ฐฉ์‹ | | | | | | ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ | ์‹ค์„ธ

No Image

Robust and Diverse Multi-Agent Learning via Rational Policy Gradient

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋Œ€๋ฆฝ์  ์ตœ์ ํ™”(Adversarial Optimization) ๋Š” ์ฃผ๋กœ ์ œ๋กœ์„ฌ ๊ฒŒ์ž„์—์„œ ์—์ด์ „ํŠธ์˜ ์•ฝ์ ์„ ์ฐพ์•„๋‚ด์–ด ๊ฐ•์ธํ•œ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ผ ์™”์Œ. ํ˜‘๋ ฅยท์ผ๋ฐ˜ํ•ฉ ํ™˜๊ฒฝ ์—์„œ๋Š” ๋™์ผํ•œ ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•˜๋ฉด ์—์ด์ „ํŠธ๊ฐ€ ์„œ๋กœ๋ฅผ ๋ฐฉํ•ดํ•˜๋„๋ก ํ•™์Šต๋˜๋Š” ์ž๊ธฐ ํŒŒ๊ดด ํ˜„์ƒ์ด ๋ฐœ์ƒ, ์ด๋Š” ์‹ค์ œ ํ˜‘์—… ์‹œ์Šคํ…œ์—์„œ ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋ณด์ƒ ์„ค๊ณ„ ํ˜น์€ ์ œ์•ฝ ์กฐ๊ฑด ์„ ์ถ”๊ฐ€ํ•˜๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ๊ทผ๋ณธ์ ์ธ ํ•ฉ๋ฆฌ์„ฑ ๋ณด์žฅ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋ถ€์žฌํ•จ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด: RPO์™€ RPG | ์š”์†Œ | ์„ค๋ช… | ์—ญํ•  | | |

Learning
No Image

Software Engineering Agents for Embodied Controller Generation : A Study in Minigrid Environments

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์˜์˜ SWEโ€‘Agents ๋Š” ๊ธฐ์กด์— ์ฝ”๋“œ ์ž๋™ ์™„์„ฑ, ๋ฒ„๊ทธ ์ˆ˜์ •, ํ…Œ์ŠคํŠธ ์ƒ์„ฑ ๋“ฑ ์ •ํ˜•ํ™”๋œ ์†Œํ”„ํŠธ์›จ์–ด ์ž‘์—…์— ์ ์šฉ๋ผ ์™”์Œ. Embodied AI ๋Š” ๋กœ๋ด‡ยท์—์ด์ „ํŠธ๊ฐ€ ๋ฌผ๋ฆฌยท๊ฐ€์ƒ ํ™˜๊ฒฝ์—์„œ ํ–‰๋™์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์š”๊ตฌ๋˜๋ฉฐ, ๋™์  ํ™˜๊ฒฝ ํƒ์ƒ‰ ๊ณผ ์‹ค์‹œ๊ฐ„ ํ”ผ๋“œ๋ฐฑ ์ด ํ•ต์‹ฌ. ๊ธฐ์กด SWEโ€‘Agents ์—ฐ๊ตฌ๋Š” ์ •์  ์ฝ”๋“œ ์—๋งŒ ์ดˆ์ ์„ ๋งž์ท„๊ธฐ ๋•Œ๋ฌธ์—, ๋™์  ์ •๋ณด(์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์„ผ์„œ ๋ฐ์ดํ„ฐ) ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๊ฒ€์ฆ๋˜์ง€ ์•Š์Œ. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์€ โ€œ์ •์  vs ๋™์  ์ •๋ณด ์ ‘๊ทผโ€ ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ฐจ์›์„ ๋„์ž…ํ•ด SWEโ€‘Agents์˜ ๋ฒ”์šฉ์„ฑ์„ ์‹œํ—˜ํ•œ๋‹ค

No Image

Towards a Humanized Social-Media Ecosystem: AI-Augmented HCI Design Patterns for Safety, Agency & Well-Being

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘์‹ฌ ์„ค๊ณ„์˜ ํ•œ๊ณ„ : ๊ธฐ์กด ์†Œ์…œ ๋ฏธ๋””์–ด๋Š” โ€˜์ฐธ์—ฌ ๊ทน๋Œ€ํ™”โ€™๋ฅผ ๋ชฉํ‘œ๋กœ ์„ค๊ณ„๋ผ, ์‚ฌ์šฉ์ž์˜ ์ •์‹ ์ ยท์‚ฌํšŒ์  ๋น„์šฉ์„ ์™ธ๋ฉดํ•œ๋‹ค. ์‚ฌ์šฉ์ž ์ฃผ๋„ํ˜• ํ†ต์ œ ๋ถ€์žฌ : ํ”Œ๋žซํผ์ด ์ œ๊ณตํ•˜๋Š” ์„ค์ •์€ ์ผ๋ฐ˜์ ์œผ๋กœ โ€˜์ „์—ญ์ โ€™์ด๋ฉฐ, ์ƒํ™ฉ๋ณ„ ๋ฏธ์„ธ ์กฐ์ •์ด ์–ด๋ ต๋‹ค. 2. ํ•ต์‹ฌ ๊ฐœ๋… โ€“ Humanโ€‘Layer AI (HLโ€‘AI) | ํŠน์„ฑ | ์„ค๋ช… | | | | | ์‚ฌ์šฉ์ž ์†Œ์œ  | ๋ธŒ๋ผ์šฐ์ € ํ™•์žฅ ํ˜•ํƒœ๋กœ, ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์„ค์น˜ยท์ œ์–ดํ•œ๋‹ค. | | ์„ค๋ช… ๊ฐ€๋Šฅ์„ฑ | ๊ฐ ์ œ์–ดยท์ถ”์ฒœ์— ๋Œ€ํ•œ ์ด์œ ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณต, ํˆฌ๋ช…์„ฑ ํ™•๋ณด. | | ํ”Œ๋žซํผ ๋…๋ฆฝ์„ฑ

System
No Image

Vintage Code, Modern Judges: Meta-Validation in Low Data Regimes

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ ˆ๊ฑฐ์‹œ ์‹œ์Šคํ…œ ํ˜„๋Œ€ํ™”๋Š” ๊ธฐ์—…์˜ ๋””์ง€ํ„ธ ์ „ํ™˜์—์„œ ํ•ต์‹ฌ ๊ณผ์ œ์ด์ง€๋งŒ, COBOLยทPL/IยทREXX ๋“ฑ ์˜ค๋ž˜๋œ ์–ธ์–ด์— ๋Œ€ํ•œ ์ „๋ฌธ๊ฐ€๊ฐ€ ๊ธ‰๊ฐํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ฐ„ ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ LLM์„ โ€œ์‹ฌํŒโ€์œผ๋กœ ํ™œ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ์ž์—ฐ์Šค๋Ÿฝ์ง€๋งŒ, ๊ฒ€์ฆ๋˜์ง€ ์•Š์€ ์‹ฌํŒ์„ ๊ทธ๋Œ€๋กœ ์‹ ๋ขฐํ•˜๋ฉด ํ‰๊ฐ€ ์ˆœํ™˜ ์˜ค๋ฅ˜(evaluation loop) ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์œ„ํ—˜์„ฑ์„ ์ •ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ SparseAlign ํ”„๋ ˆ์ž„์›Œํฌ : pairwiseโ€‘confidence : ๋‘ ์ƒ˜ํ”Œ ๊ฐ„ ์ƒ๋Œ€์  ์ˆœ์œ„๊ฐ€ ์–ผ๋งˆ๋‚˜ ํ™•์‹  ์žˆ๊ฒŒ ํŒ๋‹จ๋˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰

Data
No Image

Who Evaluates AI's Social Impacts? Mapping Coverage and Gaps in First and Third Party Evaluations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๊ธฐ์ดˆ ๋ชจ๋ธ(FM)์˜ ํ™•๋Œ€ : GPTโ€‘4, PaLM ๋“ฑ ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ํ•™์Šต ๋ชจ๋ธ์ด ๋‹ค์–‘ํ•œ ๊ณ ์œ„ํ—˜ ์„œ๋น„์Šค(์˜๋ฃŒ, ๋ฒ•๋ฅ , ๊ธˆ์œต ๋“ฑ)์— ์ ์šฉ๋˜๋ฉด์„œ ์‚ฌํšŒ์  ์œ„ํ—˜์ด ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ๊ฑฐ๋ฒ„๋„Œ์Šค ์˜์กด๋„ ์ฆ๊ฐ€ : EU AI Act, ๋ฏธ๊ตญ AI Bill of Rights ๋“ฑ ๊ทœ์ œ ์ดˆ์•ˆ์ด โ€œํ‰๊ฐ€(evaluation)โ€๋ฅผ ํ•ต์‹ฌ ์š”๊ฑด์œผ๋กœ ๋ช…์‹œํ•จ์— ๋”ฐ๋ผ ํ‰๊ฐ€ ์ž๋ฃŒ์˜ ์งˆยท์–‘์ด ์ •์ฑ… ๊ฒฐ์ •์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ํ‰๊ฐ€ ๊ฒฉ์ฐจ ์ธ์‹ : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ์„ฑ๋Šฅ(accuracy, robustness) ์ค‘์‹ฌ์˜ โ€œcapability evaluati

Asynchronous Fast-Slow Vision-Language-Action Policies for Whole-Body Robotic Manipulation

Asynchronous Fast-Slow Vision-Language-Action Policies for Whole-Body Robotic Manipulation

์ตœ๊ทผ VLA ๋ชจ๋ธ์€ ์ผ๋ฐ˜ ๋ชฉ์ ์˜ ๋กœ๋ด‡ ์กฐ์ž‘์—์„œ ์ƒ๋‹นํ•œ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹œ๊ฐ์  ๊ด€์ฐฐ๊ณผ ์–ธ์–ด ์ง€์‹œ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ ๋Œ€์‘ํ•˜๋Š” ๋™์ž‘ ์ž์„ธ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ํ†ต์ผ๋œ ์ •์ฑ… ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋กœ๋ด‡ ๋ฐ์ดํ„ฐ์˜ ๋ถ€์กฑ์œผ๋กœ ์ธํ•œ ํ•œ๊ณ„๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ์ผ๋ถ€ ์—ฐ๊ตฌ๋Š” ์ธํ„ฐ๋„ท ๊ทœ๋ชจ์˜ ์ด๋ฏธ์ง€ ํ…์ŠคํŠธ ์ฝ”ํผ๋ผ์—์„œ ์‚ฌ์ „ ํ›ˆ๋ จ๋œ VLM์„ ์ง์ ‘ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ „๋žต์€ ์‚ฌ์ „์— ํ›ˆ๋ จ๋œ ๊ต์ฐจ ๋ชจ๋‹ฌ ์ง€์‹์„ ๋กœ๋ด‡ ์ •์ฑ…์— ์ „์ดํ•˜์—ฌ ๋™์ž‘ ์ถœ๋ ฅ์„ ์‹œ๊ฐ์  ๋ฐ ์–ธ์–ด์  ์‹ ํ˜ธ์™€ ์ •๋ ฌ์‹œํ‚ต๋‹ˆ๋‹ค. ์ž๋™ ํšŒ๊ท€ VLA ๋ฐฉ๋ฒ•์€ ์•ฝ์†์„ ๋ณด์˜€์ง€๋งŒ, ์ˆœ์ฐจ์ ์ด๊ณ  ํ† ํฐ ๋‹จ์œ„๋กœ ์ง„

ESACT: An End-to-End Sparse Accelerator for Compute-Intensive Transformers via Local Similarity

ESACT: An End-to-End Sparse Accelerator for Compute-Intensive Transformers via Local Similarity

๋ณธ ๋…ผ๋ฌธ์€ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ์—ฐ์‚ฐ์ธ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ํ”ผ๋“œํฌ์›Œ๋“œ ๋„คํŠธ์›Œํฌ(FFN)์— ๋Œ€ํ•œ ์ŠคํŒŒ์‹œํ‹ฐ ๊ธฐ๋ฐ˜ ๊ฐ€์†์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ๋“ค์€ ์ฃผ๋กœ QK ๋งคํŠธ๋ฆญ์Šค ๋‚ด์—์„œ ํ–‰(row) ๋‹จ์œ„์˜ ํฌ์†Œ์„ฑ์„ ์ด์šฉํ•ด ์—ฐ์‚ฐ๋Ÿ‰์„ ์ค„์ด๋ ค ํ–ˆ์ง€๋งŒ, ์ด๋Š” ์ „์ฒด ์–ดํ…์…˜ ๋งคํŠธ๋ฆญ์Šค์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ, ํ–‰ ๊ฐ„(์ธํ„ฐโ€‘row) ํฌ์†Œ์„ฑ์€ ์–ดํ…์…˜ ์Šค์ฝ”์–ด๊ฐ€ ํŠน์ • ํ† ํฐ ์Œ ์‚ฌ์ด์—์„œ ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์šด ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „์—ญ์ ์ธ ์œ ์‚ฌ์„ฑ ์ถ”์ •์€ ์ „์ฒด QK ๋งคํŠธ๋ฆญ์Šค๋ฅผ ์Šค์บ”

Foundation Model for Polycrystalline Material Informatics

Foundation Model for Polycrystalline Material Informatics

์ด ๋…ผ๋ฌธ์€ ์žฌ๋ฃŒ ๊ณผํ•™๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์˜ ๊ต์ฐจ์ ์—์„œ ๋งค์šฐ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋‹ค๊ฒฐ์ • ๋ฏธ์„ธ๊ตฌ์กฐโ€‘๋ฌผ์„ฑ ๋งคํ•‘์€ ์ฃผ๋กœ ์ง์ ‘์ ์ธ ์ง€๋„ ํ•™์Šต์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง์ด ์–ด๋ ค์šด ์‹คํ—˜ยท์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜๋งˆ์Šคํฌ๋“œ ์˜คํ† ์ธ์ฝ”๋”(MAE)โ€™๋ผ๋Š” ์ตœ์‹  ์ž๊ธฐ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฒ•์„ 3์ฐจ์› voxel ๊ธฐ๋ฐ˜ ๋ฏธ์„ธ๊ตฌ์กฐ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ž…๋ ฅ ๋ณผ๋ฅจ์˜ ์ผ๋ถ€๋ฅผ ๋ฌด์ž‘์œ„๋กœ ๋งˆ์Šคํ‚นํ•˜๊ณ , ๋ชจ๋ธ์ด ๋งˆ์Šคํฌ๋œ ์˜์—ญ์„ ๋ณต์›ํ•˜๋„๋ก ํ•™์Šตํ•จ์œผ๋กœ์จ, ๋ฐ์ดํ„ฐ์˜ ๋‚ด์žฌ๋œ ๊ตฌ์กฐ์ ยทํ†ต๊ณ„์  ํŒจํ„ด์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š”

Model
Gene regulatory network inference algorithm based on spectral signed directed graph convolution

Gene regulatory network inference algorithm based on spectral signed directed graph convolution

์ด ๋…ผ๋ฌธ์€ ์œ ์ „์ž ์กฐ์ ˆ ๋„คํŠธ์›Œํฌ(Gene Regulatory Networks, GRNs)์˜ ์ •ํ™•ํ•œ ์žฌ๊ตฌ์„ฑ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ์„ธํฌ RNA ์„œ์—ดํ™”(scRNA seq) ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์–ป์–ด์ง„ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ GRN์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” GRNs๊ฐ€ ํ™œ์„ฑํ™”์™€ ์–ต์ œ ๊ด€๊ณ„๋ฅผ ํฌ์ฐฉํ•˜๊ธฐ ์œ„ํ•ด ์œ ํ˜•์ด ์žˆ๋Š” ๋ฐฉํ–ฅ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œํ˜„๋˜์–ด์•ผ ํ•จ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜์€ ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ์ด์— ์ €์ž๋“ค์€ MSGRNLink๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œ

Network
ManchuTTS: Towards High-Quality Manchu Speech Synthesis via Flow Matching and Hierarchical Text Representation

ManchuTTS: Towards High-Quality Manchu Speech Synthesis via Flow Matching and Hierarchical Text Representation

ManchuTTS๋Š” ์–ธ์–ดํ•™์ ยท๊ณตํ•™์  ๊ด€์ ์—์„œ ํฌ์†Œ ์–ธ์–ด TTS ์—ฐ๊ตฌ์— ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ๋งŒ์ฃผ์–ด๋Š” ์–ดํœ˜๊ฐ€ ๊ฑฐ์˜ ์ „์ ์œผ๋กœ ์–ด๊ทผ์— ์ ‘์‚ฌ์™€ ์–ด๋ฏธ๊ฐ€ ๋ถ™์–ด ํ˜•์„ฑ๋˜๋Š” ๊ณ ๋„๋กœ ๊ต์ฐฉ์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์Œ์†Œโ€‘๋‹จ์œ„ ํ˜น์€ ๋ฌธ์žโ€‘๋‹จ์œ„ ํ…์ŠคํŠธ ์ธ์ฝ”๋”ฉ์€ ์ด๋Ÿฌํ•œ ๊ธด ํ˜•ํƒœ์†Œ ๊ฒฐํ•ฉ์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•ด ๋ฐœ์Œ ์˜ค๋ฅ˜์™€ ์–ต์–‘ ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์›€์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด โ€˜์Œ์†Œโ€‘์Œ์ ˆโ€‘ํ”„๋กœ์†Œ๋””โ€™๋ผ๋Š” 3๊ณ„์ธต ํ…์ŠคํŠธ ํ‘œํ˜„์„ ๋„์ž…ํ•˜์˜€๋‹ค. ์Œ์†Œ ๋ ˆ๋ฒจ์€ ๊ธฐ๋ณธ ๋ฐœ์Œ ๋‹จ์œ„๋ฅผ, ์Œ์ ˆ ๋ ˆ๋ฒจ์€ ์Œ์†Œ๋“ค์˜ ๊ฒฐํ•ฉ ๊ทœ์น™์„, ํ”„๋กœ์†Œ๋”” ๋ ˆ๋ฒจ์€ ์–ต์–‘ยท๊ฐ•์„ธยท๋ฆฌ๋“ฌ๊ณผ

Multifractal Recalibration of Neural Networks for Medical Imaging Segmentation

Multifractal Recalibration of Neural Networks for Medical Imaging Segmentation

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ํ”„๋ž™ํƒˆ ์ด๋ก ์„ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜๋ฏธ๋ถ„ํ•  ๋ชจ๋ธ์— ํ†ตํ•ฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋‹ค์ค‘ํ”„๋ž™ํƒˆ ์ŠคํŽ™ํŠธ๋Ÿผ(MFS) ๋ถ„์„์€ ์ฃผ๋กœ ์ด๋ฏธ์ง€ ํ…์Šค์ฒ˜์˜ ๋ณต์žก์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ฑฐ๋‚˜, ๋น„์ง€๋„ ํ•™์Šต์—์„œ ํŠน์ง• ์ถ”์ถœ์— ํ™œ์šฉ๋ผ ์™”์œผ๋ฉฐ, ๊ทธ ๊ณผ์ •์—์„œ ๊ณ ์ฐจ ํ†ต๊ณ„๋Ÿ‰์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ ํ’€๋ง์ด๋‚˜ ์ฐจ์› ์ถ•์†Œ๊ฐ€ ํ•„์ˆ˜์ ์ด์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์€ ๋ฉ”๋ชจ๋ฆฌ์™€ ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ ๋น„ํšจ์œจ์ ์ด๋ฉฐ, ํŠนํžˆ ํ”ฝ์…€โ€‘๋‹จ์œ„ ์˜ˆ์ธก์ด ์š”๊ตฌ๋˜๋Š” ์˜๋ฏธ๋ถ„ํ•  ์ž‘์—…์—์„œ๋Š” ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. ์ €์ž๋“ค์€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด โ€˜๋‹จ์ผํ”„๋ž™ํƒˆ ์žฌ๋ณด์ •(Monofractal Recalibration)โ€™

Network
Numerical simulation of lunar response to gravitational waves and its 3D topographic effect using the spectral-element method

Numerical simulation of lunar response to gravitational waves and its 3D topographic effect using the spectral-element method

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ฌ์ด ์ค‘๋ ฅํŒŒ(GWs)๋ฅผ ์ฆํญ์‹œํ‚ค๋Š” ์ž์—ฐ์ ์ธ ์›จ๋ฒ„ ๋ฐ”๋กœ ๊ธฐ๋Šฅํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐœ๋…์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ 3D ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐฉ๋ฒ•์˜ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ๊ณ ์ฐจ์› 3D ์œ ํ•œ ์š”์†Œ๋ฒ•(์ŠคํŽ™ํŠธ๋Ÿด ์š”์†Œ ๋ฐฉ๋ฒ•)์„ ํ†ตํ•ด ๋‹ฌ์ด ์ค‘๋ ฅํŒŒ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€, ํŠนํžˆ 20 mHz ์ดํ•˜ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ์˜ ๋ฐ˜์‘์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ฌ ํ‘œ๋ฉด ์ง€ํ˜•์— ๋”ฐ๋ฅธ ์ค‘๋ ฅํŒŒ ์‹ ํ˜ธ ์ฆํญ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์€ ์ค€์ •๋Ÿ‰ํ•ด์™€ ๋น„๊ตํ•˜์—ฌ SEM ๋ฐฉ๋ฒ•์˜ ์ •ํ™•์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๊ณ , ์ฃผํŒŒ์ˆ˜ ํŽธ์ฐจ๋Š” ์ฒซ ๋ฒˆ์งธ ํ”ผํฌ์—์„œ ์•ฝ 1 mHz์—์„œ

PIANO: Physics-informed Dual Neural Operator for Precipitation Nowcasting

PIANO: Physics-informed Dual Neural Operator for Precipitation Nowcasting

๊ฐ•์ˆ˜ ์˜ˆ๋ณด๋Š” ํ™์ˆ˜ยท์‚ฐ์‚ฌํƒœยท๋†์—… ํ”ผํ•ด ๋“ฑ ์žฌ๋‚œ ๋Œ€์‘์— ์žˆ์–ด ์‹œ๊ฐ„์ ยท๊ณต๊ฐ„์  ์ •ํ™•๋„๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ, ํ˜„์žฌ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ ˆ์ด๋” ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ๊ณ ๊ฐ€์˜ ์žฅ๋น„์™€ ๋ฐฉ๋Œ€ํ•œ ์—ฐ์‚ฐ ์ž์›์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ํŠนํžˆ ๊ฐœ๋ฐœ๋„์ƒ๊ตญ์ด๋‚˜ ๊ธฐํ›„ ๊ด€์ธก ์ธํ”„๋ผ๊ฐ€ ๋ถ€์กฑํ•œ ์ง€์—ญ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ œ์•ฝ์ด ์‹ฌ๊ฐํ•œ ์žฅ๋ฒฝ์ด ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์œ„์„ฑ ์˜์ƒ์„ ์ฃผ์š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜๋ฉด์„œ, ๋ฌผ๋ฆฌ ๋ฒ•์น™์„ ์ง์ ‘ ๋ชจ๋ธ์— ํ†ตํ•ฉํ•˜๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ์€ advectionโ€‘diffusion ๋ฐฉ์ •์‹์„ ์†์‹ค ํ•จ์ˆ˜์— ํฌํ•จ์‹œํ‚จ ๋ฌผ๋ฆฌโ€‘์ •๋ณด ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž(PIANO)์ด๋‹ค.

Placenta Accreta Spectrum Detection Using an MRI-based Hybrid CNN-Transformer Model

Placenta Accreta Spectrum Detection Using an MRI-based Hybrid CNN-Transformer Model

๋ณธ ๋…ผ๋ฌธ์€ ํƒœ๋ฐ˜ ๋ถ€์ฐฉ์ฆ(PAS)์ด๋ผ๋Š” ์ž„์‚ฐ๋ถ€์—๊ฒŒ ์น˜๋ช…์ ์ธ ํ•ฉ๋ณ‘์ฆ์„ ์กฐ๊ธฐ์— ์ •ํ™•ํžˆ ์ง„๋‹จํ•˜๊ธฐ ์œ„ํ•œ ์ž๋™ํ™”๋œ ์˜์ƒ ๋ถ„์„ ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•œ๋‹ค. PAS๋Š” ์ดˆ์ŒํŒŒ์™€ MRI๋ฅผ ํ†ตํ•ด ์ง„๋‹จ๋˜์ง€๋งŒ, ํŠนํžˆ MRI๋Š” ๊ณ ํ•ด์ƒ๋„ 3์ฐจ์› ์ •๋ณด๋ฅผ ์ œ๊ณตํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํŒ๋…์ž์˜ ์ฃผ๊ด€์  ํŒ๋‹จ์— ํฌ๊ฒŒ ์ขŒ์šฐ๋˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ง„๋‹จ ๋ณ€๋™์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๊ณ  ๊ฐ๊ด€์ ์ธ ์˜์‚ฌ๊ฒฐ์ •์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌํŒ€์€ 3D CNN๊ณผ 3D Vision Transformer(ViT)๋ฅผ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. DenseNet121์€ ์ธต ๊ฐ„ ํ”ผ์ฒ˜ ์žฌ์‚ฌ์šฉ์„ ์ด‰์ง„ํ•˜๋Š” dense con

Detection Model
Rectifying LLM Thought from Lens of Optimization

Rectifying LLM Thought from Lens of Optimization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ CoT ํ”„๋กฌํ”„ํŠธ ๋Š” ์ธ๊ฐ„์˜ ์‚ฌ๊ณ  ๊ณผ์ •์„ ๋ชจ๋ฐฉํ•ด ๋‹จ๊ณ„๋ณ„ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์ง€๋งŒ, โ€˜overthinkingโ€™ ํ˜„์ƒ์ด ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค(์ˆ˜์ฒœ ํ† ํฐ๊นŒ์ง€ ํ™•์žฅ). ๊ธฐ์กด RLVR ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๋Š” ์ตœ์ข… ๋ณด์ƒ ์—๋งŒ ์ง‘์ค‘ํ•ด ์ค‘๊ฐ„ ์ถ”๋ก  ๊ณผ์ •์˜ ์งˆ์„ ์ง์ ‘์ ์œผ๋กœ ์ œ์–ดํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด CoT โ†” Gradient Descent ๋งคํ•‘: ๊ฐ ์ถ”๋ก  ๋‹จ๊ณ„๋ฅผ ํŒŒ๋ผ๋ฏธํ„ฐ ์—…๋ฐ์ดํŠธ๋กœ ํ•ด์„ํ•จ์œผ๋กœ์จ โ€œ์ถ”๋ก ์ด ์–ผ๋งˆ๋‚˜ ์ž˜ ์ตœ์ ํ™”๋˜๊ณ  ์žˆ๋Š”๊ฐ€โ€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. ๋Œ€๋ฆฌ ๋ชฉํ‘œ ํ•จ์ˆ˜ ๐’ฅ : ์ •๋‹ต ํ† ํฐ ์‹œํ€€์Šค์— ๋Œ€ํ•œ ๋กœ๊ทธ ํ™•๋ฅ (ํผํ”Œ๋ ‰์‹œํ‹ฐ ์—ญ

ReinforceGen: Hybrid Skill Policies with Automated Data Generation and Reinforcement Learning

ReinforceGen: Hybrid Skill Policies with Automated Data Generation and Reinforcement Learning

ReinforceGen์€ ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ์žฅ๊ธฐ ์กฐ์ž‘์ด๋ผ๋Š” ๋‚œ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ํ˜์‹ ์ ์ธ ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์ž‘์—…์„ ์—ฌ๋Ÿฌ ์ž‘์€ ๋ถ€๋ถ„์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ ๋ถ€๋ถ„์— ๋Œ€ํ•ด ๋ชจ๋ฐฉ ํ•™์Šต๊ณผ ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ด ์ตœ์ ์˜ ๊ฒฝ๋กœ์™€ ๋™์ž‘์„ ์ฐพ์•„๋‚ด๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, 10๋ช…์˜ ์ธ๊ฐ„ ๋ฐ๋ชจ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์‹œ์ž‘ํ•˜์—ฌ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ์˜จ๋ผ์ธ ์ ์‘ ๋ฐ ์„ธ๋ถ€ ์กฐ์ •์„ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ๋”์šฑ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. Robosuite ๋ฐ์ดํ„ฐ์…‹์—์„œ์˜ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋Š” ReinforceGen์˜ ํšจ๊ณผ์„ฑ์„ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค. 80%์˜ ๋†’์€ ์„ฑ๊ณต๋ฅ ๊ณผ ์•™๋ธ”๋ ˆ์ด์…˜ ์—ฐ๊ตฌ

Data Learning
Robustness of Probabilistic Models to Low-Quality Data: A Multi-Perspective Analysis

Robustness of Probabilistic Models to Low-Quality Data: A Multi-Perspective Analysis

๋ณธ ๋…ผ๋ฌธ์€ ์ €ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ๊ฐ€ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์˜ ๊ฒฌ๊ณ ์„ฑ์— ๋ฏธ์น˜๋Š” ์ฐจ๋ณ„์ ์ธ ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•˜๊ณ  ๋ถ„์„ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ํŠนํžˆ, ์ž๋™ํšŒ๊ท€ ์–ธ์–ด ๋ชจ๋ธ๊ณผ ํด๋ž˜์Šค ์กฐ๊ฑด ํ™•์‚ฐ ๋ชจ๋ธ, ๊ทธ๋ฆฌ๊ณ  ๋ถ„๋ฅ˜๊ธฐ ๊ฐ„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. GPT 2์™€ ๊ฐ™์€ ์ž๋™ํšŒ๊ท€ ์–ธ์–ด ๋ชจ๋ธ์€ ํ† ํฐ ์˜ค์—ผ๋ฅ ์ด 50%์— ๋‹ฌํ•˜๋”๋ผ๋„ ๊ฒฌ๊ณ ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉฐ, ์ด๋Š” ํ•ด๋‹น ๋ชจ๋ธ๋“ค์ด ์ €ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์—์„œ๋„ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๊ฑด์„ฑ์˜ ํ•œ ์˜ˆ์‹œ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋ฐ˜๋ฉด, ํด๋ž˜์Šค ์กฐ๊ฑด ํ™•์‚ฐ ๋ชจ๋ธ์€ ๊ฐ™์€ ์ •๋„์˜ ์˜ค์—ผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์žฌ์•™์ ์ธ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒฝํ—˜ํ•œ๋‹ค. ์ด๋Š” ์ด๋ฏธ์ง€ ๋ ˆ์ด๋ธ” ์ผ๊ด€์„ฑ์ด ๊ธฐ์ค€์น˜ ๋Œ€๋น„

Data Analysis Model
Robustness Test for AI Forecasting of Hurricane Florence Using FourCastNetv2 and Random Perturbations of the Initial Condition

Robustness Test for AI Forecasting of Hurricane Florence Using FourCastNetv2 and Random Perturbations of the Initial Condition

: ํ—ˆ๋ฆฌ์ผ€์ธ๊ณผ ๊ฐ™์€ ๊ทนํ•œ ๊ธฐ์ƒ ํ˜„์ƒ์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์ƒ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ๊ฒฌ๊ณ ์„ฑ๊ณผ ์ž…๋ ฅ ์žก์Œ์ด๋‚˜ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” FCNv2 ๋ชจ๋ธ์ด ์ดˆ๊ธฐ ์กฐ๊ฑด์— ๊ฐ€ํ•ด์ง„ ์žก์Œ์— ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๋ฌด์ž‘์œ„์ ์ธ ์ดˆ๊ธฐ ์กฐ๊ฑด ํ•˜์—์„œ ์–ด๋–ป๊ฒŒ ์˜ˆ์ธก์„ ์ƒ์„ฑํ•˜๋Š”์ง€๋ฅผ ๋ถ„์„ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋ชจ๋ธ์€ ์ €์—์„œ ์ค‘๋“ฑ๋„์˜ ์žก์Œ ์ˆ˜์ค€์—์„œ๋„ ํ—ˆ๋ฆฌ์ผ€์ธ์˜ ํŠน์ง•์„ ์ž˜ ๋ณด์กดํ–ˆ์œผ๋ฉฐ, ๋†’์€ ์ˆ˜์ค€์˜ ์žก์Œ์ด ์ฃผ์ž…๋˜์–ด๋„ ์ „๋ฐ˜์ ์ธ ํญํ’ ๊ฒฝ๋กœ์™€ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•จ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, FCNv2๋Š” ๋ชจ๋“  ์ˆ˜์ค€์˜ ์žก์Œ ํ•˜์—์„œ ์ผ๊ด€๋˜๊ฒŒ ํญํ’ ๊ฐ•๋„์™€ ์ง€

No Image

SSI-GAN: Semi-Supervised Swin-Inspired Generative Adversarial Networks for Neuronal Spike Classification

์ด ๋…ผ๋ฌธ์€ ์‹ ๊ฒฝ์ƒ๋ฌผํ•™์  ๋ฐ์ดํ„ฐ์™€ ๋ฐ”์ด๋Ÿฌ์Šค ๊ฐ์—ผ ์—ฐ๊ตฌ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ๋ฅผ ์ฐฝ์˜์ ์œผ๋กœ ์ ์šฉํ•œ ์ ์ด ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์ด๋‹ค. ๋จผ์ €, ์Šค์œˆ(Swin) ํŠธ๋žœ์Šคํฌ๋จธ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด์ธ โ€˜์ด๋™ ์œˆ๋„์šฐโ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋””์Šคํฌ๋ฆฌ๋ฏธ๋„ค์ดํ„ฐ์— ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ณ ์ฃผํŒŒ ์ŠคํŒŒ์ดํฌ์˜ ๊ตญ์†Œ์  ํŒจํ„ด์„ ํšจ์œจ์ ์œผ๋กœ ํฌ์ฐฉํ•œ๋‹ค๋Š” ์ ์€ ๊ธฐ์กด 1โ€‘D CNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ๋†“์น˜๊ธฐ ์‰ฌ์šด ๋ฏธ์„ธํ•œ ์‹œ๊ฐ„โ€‘์ฃผํŒŒ์ˆ˜ ์ •๋ณด๋ฅผ ๋ณด์™„ํ•œ๋‹ค. ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋Š” ์‹œํ€€์Šค ์ „์ฒด์˜ ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ํ•™์Šตํ•˜๋ฉด์„œ๋„, ๋ผ๋ฒจ์ด ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ ๊ฐ€์งœ ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•ด ๋””์Šคํฌ๋ฆฌ๋ฏธ๋„ค์ดํ„ฐ๋ฅผ ์ง€์†์ ์œผ๋กœ ๋„

Network
Story2MIDI: Emotionally Aligned Music Generation from Text

Story2MIDI: Emotionally Aligned Music Generation from Text

Story2MIDI๋Š” ํ…์ŠคํŠธโ€‘์Œ์•… ๊ฐ์ • ๋งคํ•‘์ด๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ๋„์ „ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํ…์ŠคํŠธโ€‘์Œ์•… ๊ฐ„์˜ ๋‹จ์ˆœ ์—ฐ๊ด€์„ฑ(์˜ˆ: ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜ ๋งค์นญ)์ด๋‚˜ ์Œ์•… ์ƒ์„ฑ์— ๊ฐ์ • ๋ผ๋ฒจ์„ ๋ถ€์—ฌํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ˜์‹ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ํ…์ŠคํŠธ ๊ฐ์„ฑ ๋ถ„์„ ์ฝ”ํผ์Šค์™€ ์Œ์•… ๊ฐ์ • ๋ถ„๋ฅ˜ ์ฝ”ํผ์Šค๋ฅผ ์œตํ•ฉํ•ด โ€˜ํ…์ŠคํŠธโ€‘์Œ์•… ๊ฐ์ • ์ผ์น˜โ€™ ์Œ์„ ๋งŒ๋“  Story2MIDI ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์ •์ œ ๊ณผ์ •์—์„œ ๊ฐ์ • ๋ผ๋ฒจ์„ 5๊ฐ€์ง€ ๊ธฐ๋ณธ ๊ฐ์ •(ํ–‰๋ณต, ์Šฌํ””, ๋ถ„๋…ธ, ๋†€๋ผ์›€, ํ‰์˜จ)์œผ๋กœ ํ†ต์ผํ•˜๊ณ , ํ…์ŠคํŠธ์™€ ์Œ์•… ์–‘์ชฝ

Topological Order in Deep State

Topological Order in Deep State

์œ„์ƒ ์งˆ์„œ(topological order)๋Š” ์ „ํ†ต์ ์ธ ๋Œ€์นญ ํŒŒ๊ดด ๊ฐœ๋…์œผ๋กœ๋Š” ์„ค๋ช…๋˜์ง€ ์•Š๋Š” ๋ฌผ์งˆ์˜ ์ƒˆ๋กœ์šด ์ข…๋ฅ˜๋ฅผ ์ •์˜ํ•œ๋‹ค. ํŠนํžˆ ๋ถ„์ˆ˜ ์ฐจ์› ์ ˆ์—ฐ์ฒด(Fractional Chern Insulator, FCI)๋Š” ์–‘์ž ํ™€ ํšจ๊ณผ๋ฅผ ๊ฒฉ์ž ์‹œ์Šคํ…œ์— ๊ตฌํ˜„ํ•œ ํ˜•ํƒœ๋กœ, ์ „์ž๋“ค์ด ๊ฐ•ํ•˜๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ๋ถ„์ˆ˜ ์ „ํ•˜์™€ ๋น„๊ฐ€ํ™˜(anyon) ํ†ต๊ณ„๋ฅผ ๊ฐ–๋Š” ์ค€์ž…์ž๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ ํŒŒ๋™ํ•จ์ˆ˜์˜ ๋น„๊ตญ์†Œ์  ์–ฝํž˜ ๊ตฌ์กฐ์™€ ๋‹ค์ค‘ ์ถ•ํ‡ด๋œ ๋ฐ”๋‹ฅ ์ƒํƒœ์— ์˜ํ•ด ํŠน์ง•์ง€์–ด์ง€๋ฉฐ, ์ด๋ฅผ ์ •ํ™•ํžˆ ๊ธฐ์ˆ ํ•˜๋ ค๋ฉด ๊ณ ์ฐจ์› ๋ณต์žกํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ์ „ํ†ต์ ์ธ ๋ณ€๋ถ„

VIGIL: A Reflective Runtime for Self-Healing Agents

VIGIL: A Reflective Runtime for Self-Healing Agents

V.I.G.I.L์€ ๊ธฐ์กด ์—์ด์ „ํŠธํ˜• LLM ์‹œ์Šคํ…œ์ด ์•ˆ๊ณ  ์žˆ๋Š” ๊ทผ๋ณธ์ ์ธ ์•ฝ์ ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ณด์™„ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ๋Œ€๋ถ€๋ถ„์˜ ํ˜„์žฌ ์—์ด์ „ํŠธ๋Š” โ€œLLMโ€‘driven scriptโ€ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ, ํ”„๋กฌํ”„ํŠธ์™€ ๋„๊ตฌ ํ˜ธ์ถœ์„ ์ผ๊ด€์„ฑ ์—†์ด ์กฐํ•ฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋Ÿฐํƒ€์ž„ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ ์›์ธ ์ถ”์ ์ด ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•˜๊ณ , ์ธ๊ฐ„ ๊ฐœ์ž… ์—†์ด๋Š” ์ž์ฒด ๋ณต๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š๋Š”๋‹ค. VIGIL์€ ํ˜•์ œ ์—์ด์ „ํŠธ์˜ ๋ชจ๋“  ํ–‰๋™์„ ๋กœ๊ทธ ํ˜•ํƒœ๋กœ ๊ธฐ๋กํ•˜๊ณ , ์ด๋ฅผ ๊ฐ์ •ํ™”(emotional representation)ํ•œ๋‹ค๋Š” ๋…ํŠนํ•œ ์ ‘๊ทผ์„ ์ฑ„ํƒํ•œ

Vision Foundry: A System for Training Foundational Vision AI Models

Vision Foundry: A System for Training Foundational Vision AI Models

์ตœ๊ทผ ์ž์œจ ํ•™์Šต๊ณผ ๊ธฐ์ดˆ ๋น„์ „ ๋ชจ๋ธ์˜ ๋ฐœ์ „์€ ํŠน์ • ๋ถ„์•ผ์— ๋งž๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ ๋ฐฉ์‹์„ ๋ณ€ํ™”์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ด์™€ ๋‹ฌ๋ฆฌ ๊ฐ๋… ๋ฐฉ์‹์€ ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง๋œ ๋ฐ์ดํ„ฐ์…‹์— ์˜์กดํ•˜๋Š” ๋ฐ˜๋ฉด, SSL ์ ‘๊ทผ๋ฒ•์€ DINO, SimCLR ๋ฐ MAE์™€ ๊ฐ™์€ ๋ฏธ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์œ ์˜๋ฏธํ•œ ํ‘œํ˜„์„ ์ง์ ‘ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ดˆ ๋ชจ๋ธ์€ ๋ถ„๋ฅ˜, ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ฐ ์ด์ƒ ๊ฐ์ง€ ๋“ฑ ๋‹ค์–‘ํ•œ ๋‹ค์šด์ŠคํŠธ๋ฆผ ์ž‘์—…์—์„œ ํ’๋ถ€ํ•˜๊ณ  ์ „์ด ๊ฐ€๋Šฅํ•œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ๊ฐ•์ ์€ ์ƒ‰์ƒ ๋ถ„ํฌ, ์งˆ๊ฐ, ๊ฐ€์žฅ์ž๋ฆฌ ๋ฐ ๊ณ ์ฐจ์› ์˜๋ฏธ ํŒจํ„ด๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ธฐ๋ณธ ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜์—ฌ ํญ๋„“์€ ์ผ๋ฐ˜

System Model
Smoothing DiLoCo with Primal Averaging for Faster Training of LLMs

Smoothing DiLoCo with Primal Averaging for Faster Training of LLMs

์ด ๋…ผ๋ฌธ์€ ์ผ๋ฐ˜ํ™”๋œ ์›์‹œ ํ‰๊ท ๋ฒ•(GPA)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด์˜ Nesterov ๋ฐฉ๋ฒ• ๋ฐ ๊ทธ ๋ณ€ํ˜•์ฒด๋“ค๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ํ•™์Šต ๊ณผ์ •์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. GPA๋Š” ํŠนํžˆ ๋‹จ์ผ ์ž‘์—…์ž ํ™˜๊ฒฝ์—์„œ DiLoCo์™€ Schedule Free ๊ฐ™์€ ์ตœ์ ํ™”๊ธฐ๋“ค์„ ํ†ตํ•ฉํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ Nesterov์˜ ๋ชจ๋ฉ˜ํ…€ ๊ธฐ๋ฐ˜ ๋ณด๊ฐ„ ์ƒ์ˆ˜๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ ๋ฐ˜๋ณต ๋‹จ๊ณ„์—์„œ ํ‰๊ท ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ, ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ๊ณ„์‚ฐ ๋ณต์žก์„ฑ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์—์„œ๋Š” GPA๊ฐ€ AdamW์™€ ๋น„๊ตํ•ด Lla

Learning with the $p$-adics

Learning with the $p$-adics

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์‹ค์ˆ˜ ์ฒด๊ณ„(โ„)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ค๊ณ„๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊ฐ•์กฐํ•˜๊ณ , ๊ทธ์— ๋”ฐ๋ฅธ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์ด ์–ด๋–ป๊ฒŒ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ค๊ณ„์™€ ํ•ด์„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์‹ค์ˆ˜ ๋ฒกํ„ฐ ๊ณต๊ฐ„์€ ์œ ํด๋ฆฌ๋“œ ๊ธฐํ•˜ํ•™์˜ ๊ธฐ๋ณธ ๊ณต๋ฆฌ๋“ค์„ ๊ทธ๋Œ€๋กœ ๊ณ„์Šนํ•˜๋ฏ€๋กœ, ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ, ๊ฐ๋„, ๋‚ด์  ๋“ฑ ์ง๊ด€์ ์ธ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ์„ ํ˜• ๋ถ„๋ฆฌ ๊ฐ€๋Šฅ์„ฑ(linear separability)์ด๋ผ๋Š” ํ•ต์‹ฌ ๊ฐœ๋…์„ ๋’ท๋ฐ›์นจํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ์ธ ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM)์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณ ์ฐจ์› ์‹ค์ˆ˜ ๊ณต๊ฐ„์—์„œ ์ดˆํ‰๋ฉด์œผ๋กœ

Learning
Agent-Based Modular Learning for Multimodal Emotion Recognition in Human-Agent Systems

Agent-Based Modular Learning for Multimodal Emotion Recognition in Human-Agent Systems

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์—์ด์ „ํŠธ ์ƒํ˜ธ์ž‘์šฉ(HAI)์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ฐ์ • ์ธ์‹ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ๊ฐ์˜ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ(์‹œ๊ฐ, ์Œ์„ฑ, ํ…์ŠคํŠธ ๋“ฑ)์— ๋Œ€ํ•œ ์ธ์ฝ”๋”์™€ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ๋…๋ฆฝ์ ์ธ ์—์ด์ „ํŠธ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ์ค‘์•™ ๊ด€๋ฆฌ์ž์— ์˜ํ•ด ์กฐ์ •๋˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ๋‹จ์ ์ธ ๊ณ„์‚ฐ์  ์ง‘์•ฝ์„ฑ๊ณผ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๋ณ€๊ฒฝ ์‹œ์˜ ์œ ์—ฐ์„ฑ ๋ถ€์กฑ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ์‰ฝ๊ฒŒ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ณผ์‹œ๋œ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์›ํ™œํ•˜๊ฒŒ ๊ต์ฒดํ•  ์ˆ˜ ์žˆ์–ด ์œ ์ง€๋ณด์ˆ˜์„ฑ์ด ๋†’๋‹ค

System Learning
Deep FlexQP: Accelerated Nonlinear Programming via Deep Unfolding

Deep FlexQP: Accelerated Nonlinear Programming via Deep Unfolding

FlexQP๋Š” ์ œ๊ณฑ๊ณ„ํš(QP) ๋ฌธ์ œ์˜ ์ œ์•ฝ์„ โ€œ์ •ํ™•ํžˆ ์™„ํ™”(exact relaxation)โ€ํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ๋‚ดยท์™ธ๋ถ€์  ๋ฐฉ๋ฒ•์ด๋‚˜ ํŽ˜๋„ํ‹ฐ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์ด ์ง๋ฉดํ•˜๋Š” infeasibility ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํšŒํ”ผํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์›๋ž˜์˜ ์„ ํ˜• ๋“ฑ์‹ยท๋ถ€๋“ฑ์‹ ์ œ์•ฝ์„ ์ถ”๊ฐ€์ ์ธ ์Šฌ๋ž™ ๋ณ€์ˆ˜์™€ ํ•จ๊ป˜ L2โ€‘norm ํ˜•ํƒœ๋กœ ์žฌ๊ตฌ์„ฑํ•˜๊ณ , ์ด ์Šฌ๋ž™์„ ์ตœ์†Œํ™”ํ•˜๋Š” 2์ฐจ ๋ชฉ์ ํ•จ์— ํฌํ•จ์‹œ์ผœ ํ•ญ์ƒ ํ•ด๊ฐ€ ์กด์žฌํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์Šฌ๋ž™์ด 0์ด ๋˜๋Š” ๊ฒฝ์šฐ๋Š” ์› ์ œ์•ฝ์ด ๋งŒ์กฑ ๊ฐ€๋Šฅํ•œ ์ƒํ™ฉ์ด๋ฉฐ, ์Šฌ๋ž™์ด ๋น„์ œ๋กœ์ธ ๊ฒฝ์šฐ๋Š” ์ตœ์†Œํ•œ์˜ ์œ„๋ฐ˜์„ ๋ณด์žฅํ•˜๋Š” ํฌ์†Œ

Vox Deorum: A Hybrid LLM Architecture for 4X / Grand Strategy Game AI -- Lessons from Civilization V

Vox Deorum: A Hybrid LLM Architecture for 4X / Grand Strategy Game AI -- Lessons from Civilization V

Vox Deorum์€ ์ตœ์‹  ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ๊ฒŒ์ž„ ์ „๋žต ์ˆ˜๋ฆฝ ๋‹จ๊ณ„์— ํ†ตํ•ฉํ•˜๊ณ , ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ AI๊ฐ€ ๋‹ด๋‹นํ•˜๋˜ ์ „์ˆ  ์‹คํ–‰์„ ๊ทธ๋Œ€๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด 4X ๊ฒŒ์ž„ AI ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ๋…ผ๋ฌธ์€ ๋จผ์ € ๊ฒŒ์ž„ ์ƒํƒœ๋ฅผ ํ…์ŠคํŠธ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค, LLM์— โ€œํ˜„์žฌ ์ƒํ™ฉ์— ๋งž๋Š” ์ „๋žต์„ ์ œ์‹œํ•˜๋ผโ€๋Š” ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. LLM์€ ์—ญ์‚ฌ์  ์ „๋žต, ์ž์› ๊ด€๋ฆฌ, ๋ฌธํ™”ยท๊ณผํ•™ยท๊ตฐ์‚ฌ ํŠธ๋ฆฌ ๋“ฑ์„ ์ข…ํ•ฉํ•ด ๊ณ ์ˆ˜์ค€ ๋ชฉํ‘œ(์˜ˆ: ๊ณผํ•™ ์Šน๋ฆฌ, ๋ฌธํ™” ์Šน๋ฆฌ)๋ฅผ ๋„์ถœํ•˜๊ณ , ์ด๋ฅผ ๊ตฌ์ฒด์ ์ธ ํ–‰๋™ ์ง€์นจ์œผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์ˆ˜์ค€ ๋ชฉํ‘œ๋Š” Civilization V

From Fake Focus to Real Precision: Confusion-Driven Adversarial Attention Learning in Transformers

From Fake Focus to Real Precision: Confusion-Driven Adversarial Attention Learning in Transformers

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ์„ฑ ๋ถ„์„ ์ž‘์—…์—์„œ Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ๋ณด์ด๋Š” โ€˜์ฃผ์˜ ์ง‘์ค‘ ํŽธํ–ฅ(attention bias)โ€™ ๋ฌธ์ œ๋ฅผ ์‹ฌ์ธต์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ณ , ์ด๋ฅผ ๊ต์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์ธ Adversarial Feedback for Attention(AFA)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ Transformer์˜ ๊ฐ•๋ ฅํ•œ ๋ฌธ๋งฅ ์ธ์ฝ”๋”ฉ ๋Šฅ๋ ฅ์„ ๊ฐ•์กฐํ–ˆ์ง€๋งŒ, ์‹ค์ œ ์ ์šฉ ๋‹จ๊ณ„์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์€ ๋ชจ๋ธ์ด ๊ณ ๋นˆ๋„ ์ผ๋ฐ˜ ๋‹จ์–ด์— ๊ณผ๋„ํ•˜๊ฒŒ ์ฃผ์˜๋ฅผ ํ• ๋‹นํ•˜๊ณ , ๊ฐ์„ฑ ํŒ๋‹จ์— ํ•ต์‹ฌ์ ์ธ ์ €๋นˆ๋„ ํ˜น์€ ๋„๋ฉ”์ธ ํŠนํ™” ๋‹จ์–ด๋ฅผ ๋ฌด์‹œํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€

Learning
No Image

SENSE: Self-Supervised Neural Embeddings for Spatial Ensembles

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์› ๊ณผํ•™ ์—ฐ์‚ฐ ๋ฐ์ดํ„ฐ์˜ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™”๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ๋„์ „์  ์ค‘ ํ•˜๋‚˜๋Š” ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ์…‹์ด ๋งค์šฐ ๋ณต์žกํ•˜๊ณ  ์ฐจ์›์ด ๋†’๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ฐจ์› ์ถ•์†Œ ๊ธฐ๋ฒ•์ด๋‚˜ ์˜คํ† ์ธ์ฝ”๋”๋งŒ์œผ๋กœ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์€ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์†์‹ค๊ณผ ๋Œ€์กฐ์  ์†์‹ค์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ์˜คํ† ์ธ์ฝ”๋” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” Efficient NetV2๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ์…‹์˜ ๋ฏธํ‘œ๊ธฐ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ์˜์‚ฌ ๋ผ๋ฒจ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์€ ๋” ๋‚˜์€ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜

YingMusic-SVC: Real-World Robust Zero-Shot Singing Voice Conversion with Flow-GRPO and Singing-Specific Inductive Biases

YingMusic-SVC: Real-World Robust Zero-Shot Singing Voice Conversion with Flow-GRPO and Singing-Specific Inductive Biases

YingMusicโ€‘SVC ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ œ๋กœ์ƒท ๋ณด์ปฌ ๋ณ€ํ™˜ ๋ถ„์•ผ๊ฐ€ ์ง๋ฉดํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ฒซ์งธ, ์‹ค์ œ ๋…ธ๋ž˜์—์„œ๋Š” ๋ฐฐ๊ฒฝ ๋ฐ˜์ฃผ์™€ ํ™”์Œ์ด ๋™์‹œ์— ์กด์žฌํ•ด ์ž…๋ ฅ ์Œ์„ฑ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๋ณต์žกํ•ด์ง€๋ฉฐ, ๊ธฐ์กด ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ์†Œ์Šค ์‹ ํ˜ธ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋‘˜์งธ, F0(๊ธฐ๋ณธ ์ฃผํŒŒ์ˆ˜) ์ถ”์ • ์˜ค๋ฅ˜๋Š” ๋ฉœ๋กœ๋”” ๋ณด์กด์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๋ฐ, ํŠนํžˆ ๋น ๋ฅธ ์Œ์ • ๋ณ€๋™์ด๋‚˜ ๋น„์ •ํ˜• ๋ฆฌ๋“ฌ ๊ตฌ๊ฐ„์—์„œ ์˜ค๋ฅ˜๊ฐ€ ์ฆํญ๋œ๋‹ค. ์…‹์งธ, ๋Œ€๋ถ€๋ถ„์˜ SVC ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ ์Œ์„ฑ ๋ณ€ํ™˜์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์„ค๊ณ„๋ผ, ๋…ธ๋ž˜ ํŠน์œ ์˜ ๋‹ค์ด๋‚ด๋ฏน ๋ ˆ์ธ์ง€์™€ ๊ณ ์ฃผํŒŒ ์„ฑ๋ถ„์„ ์ถฉ๋ถ„

Parajudica: An RDF-Based Reasoner and Metamodel for Multi-Framework Context-Dependent Data Compliance Assessments

Parajudica: An RDF-Based Reasoner and Metamodel for Multi-Framework Context-Dependent Data Compliance Assessments

Parajudica๋Š” RDF ํŠธ๋ฆฌํ”Œ์Šคํ† ์–ด์™€ SPARQL ์งˆ์˜ ์—”์ง„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ, ๋ฐ์ดํ„ฐ ๊ฐ์ฒด์™€ ๊ทธ์— ์—ฐ๊ด€๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ „ํ†ต์ ์ธ ๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์ œ๊ณตํ•˜๊ธฐ ์–ด๋ ค์šด โ€œ๊ด€๊ณ„์˜ ๊ด€๊ณ„โ€๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค. ํŠนํžˆ ์ •์ฑ… ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ์ œ์–ด(PBAC)์—์„œ๋Š” ์‚ฌ์šฉ์ž์˜ ์—ญํ• , ๋ชฉ์ , ์œ„์น˜, ์‹œ๊ฐ„ ๋“ฑ ๋‹ค์–‘ํ•œ ์ปจํ…์ŠคํŠธ ์ •๋ณด๊ฐ€ ๋™์‹œ์— ๊ณ ๋ ค๋˜์–ด์•ผ ํ•˜๋Š”๋ฐ, Parajudica๋Š” ์ด๋Ÿฌํ•œ ๋‹ค์ฐจ์› ์ปจํ…์ŠคํŠธ๋ฅผ RDF์˜ ์†์„ฑโ€‘๊ฐ์ฒด ์Œ์œผ๋กœ ์„ ์–ธํ•˜๊ณ , SPARQL ๊ทœ์น™์„ ํ†ตํ•ด ๋™์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ๋‹ค. ์‹œ

Data Framework Model
Semantic Distance Measurement based on Multi-Kernel Gaussian Processes

Semantic Distance Measurement based on Multi-Kernel Gaussian Processes

์ด ๋…ผ๋ฌธ์€ ์˜๋ฏธ ๊ฑฐ๋ฆฌ ์ธก์ •์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๊ณ ์ •์ ์ธ ์˜๋ฏธ ๊ฑฐ๋ฆฌ ์ธก์ • ๋ฐฉ๋ฒ•๋“ค์ด ํŠน์ • ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋‚˜ ์ž‘์—… ์š”๊ตฌ์‚ฌํ•ญ์— ์ ์‘ํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋‹ค์ค‘ ์ปค๋„ ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(MK GP)๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ํ…์ŠคํŠธ์™€ ์—ฐ๊ด€๋œ ์ž ์žฌ์  ์˜๋ฏธ ํ•จ์ˆ˜๋ฅผ ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค๋กœ ๋ชจ๋ธ๋งํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ž๋™์œผ๋กœ ํ•™์Šต๋˜๋Š” ์ปค๋„ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋” ์œ ์—ฐํ•œ ์ธก์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Matรฉrn ์ปค๋„๊ณผ ๋‹คํ•ญ์‹ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ณตํ•ฉ ์ปค๋„์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋‹ค์–‘ํ•œ

Arxiv 2512.23731

Arxiv 2512.23731

๋ณธ ๋…ผ๋ฌธ์€ ์ง€๊ตฌ ๋‚ด๋ถ€์˜ ํƒ„์„ฑ ์ง„๋™์ด ๋Œ€๊ธฐ์™€ ์ง์ ‘์ ์ธ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๋ฅผ ํ˜•์„ฑํ•œ๋‹ค๋Š” ํš๊ธฐ์ ์ธ ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๊ธฐํ›„ ๋ชจ๋ธ์€ ํƒœ์–‘ ๋ณต์‚ฌ, ํ•ด์–‘โ€‘๋Œ€๊ธฐ ์ƒํ˜ธ์ž‘์šฉ, ์˜จ์‹ค๊ฐ€์Šค ๋†๋„ ๋“ฑ์„ ์ค‘์‹ฌ์œผ๋กœ ์ „๊ฐœ๋ผ ์™”์œผ๋ฉฐ, ์ง€๊ตฌ ๋‚ด๋ถ€ ์—ญํ•™์€ ๋ณดํ†ต ์žฅ๊ธฐ ์ง€์งˆํ•™์  ์‹œ๊ฐ„์ฒ™๋„(์ˆ˜๋ฐฑ๋งŒ ๋…„)์—์„œ๋งŒ ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ž๋“ค์€ 2024โ€‘2025๋…„ ์‚ฌ์ด์— ๊ด€์ธก๋œ ๊ทน๋‹จ์ ์ธ ํ‰๊ท  ํ•ด์ˆ˜๋ฉด ๊ธฐ์••(์ตœ์ € 921 hPa, ์ตœ๊ณ  1 060 hPa)๊ณผ ์—ฐ์†์ ์ธ ๋Œ€๊ทœ๋ชจ ์ง€์ง„์„ ๋™์‹œ์— ๋ถ„์„ํ•จ์œผ๋กœ์จ, ๋‹จ๊ธฐ(์ˆ˜์ผโ€‘์ˆ˜์ฃผ) ๊ทœ๋ชจ์—์„œ๋„ ๋‚ด๋ถ€ ์ง„๋™์ด ๋Œ€๊ธฐ์•• ๋ณ€๋™์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹ค์ฆํ•œ๋‹ค. ํ•ต์‹ฌ

Arxiv 2512.23731

Arxiv 2512.23731

๋ณธ ๋…ผ๋ฌธ์€ ์ง€๊ตฌ ๋‚ด๋ถ€์˜ ํƒ„์„ฑ ์ง„๋™์ด ๋Œ€๊ธฐ์™€ ์ง์ ‘์ ์ธ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๋ฅผ ํ˜•์„ฑํ•œ๋‹ค๋Š” ํš๊ธฐ์ ์ธ ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๊ธฐํ›„ ๋ชจ๋ธ์€ ํƒœ์–‘ ๋ณต์‚ฌ, ํ•ด์–‘โ€‘๋Œ€๊ธฐ ์ƒํ˜ธ์ž‘์šฉ, ์˜จ์‹ค๊ฐ€์Šค ๋†๋„ ๋“ฑ์„ ์ค‘์‹ฌ์œผ๋กœ ์ „๊ฐœ๋ผ ์™”์œผ๋ฉฐ, ์ง€๊ตฌ ๋‚ด๋ถ€ ์—ญํ•™์€ ๋ณดํ†ต ์žฅ๊ธฐ ์ง€์งˆํ•™์  ์‹œ๊ฐ„์ฒ™๋„(์ˆ˜๋ฐฑ๋งŒ ๋…„)์—์„œ๋งŒ ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ž๋“ค์€ 2024โ€‘2025๋…„ ์‚ฌ์ด์— ๊ด€์ธก๋œ ๊ทน๋‹จ์ ์ธ ํ‰๊ท  ํ•ด์ˆ˜๋ฉด ๊ธฐ์••(์ตœ์ € 921 hPa, ์ตœ๊ณ  1 060 hPa)๊ณผ ์—ฐ์†์ ์ธ ๋Œ€๊ทœ๋ชจ ์ง€์ง„์„ ๋™์‹œ์— ๋ถ„์„ํ•จ์œผ๋กœ์จ, ๋‹จ๊ธฐ(์ˆ˜์ผโ€‘์ˆ˜์ฃผ) ๊ทœ๋ชจ์—์„œ๋„ ๋‚ด๋ถ€ ์ง„๋™์ด ๋Œ€๊ธฐ์•• ๋ณ€๋™์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹ค์ฆํ•œ๋‹ค. ํ•ต์‹ฌ

Algorithm for Interpretable Graph Features via Motivic Persistent Cohomology

Algorithm for Interpretable Graph Features via Motivic Persistent Cohomology

์ƒ‰์ฑ„ ์ง€์†์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜(CPA)์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก , ์œ„์ƒ์ˆ˜ํ•™, ๊ทธ๋ฆฌ๊ณ  ๊ณ„์‚ฐ๊ธฐํ•˜ํ•™์„ ๊ต์ฐจ์‹œํ‚จ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๊ธฐ์กด์˜ ์ง€์†์„ฑ ๋™์—ญํ•™(persistent homology) ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‹ฌํ”Œ๋ ‰์Šค ๋ณตํ•ฉ์ฒด๋‚˜ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์„ ์‚ฌ์šฉํ•ด ๋ฐ์ดํ„ฐ์˜ ๋‹ค์ค‘ ์Šค์ผ€์ผ ํ† ํด๋กœ์ง€๋ฅผ ์ถ”์ถœํ–ˆ์œผ๋ฉฐ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์— ์ง์ ‘ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„๊ฐ€ ํ•„์š”ํ–ˆ๋‹ค. CPA๋Š” ์ด๋Ÿฌํ•œ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋ฐฐ์ œํ•˜๊ณ , ๊ฐ€์ค‘ ๊ทธ๋ž˜ํ”„ ์ž์ฒด๋ฅผ โ€˜๊ทธ๋ž˜ํ”„ ๋ฐฐ์—ดโ€™์ด๋ผ๋Š” ๊ธฐํ•˜ํ•™์  ๊ตฌ์„ฑ์„ ํ†ตํ•ด ๋ฐ”๋กœ ํ† ํด๋กœ์ง€์  ํ•„ํ„ฐ๋ง ๋Œ€์ƒ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ฐฐ์—ด์€ ๊ฐ ์ •์ ๊ณผ ๊ฐ„์„ ์— ๋Œ€์‘ํ•˜๋Š” ์ดˆํ‰๋ฉด๋“ค์˜ ๋ฐฐ

VisChainBench: A Benchmark for Multi-Turn, Multi-Image Visual Reasoning Beyond Language Priors

VisChainBench: A Benchmark for Multi-Turn, Multi-Image Visual Reasoning Beyond Language Priors

VisChainBench๋Š” ๊ธฐ์กด LVLM ํ‰๊ฐ€ ๋ฐฉ์‹์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ณด์™„ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, โ€œ๋ฉ€ํ‹ฐ ์ด๋ฏธ์ง€ยท๋ฉ€ํ‹ฐ ํ„ดโ€์ด๋ผ๋Š” ์„ค์ •์€ ์ธ๊ฐ„์ด ์ผ์ƒ์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๋ชจ๋ธ์—๊ฒŒ ์š”๊ตฌํ•œ๋‹ค. ๋‹จ์ˆœํžˆ ํ•œ ์žฅ์˜ ์ด๋ฏธ์ง€๋ฅผ ๋ณด๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์—ฐ์†๋œ ์ด๋ฏธ์ง€ ํ๋ฆ„ ์†์—์„œ ์ด์ „ ๋‹จ๊ณ„์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ์–ตํ•˜๊ณ , ๊ทธ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ ๋‹จ๊ณ„์˜ ์งˆ๋ฌธ์„ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์žฅ๊ธฐ ๊ธฐ์–ต ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ๋™์  ์ปจํ…์ŠคํŠธ ์œตํ•ฉ ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์—ˆ๋Š”์ง€๋ฅผ ํ…Œ์ŠคํŠธํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์ •์  ๋ฒค์น˜๋งˆํฌ์™€ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ๋‘˜์งธ, VisChain

Neural emulation of gravity-driven geohazard runout

Neural emulation of gravity-driven geohazard runout

์ด ๋…ผ๋ฌธ์€ ์ค‘๋ ฅ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ง€์งˆ์žฌํ•ด์˜ ํ™•์‚ฐ์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ๊ณ„์‚ฐ ํšจ์œจ์„ฑ๊ณผ ๋ฌผ๋ฆฌ์  ์ •ํ™•์„ฑ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฐ˜๋ฉด, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๊ทœ๋ชจ์˜ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ›ˆ๋ จ๋œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์ด๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋ชจ๋ธ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ณด๋‹ค 10ยฒ 10โด๋ฐฐ ๋” ๋น ๋ฅธ ์†๋„๋กœ ์ง€์งˆ์žฌํ•ด์˜ ํ™•์‚ฐ ๋ฒ”์œ„์™€ ํ‡ด์  ๋‘๊ป˜๋ฅผ ์˜ˆ์ธกํ•˜๋ฉฐ, ์‹ค์ œ ์ž์—ฐ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์œ ํ˜•๊ณผ ํฌ๊ธฐ์˜ ์žฌํ•ด์— ๋Œ€ํ•ด ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹ ์†ํ•œ ์œ„ํ—˜ ํ‰๊ฐ€์™€ ์˜ํ–ฅ ๊ธฐ๋ฐ˜์˜ ์˜ˆ๋ณด ์‹œ์Šค

A Multimodal Conversational Agent for Tabular Data Analysis

A Multimodal Conversational Agent for Tabular Data Analysis

Talk2Data ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋„๊ตฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์˜ ๋น„์ „๋ฌธ์„ฑ ๊ณผ ๋ถ„์„ ๊ฒฐ๊ณผ์˜ ๋ถˆํˆฌ๋ช…์„ฑ ์„ LLM ๊ธฐ๋ฐ˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์—์ด์ „ํŠธ๋ฅผ ํ†ตํ•ด ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ € ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ดํŽด๋ณด๋ฉด, ์ž…๋ ฅ ๋‹จ๊ณ„์—์„œ Whisper ASR์ด ์Œ์„ฑ ๋ช…๋ น์„ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์ด ํ…์ŠคํŠธ๋Š” ๋Œ€ํ™” ๊ด€๋ฆฌ ๋ชจ๋“ˆ์— ์ „๋‹ฌ๋œ๋‹ค. ๋Œ€ํ™” ๊ด€๋ฆฌ ๋ชจ๋“ˆ์€ ํ˜„์žฌ ๋Œ€ํ™” ์ƒํƒœ์™€ ๋ฐ์ดํ„ฐ์…‹ ์Šคํ‚ค๋งˆ ์ •๋ณด๋ฅผ ํ”„๋กฌํ”„ํŠธ์— ํฌํ•จ์‹œ์ผœ Qwenโ€‘coder์—๊ฒŒ ์ฝ”๋“œ ์ƒ์„ฑ ์„ ์š”์ฒญํ•œ๋‹ค. ์ƒ์„ฑ๋œ ํŒŒ์ด์ฌ ์ฝ”๋“œ๋Š” ๊ฒฉ๋ฆฌ๋œ ์ƒŒ๋“œ๋ฐ•์Šค ํ™˜๊ฒฝ์—์„œ ์‹คํ–‰๋˜๋ฉฐ, ์‹คํ–‰ ๊ฒฐ๊ณผ(ํ”Œ

Analysis Data
VeruSAGE: A Study of Agent-Based Verification for Rust Systems

VeruSAGE: A Study of Agent-Based Verification for Rust Systems

๋ณธ ์—ฐ๊ตฌ๋Š” LLM์ด ์‹ค์ œ ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ํ˜•์‹ ๊ฒ€์ฆ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ฒซ์งธ, VeruSAGEโ€‘Bench๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๊ธฐ์กด Verusโ€‘๊ฒ€์ฆ ํ”„๋กœ์ ํŠธ๋Š” ์šด์˜์ฒด์ œ ์ปค๋„, ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น์ž, ์Šคํ† ๋ฆฌ์ง€ ์‹œ์Šคํ…œ, ๋ถ„์‚ฐ ์‹œ์Šคํ…œ ๋“ฑ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๊ณ  ์žˆ์—ˆ์ง€๋งŒ, ๊ฐ ์ฆ๋ช… ๊ณผ์ œ๊ฐ€ ํ”„๋กœ์ ํŠธ ์ „์ฒด์™€ ๊ฐ•ํ•˜๊ฒŒ ๊ฒฐํ•ฉ๋ผ ์žˆ์–ด ๊ฐœ๋ณ„ LLM์˜ ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ์—ฐ๊ตฌํŒ€์€ 849๊ฐœ์˜ ์ฆ๋ช… ํ•จ์ˆ˜๋ฅผ ๋…๋ฆฝ์ ์ธ Rust ํŒŒ์ผ๋กœ ์ถ”์ถœํ•˜๊ณ , ๋ชจ๋“  ์ข…์†์„ฑ์„ ํฌํ•จ์‹œ์ผœ ์ปดํŒŒ์ผ ๋ฐ ๊ฒ€์ฆ์ด ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ

System
Quantitative Analysis of Technical Debt and Pattern Violation in Large Language Model Architectures

Quantitative Analysis of Technical Debt and Pattern Violation in Large Language Model Architectures

๋ณธ ๋…ผ๋ฌธ์€ LLM์ด ๋‹จ์ˆœ ์ฝ”๋“œ ์ž๋™์™„์„ฑ ์ˆ˜์ค€์„ ๋„˜์–ด ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ์  ์„ค๊ณ„๋ฅผ ๋‹ด๋‹นํ•˜๊ฒŒ ๋˜์—ˆ์„ ๋•Œ, ๊ทธ ์„ค๊ณ„ ํ’ˆ์งˆ์ด ์žฅ๊ธฐ์ ์ธ ์œ ์ง€๋ณด์ˆ˜์™€ ๊ธฐ์ˆ  ๋ถ€์ฑ„์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์ตœ์ดˆ๋กœ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € โ€˜ํ—ฅ์‚ฌ๊ณ ๋‚  ์•„ํ‚คํ…์ฒ˜โ€™๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์‚ผ์•„, ๋„๋ฉ”์ธ, ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜, ์ธํ”„๋ผ, ์–ด๋Œ‘ํ„ฐ ๋„ค ๊ฐœ์˜ ๋ ˆ์ด์–ด๊ฐ€ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋˜๊ณ  ์˜์กด์„ฑ ๊ทœ์น™์ด ์—„๊ฒฉํžˆ ์ ์šฉ๋˜๋Š” ๋งˆ์ดํฌ๋กœ์„œ๋น„์Šค ํ…œํ”Œ๋ฆฟ์„ ์ •์˜ํ•˜์˜€๋‹ค. ์ด ํ…œํ”Œ๋ฆฟ์€ ๋„๋ฉ”์ธ ์—”ํ‹ฐํ‹ฐ์™€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ทœ์น™์ด ํ•ต์‹ฌ ๋ ˆ์ด์–ด์— ๋จธ๋ฌผ๊ณ , ์™ธ๋ถ€ ์‹œ์Šคํ…œ๊ณผ์˜ ํ†ต์‹ ์€ ์–ด๋Œ‘ํ„ฐ๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ตฌ์กฐ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ์„ธ ๋ชจ

Model Analysis
SensHRPS: Sensing Comfortable Human-Robot Proxemics and Personal Space With Eye-Tracking

SensHRPS: Sensing Comfortable Human-Robot Proxemics and Personal Space With Eye-Tracking

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„๊ณผ ์ธ๊ฐ„ํ˜• ๋กœ๋ด‡ ๊ฐ„์˜ ๊ทผ์ ‘ ๊ฑฐ๋ฆฌ ๋ณ€ํ™”๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์ฃผ๊ด€์  ํŽธ์•ˆํ•จ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ณ , ์•ˆ๊ตฌ ์ถ”์  ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ž๋™ ํŽธ์•ˆํ•จ ์ถ”์ • ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค. ์‹คํ—˜์€ 19๋ช…์˜ ์ฐธ๊ฐ€์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ Ameca ๋กœ๋ด‡ ์•ž์— ์„œ์„œ 0.5 m, 1.0 m, 1.5 m, 2.0 m ๋„ค ๊ฐ€์ง€ ๊ฑฐ๋ฆฌ์—์„œ ๊ฐ๊ฐ 2๋ถ„์”ฉ ์ƒํ˜ธ์ž‘์šฉํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ๋ชจ๋ฐ”์ผ ์•ˆ๊ตฌ ์ถ”์ ๊ธฐ(30 Hz)๋ฅผ ์ฐฉ์šฉํ•ด ๋™๊ณต ์ง๊ฒฝ, ๋™๊ณต ๋ณ€๋™์„ฑ, ์‹œ์„  ๊ณ ์ • ์‹œ๊ฐ„, ๋ˆˆ ๊นœ๋นก์ž„ ๋นˆ๋„ ๋“ฑ 12๊ฐœ์˜ ์‹œ์„  ํŠน์„ฑ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ธฐ๋กํ•˜์˜€๋‹ค. ์‹คํ—˜ ์งํ›„์—๋Š” 7์  ๋ฆฌ์ปคํŠธ ์ฒ™

Extracting Disaster Impacts and Impact Related Locations in Social Media Posts Using Large Language Models

Extracting Disaster Impacts and Impact Related Locations in Social Media Posts Using Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์žฌ๋‚œ ์ƒํ™ฉ์—์„œ ์†Œ์…œ๋ฏธ๋””์–ด๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋น„์ •ํ˜• ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ โ€˜์ง€์˜คโ€‘์„ผ์„œโ€™๋กœ ํ™œ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ์žฌ๋‚œ ๊ฐ์‹œ ์ฒด๊ณ„๋Š” ์œ„์„ฑ ์˜์ƒยทํ˜„์žฅ ์„ผ์„œยท๊ณต๊ณต GIS ๋ฐ์ดํ„ฐ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ„์„ฑ์€ ๊ตฌ๋ฆ„ยท์—ฐ๋ฌด ๋“ฑ ๋Œ€๊ธฐ ํ˜„์ƒ์— ์ทจ์•ฝํ•˜๊ณ , ์žฌ๋ฐฉ๋ฌธ ์ฃผ๊ธฐ๊ฐ€ ๊ธธ์–ด ์‹ค์‹œ๊ฐ„ ๊ฐ์‹œ๊ฐ€ ์–ด๋ ต๋‹ค. ํ˜„์žฅ ์„ผ์„œ๋Š” ์„ค์น˜ ๋น„์šฉยท์ „๋ ฅยทํ†ต์‹  ์ธํ”„๋ผ ์ œ์•ฝ์ด ์žˆ์œผ๋ฉฐ, ์žฌ๋‚œ ํ˜„์žฅ์—์„œ ์†์ƒ๋  ์œ„ํ—˜๋„ ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์ผ๋ฐ˜ ๋Œ€์ค‘์ด ์Šค๋งˆํŠธํฐ์œผ๋กœ ์˜ฌ๋ฆฌ๋Š” ํŠธ์œ—ยทํŽ˜์ด์Šค๋ถยท์ธ์Šคํƒ€๊ทธ๋žจ ๋“ฑ์€ ์‹ค์‹œ๊ฐ„์„ฑ, ๊ณต๊ฐ„์  ์„ธ๋ถ„์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ธ๊ฐ„์˜ ์ฃผ๊ด€์  ์ธ์‹์„ ๋™์‹œ์— ๋‹ด๊ณ  ์žˆ๋‹ค.

Model
PROVEX: Enhancing SOC Analyst Trust with Explainable Provenance-Based IDS

PROVEX: Enhancing SOC Analyst Trust with Explainable Provenance-Based IDS

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹œ๊ณ„์—ด ์นจ์ž… ํƒ์ง€ ์‹œ์Šคํ…œ์ด ์‹ค์ œ ๋ณด์•ˆ ํ˜„์žฅ์—์„œ ์ง๋ฉดํ•˜๊ณ  ์žˆ๋Š” โ€˜์„ค๋ช… ๊ฐ€๋Šฅ์„ฑโ€™ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด์˜ GNN ๊ธฐ๋ฐ˜ IDS๋Š” ๋†’์€ ํƒ์ง€ ์ •ํ™•๋„์™€ ๋ณต์žกํ•œ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋Šฅ๋ ฅ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›์•„ ์™”์ง€๋งŒ, ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ค์›Œ SOC ๋ถ„์„๊ฐ€๊ฐ€ ๊ฒฝ๋ณด๋ฅผ ์‹ ๋ขฐํ•˜๊ณ  ๋น ๋ฅด๊ฒŒ ๋Œ€์‘ํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ์ „๋žต์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ฒซ์งธ, KAIROS๋ผ๋Š” ์ตœ์‹  ์‹œ๊ณ„์—ด ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ IDS ์œ„์— XAI

Auditing Reproducibility in Non-Targeted Analysis: 103 LC/GC--HRMS Tools Reveal Temporal Divergence Between Openness and Operability

Auditing Reproducibility in Non-Targeted Analysis: 103 LC/GC--HRMS Tools Reveal Temporal Divergence Between Openness and Operability

๋ณธ ์—ฐ๊ตฌ๋Š” ๋น„ํ‘œ์  ๋ถ„์„(nonโ€‘targeted analysis, NTA)์˜ ์‹ค์šฉ์  ์žฌํ˜„์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฉ”ํƒ€โ€‘ํ‰๊ฐ€๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋จผ์ €, ๋ฉœ๋ผ๋ฏผ, ์ˆ˜๋‹จ ์—ผ๋ฃŒ, ๋‹ˆํŠธ๋กœ์‚ฌ๋ฏผ ๋“ฑ ๊ณผ๊ฑฐ์— ๊ธ‰๋ฐ•ํ•œ ๊ทœ์ œ ๋Œ€์‘์„ ์š”๊ตฌํ–ˆ๋˜ ์‚ฌ๋ก€๋“ค์„ ๋ฐฐ๊ฒฝ์œผ๋กœ ์‚ผ์•„, NTA๊ฐ€ ๋‹จ์ˆœํžˆ ์ƒˆ๋กœ์šด ๋ฌผ์งˆ์„ ํƒ์ง€ํ•˜๋Š” ๊ธฐ์ˆ ์  ์ˆ˜๋‹จ์„ ๋„˜์–ด, ๊ทœ์ œ ๊ณผํ•™์—์„œ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•ด์•ผ ํ•จ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์—ฐ๊ตฌ์ง„์€ LCโ€‘HRMS์™€ GCโ€‘HRMS ๊ธฐ๋ฐ˜์˜ 103๊ฐœ ์†Œํ”„ํŠธ์›จ์–ดยทํ”Œ๋Ÿฌ๊ทธ์ธยท์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์„ ์ •ํ–ˆ์œผ๋ฉฐ, ์ด๋“ค์„ FAIR(Findable, Accessible, In

Analysis

< Category Statistics (Total: 5502) >

Electrical Engineering and Systems Science
103
General
4467
General Relativity
6
HEP-EX
3
HEP-PH
4
HEP-TH
4
MATH-PH
6
Quantum Physics
20

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut