KOINEU Logo
Feedforward 3D Editing via Text-Steerable Image-to-3D

Feedforward 3D Editing via Text-Steerable Image-to-3D

: Steer3D๋Š” ์ด๋ฏธ ํ›ˆ๋ จ๋œ ์ด๋ฏธ์ง€ ํˆฌ 3D ์ƒ์„ฑ ๋ชจ๋ธ์— ํ…์ŠคํŠธ ๊ฐ€์ด๋“œ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 3D ์ž์‚ฐ์„ ํŽธ์ง‘ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ControlNet์˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ํˆฌ 3D ์‚ฌ์ „ ํ•™์Šต์—์„œ ์–ป์€ ๋ชจ์–‘๊ณผ ๊ฐ์ฒด ์šฐ์„ ์ˆœ์œ„๋ฅผ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ž๋™ ๋ฐ์ดํ„ฐ ์—”์ง„์„ ๊ตฌ์ถ•ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ธฐํ•˜ํ•™์  ๋ฐ ์งˆ๊ฐ ํŽธ์ง‘ ์Œ์„ ์ƒ์„ฑํ•˜๊ณ , ๋‘ ๋‹จ๊ณ„ ํ›ˆ๋ จ ๋ ˆ์‹œํ”ผ๋ฅผ ํ†ตํ•ด ํ๋ฆ„ ์ผ์น˜ ํ›ˆ๋ จ๊ณผ ์ง์ ‘ ์„ ํ˜ธ๋„ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค. Steer3D๋Š” ์–ธ์–ด ์ง€์‹œ๋ฅผ ์ž˜ ๋”ฐ๋ฅด๊ณ  ์›๋ž˜ 3D ์ž์‚ฐ๊ณผ์˜ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๋งค์šฐ ๋น ๋ฅธ ์†๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

FIBER: A Multilingual Evaluation Resource for Factual Inference Bias

FIBER: A Multilingual Evaluation Resource for Factual Inference Bias

: ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ํŽธํ–ฅ์— ๋Œ€ํ•œ ์šฐ๋ ค๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ์ง€์‹ ํƒ์ƒ‰์€ ์ด๋Ÿฌํ•œ ์ธก๋ฉด์„ ํ‰๊ฐ€ํ•˜๋Š” ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. FIBER๋Š” ๋‹จ์ผ ๋ฐ ๋‹ค์ค‘ ์—”ํ‹ฐํ‹ฐ ์„ค์ •์—์„œ ์‚ฌ์‹ค ์ง€์‹์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค๊ตญ์–ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์˜์–ด, ์ดํƒˆ๋ฆฌ์•„์–ด, ํ„ฐํ‚ค์–ด๋กœ ๋œ ๋ฌธ์žฅ ์™„์„ฑ, ์งˆ๋ฌธ ๋‹ต๋ณ€ ๋ฐ ๊ฐ์ฒด ์ˆ˜ ์˜ˆ์ธก ์ž‘์—…์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ํ”„๋กฌํ”„ํŠธ ์–ธ์–ด๊ฐ€ ์ถ”๋ก  ํŽธํ–ฅ์„ ์œ ๋„ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  LLM์ด ๋‹จ์ผ ์—”ํ‹ฐํ‹ฐ์™€ ๋‹ค์ค‘ ์—”ํ‹ฐํ‹ฐ ์งˆ๋ฌธ์— ์–ด๋–ป๊ฒŒ ์ˆ˜ํ–‰๋˜๋Š”์ง€๋ฅผ ์กฐ์‚ฌํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ๋Š” ํ”„๋กฌํ”„ํŠธ์˜ ์–ธ์–ด๊ฐ€ ํŠนํžˆ ํ•ด๋‹น ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜

No Image

FineSkiing: A Fine-grained Benchmark for Skiing Action Quality Assessment

FineSkiing์€ ์Šคํ‚ค ๋™์ž‘์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฏธ์„ธ ์กฐ์ • ๋ฒค์น˜๋งˆํฌ๋กœ์„œ, ๊ธฐ์กด AQA ๋ฐ์ดํ„ฐ์…‹์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ๋” ๋‚˜์€ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์€ ์Šคํ‚ค ๋™์ž‘์— ๋Œ€ํ•œ ์„ธ๋ถ€์ ์ธ ๋ถ€๋ถ„ ์ ์ˆ˜์™€ ๊ฐ์  ํ•ญ๋ชฉ์„ ์ œ๊ณตํ•˜์—ฌ ๋ณด๋‹ค ์ •๊ตํ•œ ํ‰๊ฐ€๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. JudgeMind๋Š” ์ „๋ฌธ ์‹ฌํŒ์˜ ํŒ๋‹จ ๊ณผ์ •์„ ๋ชจ๋ฐฉํ•˜์—ฌ ์ •ํ™•์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ํ˜์‹ ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋น„๋””์˜ค๋ฅผ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„๊ณ  ๊ฐ ๋‹จ๊ณ„์— ์ ์ˆ˜๋ฅผ ๋งค๊ธฐ๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ†ตํ•ด ๋™์ž‘์˜ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ๋ชจ๋“ˆ์€ ํ•ต์‹ฌ ์˜์—ญ์— ๋Œ€ํ•œ ์ธ์‹์„ ๋†’์ด๊ณ  ์นด๋ฉ”๋ผ

No Image

Fraud Detection Through Large-Scale Graph Clustering with Heterogeneous Link Transformation

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ๊ทธ๋ž˜ํ”„ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ํ†ตํ•ด ํ˜‘์—… ์‚ฌ๊ธฐ๋ฅผ ํƒ์ง€ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•๋ก ์€ ํ•˜๋“œ ๋งํฌ์™€ ์†Œํ”„ํŠธ ๋งํฌ ๊ฐ„์˜ ๊ตฌ๋ณ„์— ๊ธฐ๋ฐ˜์„ ๋‘”๋‹ค. ํ•˜๋“œ ๋งํฌ๋Š” ์‹ ์› ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋†’์€ ์‹ ๋ขฐ๋„์˜ ์—ฐ๊ฒฐ์ด๋ฉฐ, ์†Œํ”„ํŠธ ๋งํฌ๋Š” ํ–‰๋™ ์—ฐ๊ด€์„ฑ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋จผ์ € ํ•˜๋“œ ๋งํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฐ๊ฒฐ๋œ ์ปดํฌ๋„ŒํŠธ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์ด๋ฅผ ์Šˆํผ๋…ธ๋“œ๋กœ ๋ณ‘ํ•ฉํ•œ๋‹ค. ๊ทธ ํ›„, ํšจ์œจ์ ์ธ ์ž„๋ฒ ๋”ฉ๊ณผ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์œ„ํ•ด ๊ฐ€์ค‘ ์†Œํ”„ํŠธ ๋งํฌ ๊ทธ๋ž˜ํ”„๋กœ ์žฌ๊ตฌ์„ฑ๋œ๋‹ค. ๋ณ€ํ™˜๋œ ๊ทธ๋ž˜ํ”„๋Š” ํ‘œํ˜„ ํ•™์Šต์„ ์œ„ํ•ด LINE ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ฒ˜๋ฆฌ๋˜๊ณ , HDBSCAN ํด๋Ÿฌ์Šคํ„ฐ๋ง ๊ธฐ๋ฒ•์„ ์‚ฌ

Detection
GCoDE: Efficient Device-Edge Co-Inference for GNNs via Architecture-Mapping Co-Search

GCoDE: Efficient Device-Edge Co-Inference for GNNs via Architecture-Mapping Co-Search

GNN ์žฅ์น˜ ์—ฃ์ง€ ๊ณต๋™ ์ถ”๋ก ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฐ€์šด๋ฐ, GCoDE๋Š” ์ด ๋ถ„์•ผ์—์„œ ์ตœ์ดˆ์˜ ์ž๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์•„ํ‚คํ…์ฒ˜์™€ ๋งคํ•‘ ์ œ๋„๋ฅผ ๋‹จ์ผ ๋””์ž์ธ ๊ณต๊ฐ„์— ํ†ตํ•ฉํ•˜์—ฌ ๊ณต๋™ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ ์ธ์‹ ๊ธฐ๋Šฅ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ด์ข… ์‹œ์Šคํ…œ ์ „๋ฐ˜์—์„œ ์•„ํ‚คํ…์ฒ˜ ํšจ์œจ์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์—๋„ˆ์ง€ ์†Œ๋น„ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ GCoDE๋Š” ์—๋„ˆ์ง€ ์˜ˆ์ธก ๋ฐฉ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ๊ธฐ์กด ์ถ”์ • ๋ฐฉ๋ฒ• ๋Œ€๋น„ ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, GCoDE๋Š” ๋‹ค์–‘ํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ํŠนํžˆ ์ตœ๋Œ€

No Image

GHOST: Solving the Traveling Salesman Problem on Graphs of Convex Sets

์—ฌํ–‰ํ•˜๋Š” ์˜์—…์‚ฌ์› ๋ฌธ์ œ(TSP)๋Š” ์ตœ์ ํ™” ๋ถ„์•ผ์—์„œ ์ž˜ ์•Œ๋ ค์ง„ ๊ณ ์ „์ ์ธ ๋ฌธ์ œ๋กœ, ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” TSP์˜ ์ƒˆ๋กœ์šด ๋ณ€ํ˜•์„ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ๋ณผ๋ก ์ง‘ํ•ฉ ๊ทธ๋ž˜ํ”„(GCS) ์ƒ์—์„œ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. GCS๋Š” ๊ถค์  ๊ณ„ํš์— ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„์„ ์ œ๊ณตํ•˜๋ฉฐ, ๊ตฌ์„ฑ ๊ณต๊ฐ„์„ ํšจ์œจ์ ์œผ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ TSP ๋ฐฉ๋ฒ•์€ ๊ณ ์ •๋œ ๋ณ€ ๋น„์šฉ์„ ๊ฐ€์ •ํ•˜์ง€๋งŒ, GCS TSP์—์„œ๋Š” ๊ฐ ๊ฒฝ๋กœ์— ๋”ฐ๋ผ ๋ณ€์˜ ๋น„์šฉ์ด ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ €์ž๋“ค์€ GHOST๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์กฐํ•ฉ๋ก ์  ํˆฌ์–ด

No Image

ICP-4D: Bridging Iterative Closest Point and LiDAR Panoptic Segmentation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์  ๊ธฐ์กด 4D ๋ผ์ด๋‹ค ํŒŒ๋…ธํ”„ํ‹ฑ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜์€ ๋Œ€๊ทœ๋ชจ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์— ๋Œ€ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ•™์Šต์ด ํ•„์ˆ˜์ด๋ฉฐ, ์ธ์Šคํ„ด์Šค ์—ฐ๊ด€์„ ์œ„ํ•ด ๋ณ„๋„ ๋ชจ๋“ˆ์„ ์„ค๊ณ„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ (โ‘ ) ํฌ์ธํŠธ ์ค‘๋ณต ์ฒ˜๋ฆฌ โ†’ ๋†’์€ ์—ฐ์‚ฐยท๋ฉ”๋ชจ๋ฆฌ ๋น„์šฉ, (โ‘ก) ์›์‹œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ธฐํ•˜ํ•™์  ์‚ฌ์ „์ง€์‹(์˜ˆ: ๋ฌผ์ฒด ํ˜•ํƒœ, ์›€์ง์ž„) ํ™œ์šฉ ๋ถ€์กฑ์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ ICP์™€ Sinkhorn ๋งค์นญ์˜ ๊ฒฐํ•ฉ ICP : ์ „ํ†ต์ ์ธ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ •ํ•ฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ, ๋‘ ํฌ์ธํŠธ ์ง‘ํ•ฉ ์‚ฌ์ด์˜ rigid ๋ณ€ํ™˜(ํšŒ์ „ยท

Irresponsible AI: big tech's influence on AI research and associated impacts

Irresponsible AI: big tech's influence on AI research and associated impacts

๋น…ํ…Œํฌ๋Š” ์–ด๋–ป๊ฒŒ AI์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๊ฐ€? ๊ธฐ์ˆ  ์‚ฐ์—…์€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ปดํ“จํ„ฐ ๊ณผํ•™ ์—ฐ๊ตฌ์— ๊ด€์‹ฌ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์—ญ์‚ฌ์ ์œผ๋กœ ๊ทธ ๋ฐœ์ „์„ ์˜ํ–ฅ๋ ฅ ์žˆ๊ฒŒ ์ด๋Œ์–ด ์™”๋‹ค(Mahoney, 1998). ๊ทธ๋Ÿฌ๋‚˜ 2010๋…„๋Œ€ ์ดˆ๋ถ€ํ„ฐ Sevilla et al. (2022)๊ฐ€ ์‹ฌ์ธต ํ•™์Šต ๋ฐ ๋Œ€๊ทœ๋ชจ ์‹œ๋Œ€๋ผ๊ณ  ๋ช…๋ช…ํ•œ ์ด๋ž˜๋กœ ๋น…ํ…Œํฌ์˜ AI ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ์˜ํ–ฅ๋ ฅ์€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜์—ฌ ํ˜„์žฌ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํผ์ ธ ์žˆ๋‹ค(Ahmed et al., 2023). ๋น…ํ…Œํฌ๊ฐ€ ์ด๋Ÿฌํ•œ ์˜ํ–ฅ์„ ํ–‰์‚ฌํ•˜๋Š” ์ „์ˆ ๊ณผ ํ–‰๋™์€ ๋‹ค์–‘ํ•˜๋ฉฐ, ์ด๋Š” ์—ฐ๊ตฌ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ๋ฐ˜์˜๋œ๋‹ค. Birhane

Learned-Rule-Augmented Large Language Model Evaluators

Learned-Rule-Augmented Large Language Model Evaluators

์ตœ๊ทผ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์˜ ๋ฐœ์ „์€ ์ž์—ฐ์–ด ์ƒ์„ฑ(NLG) ์ž‘์—…์—์„œ ํ…์ŠคํŠธ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์žˆ์–ด LLM์ด ํšจ๊ณผ์ ์ด๊ณ  ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ํ‰๊ฐ€์ž๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ LLM ํ‰๊ฐ€์ž์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋‹ค์–‘ํ•œ ์ž‘์—…์œผ๋กœ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ LLM์˜ ๋Šฅ๋ ฅ์„ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ฑธ์ณ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค: ์—์„ธ์ด ์ฑ„์ , ์ธ์šฉ ์ค‘์š”๋„ ํ‰๊ฐ€ ๋“ฑ. ๊ทธ๋Ÿฌ๋‚˜ LLM์„ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ฐ˜ ํ‰๊ฐ€์ž๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฐ๋Š” ์—ฌ์ „ํžˆ ๋„์ „ ๊ณผ์ œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ทœ์น™ ๊ฐ•ํ™” ํ•™์Šต์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €,

Model
Learning to Code with Context: A Study-Based Approach

Learning to Code with Context: A Study-Based Approach

์ด ๋…ผ๋ฌธ์€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๊ณผ์ •์˜ ๋‹ค์–‘ํ•œ ๋‹จ๊ณ„์—์„œ ํ•™์ƒ๋“ค์ด ์ƒ์„ฑ์  AI ๋„๊ตฌ๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€ ์กฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๋„๊ตฌ๊ฐ€ ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ž‘์—… ์œ ํ˜•์„ ์‹๋ณ„ํ•˜๊ณ , ํ•™์ƒ๋“ค์ด ์ง๋ฉดํ•œ ๋„์ „ ๊ณผ์ œ๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ €์žฅ์†Œ ์ธ์‹ LLM ๋ณด์กฐ ์žฅ์น˜๋ฅผ ์„ค๊ณ„ํ•˜์—ฌ ํ”„๋กœ์ ํŠธ์— ๋Œ€ํ•œ ๋งฅ๋ฝํ™”๋œ ์ง€์›์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ RAG๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‘๋‹ต์„ ๊ด€๋ จ ๋ฌธ์„œ ๋ฐ ์†Œ์Šค ์ฝ”๋“œ๋กœ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ํ–‰๋™, ๋งค๊ฐœ ๋ณ€์ˆ˜ ๋ฏผ๊ฐ๋„ ๋ฐ ์ผ๋ฐ˜์ ์ธ ์‹คํŒจ ๋ชจ๋“œ๋ฅผ ์ž์„ธํžˆ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ต์œก์šฉ ์†Œํ”„ํŠธ์›จ์–ด ํ”„๋กœ์ ํŠธ์—์„œ ์ปจํ…์ŠคํŠธ ์ธ์‹ AI ์ง€์›์—

Learning
No Image

LeMiCa: Lexicographic Minimax Path Caching for Efficient Diffusion-Based Video Generation

ํ™•์‚ฐ ๊ธฐ๋ฐ˜ ๋น„๋””์˜ค ์ƒ์„ฑ์€ ์ตœ๊ทผ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ์ง€๋งŒ, ์ถ”๋ก  ์†๋„๋ฅผ ๋†’์ด๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ๋„์ „ ๊ณผ์ œ์ž…๋‹ˆ๋‹ค. LeMiCa๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋œ ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์บ์‹œ ์Šค์ผ€์ค„๋ง์„ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œํ˜„ํ•˜๊ณ , ์ตœ์•…์˜ ๊ฒฝ๋กœ ์˜ค๋ฅ˜๋ฅผ ์ œํ•œํ•˜๋Š” ์ „๋žต์„ ํ†ตํ•ด ๊ธ€๋กœ๋ฒŒ ์ฝ˜ํ…์ธ  ์ผ๊ด€์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, LeMiCa๋Š” ๊ธฐ์กด ๊ธฐ๋ฒ•๋ณด๋‹ค ๋น ๋ฅธ ์†๋„์™€ ๋” ๋‚˜์€ ํ’ˆ์งˆ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ, LPIPS ์ ์ˆ˜๊ฐ€ ๋‚ฎ๋‹ค๋Š” ๊ฒƒ์€ ์ƒ์„ฑ๋œ ๋น„๋””์˜ค๊ฐ€ ์›๋ณธ์— ๋งค์šฐ ๊ฐ€๊น๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์€ ๋‹ค์–‘ํ•œ ๋ฒค์น˜๋งˆํฌ์—์„œ

No Image

LiveTradeBench: Seeking Real-World Alpha with Large Language Models

: LiveTradeBench๋Š” ํ˜„์‹ค์ ์ธ ๊ฑฐ๋ž˜ ํ™˜๊ฒฝ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜์—ฌ LLM ์—์ด์ „ํŠธ์˜ ์‹ค์ œ ์„ธ๊ณ„์—์„œ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆฌ๋ฐ๊ณผ ๋‹ค์ค‘ ์‹œ์žฅ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด, ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋ชจ๋ธ์ด ๋ถˆํ™•์‹คํ•œ ์ƒํ™ฉ ํ•˜์—์„œ ์˜์‚ฌ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋Šฅ๋ ฅ์„ ํ…Œ์ŠคํŠธํ•ฉ๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ๋Š” LLMs์˜ ์„ฑ๋Šฅ์ด ์ •์  ๋ฒค์น˜๋งˆํฌ ์ ์ˆ˜์™€ ์ง์ ‘์ ์œผ๋กœ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์—†์Œ์„ ์‹œ์‚ฌํ•˜๋ฉฐ, ์ด๋Š” ์‹ค์ œ ์„ธ๊ณ„์—์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ฐ ๋ชจ๋ธ์€ ๊ณ ์œ ํ•œ ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ์Šคํƒ€์ผ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” ์œ„ํ—˜๊ณผ ์ˆ˜์ต ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์ฐพ

Model
No Image

LUME-DBN: Full Bayesian Learning of DBNs from Incomplete data in Intensive Care

๋™์  ๋ฒ ์ด์ฆˆ ๋„คํŠธ์›Œํฌ(DBN)๋Š” ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ๋ณต์žกํ•œ ์‹œ๊ฐ„์  ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๋„๊ตฌ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ง‘์ค‘ ์น˜๋ฃŒ์™€ ๊ฐ™์€ ํ™˜๊ฒฝ์—์„œ๋Š” ํ™˜์ž์˜ ์ƒํƒœ๊ฐ€ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ์š”์ธ๋“ค์ด ์ƒํ˜ธ ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— DBN์˜ ๋Šฅ๋ ฅ์€ ๋”์šฑ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ •์ ์ธ ๋ฒ ์ด์ฆˆ ๋„คํŠธ์›Œํฌ์— ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ์–ด, ์‹œ๊ฐ„์  ํŠน์„ฑ์„ ์ œ๋Œ€๋กœ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๋ถˆํ™•์‹ค์„ฑ์ด ์–ด๋–ป๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜ ๊ฐ์†Œํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ์ œํ•œํ•ฉ๋‹ˆ๋‹ค. ์ €ํฌ๊ฐ€ ์ œ์•ˆํ•œ LUME DBN ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„

Data Learning
No Image

Moral Susceptibility and Robustness under Persona Role-Play in Large Language Models

๋ณธ ์—ฐ๊ตฌ๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜ ๋„๋•์  ์ธก๋ฉด์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ , ํŠนํžˆ ์ธ๋ฌผ ์—ญํ• ๊ทน์ด ์ด๋“ค์˜ ๋„๋•์  ํŒ๋‹จ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. MFQ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์šฐ๋ฆฌ๋Š” ๋ชจ๋ธ๋“ค์ด ๋‹ค์–‘ํ•œ ์ธ๋ฌผ์„ ์—ฐ๊ธฐํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ๋„๋•์  ์ทจ์•ฝ์„ฑ๊ณผ ๋กœ๋ธŒ์ŠคํŠธ๋‹ˆ์Šค๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ–ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๋ชจ๋ธ์˜ ์ข…๋ฅ˜์™€ ํฌ๊ธฐ๊ฐ€ ์ด๋Ÿฌํ•œ ์†์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ํŠนํžˆ Claude ๊ณ„์—ด์ด ๊ฐ€์žฅ ๋†’์€ ๋กœ๋ธŒ์ŠคํŠธ๋‹ˆ์Šค๋ฅผ ๋ณด์˜€๋‹ค๋Š” ์ ์€ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. ๋˜ํ•œ, ์ทจ์•ฝ์„ฑ๊ณผ ๋กœ๋ธŒ์ŠคํŠธ๋‹ˆ์Šค ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜ ๋„๋•์  ํ–‰๋™์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜

Model
Nemotron 3 Nano: Open, Efficient Mixture-of-Experts Hybrid Mamba-Transformer Model for Agentic Reasoning

Nemotron 3 Nano: Open, Efficient Mixture-of-Experts Hybrid Mamba-Transformer Model for Agentic Reasoning

: ๋„ค๋ชจํŠธ๋ก  3 ๋‚˜๋…ธ๋Š” ์—์ด์ „ํ‹ฑ ์ถ”๋ก ์„ ์œ„ํ•œ ํšจ์œจ์ ์ธ ๋ฏน์Šค์ณ ์˜ค๋ธŒ ์—‘์Šคํผ์ธ  ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ง˜๋ฐ” ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ Mamba 2์™€ Grouped Query Attention์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์—์ด์ „ํ‹ฑ, ์ถ”๋ก  ๋ฐ ์ฑ„ํŒ… ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ ์–ธ์–ด ๋ชจ๋ธ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ํฌ์†Œํ•˜๊ฒŒ ํ™•์žฅํ•˜๊ณ  ์ •ํ™•๋„ ์ถ”๋ก  ์ฒ˜๋ฆฌ๋Ÿ‰ ๊ฒฝ๊ณ„๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๋ฏน์Šค์ณ ์˜ค๋ธŒ ์—‘์Šคํผ์ธ  ๋ ˆ์ด์–ด๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ 316์–ต ๊ฐœ์˜ ์ด ๋งค๊ฐœ๋ณ€์ˆ˜ ์ค‘ ์ „๋ฐฉ ์ „๋‹ฌ๋‹น 32์–ต ๊ฐœ(์ž„๋ฒ ๋”ฉ ํฌํ•จ ์‹œ 36์–ต ๊ฐœ)๋งŒ ํ™œ์„ฑํ™”ํ•˜์—ฌ ํšจ์œจ์„ฑ์„ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ๋„ค๋ชจํŠธ๋ก  3 ๋‚˜๋…ธ๋Š” ๋‹ค์–‘ํ•œ ๋ฒค์น˜๋งˆํฌ์—

Model
No Image

Not All Instances Are Equally Valuable: Towards Influence-Weighted Dataset Distillation

: ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹ ์ฆ๋ฅ˜ ๋ฐฉ๋ฒ•์€ ๋ชจ๋“  ์‹ค์ œ ์ธ์Šคํ„ด์Šค๊ฐ€ ๋™๋“ฑํ•œ ๊ฐ€์น˜๋ฅผ ๊ฐ€์ง„๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ง€๋งŒ, ์ด๋Š” ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์…‹์˜ ๋ณต์žก์„ฑ์„ ๊ฐ„๊ณผํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. IWD๋Š” ์˜ํ–ฅ๋ ฅ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ ์ธ์Šคํ„ด์Šค์˜ ๊ธฐ์—ฌ๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ€์ค‘์น˜๋ฅผ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์œ ์ตํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ•์กฐํ•˜๊ณ  ํ•ด๋กœ์šด ๋ฐ์ดํ„ฐ๋ฅผ ์ค„์ž„์œผ๋กœ์จ ์ฆ๋ฅ˜๋œ ๋ฐ์ดํ„ฐ์…‹์˜ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๋˜ํ•œ, IWD์˜ ๋ชจ๋“ˆ์‹ ์„ค๊ณ„๋Š” ๋‹ค์–‘ํ•œ ์ฆ๋ฅ˜ ํ”„๋ ˆ์ž„์›Œํฌ์— ์‰ฝ๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ์–ด, ๋ฒ”์šฉ์„ฑ๊ณผ ํ™œ์šฉ์„ฑ์„ ๋†’์ž…๋‹ˆ๋‹ค.

Data
Online Expectation-Maximisation

Online Expectation-Maximisation

๋ณธ ์žฅ์€ ์˜จ๋ผ์ธ EM ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด๋ก ์ ยท์‹ค์šฉ์  ๊ด€์ ์—์„œ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌํ•œ๋‹ค. ๋จผ์ € โ€œonlineโ€์ด๋ผ๋Š” ํ˜•์šฉ์‚ฌ์˜ ์˜๋ฏธ๋ฅผ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•œ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹ ๋ถ„์•ผ์—์„œ ํ”ํžˆ ์“ฐ์ด๋Š” ์˜จ๋ผ์ธ ํ•™์Šต์€ ๊ด€์ธก์น˜๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ๋„์ž…ํ•˜๋ฉด์„œ ์ผ๋ฐ˜ํ™” ์˜ค์ฐจ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐ€๋ฆฌํ‚ค์ง€๋งŒ, ์—ฌ๊ธฐ์„œ๋Š” ๋ฐ์ดํ„ฐ ์ €์žฅ ์—†์ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐฑ์‹ ํ•˜๋Š” ์ „ํ†ต์ ์ธ ํ†ต๊ณ„ ์ถ”์ • ๋ฐฉ์‹์„ ๋งํ•œ๋‹ค. ์ด๋Š” ์‹ ํ˜ธ ์ฒ˜๋ฆฌยท์ œ์–ด ๋ถ„์•ผ์—์„œ โ€œadaptiveโ€ ํ˜น์€ โ€œrecursiveโ€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ์ ‘๊ทผ๊ณผ ๋™์ผ์„ ์ƒ์— ์žˆ๋‹ค. ์ €์ž๋Š” โ€œrecursiveโ€๋ผ๋Š” ์šฉ์–ด๊ฐ€ ์ปดํ“จํ„ฐ ๊ณผํ•™์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ

Statistics
PACIFIC: a framework for generating benchmarks to check Precise Automatically Checked Instruction Following In Code

PACIFIC: a framework for generating benchmarks to check Precise Automatically Checked Instruction Following In Code

: PACIFIC์€ ์ž๋™์œผ๋กœ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, LLM์˜ ์ง€์นจ ์ค€์ˆ˜ ๋ฐ ์ฝ”๋“œ ๋“œ๋ผ์ด๋Ÿฐ ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ช…ํ™•ํ•œ ์˜ˆ์ƒ ์ถœ๋ ฅ์„ ๊ฐ€์ง„ ๋ฒค์น˜๋งˆํฌ ๋ณ€ํ˜•์„ ์ƒ์„ฑํ•˜์—ฌ ๊ฐ„๋‹จํ•œ ์ถœ๋ ฅ ๋น„๊ต๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, PACIFIC์€ ๋„๊ตฌ ์‚ฌ์šฉ์ด๋‚˜ ์—์ด์ „ํŠธ์  ํ–‰๋™์— ์˜์กดํ•˜์ง€ ์•Š๊ณ  LLM์˜ ๊ณ ์œ ํ•œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ ๋ณ€ํ˜•์„ ์‰ฝ๊ฒŒ ์ƒ์„ฑํ•˜์—ฌ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ์˜ค์—ผ์„ ์™„ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ๋‚œ์ด๋„ ์ˆ˜์ค€์˜ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์—ฌ๋Ÿฌ ์ตœ์ฒจ๋‹จ LLM์„ ํ‰๊ฐ€ํ•จ์œผ๋กœ์จ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ

Framework
No Image

PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling

PaTaRM์€ ์ธ๊ฐ„ ํ”ผ๋“œ๋ฐฑ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ•ํ™” ํ•™์Šต(RLHF)์˜ ํ•ต์‹ฌ์ธ ๋ณด์ƒ ๋ชจ๋ธ๋ง์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ƒ์„ฑํ˜• ๋ณด์ƒ ๋ชจ๋ธ(GRMs)๊ณผ ์ „ํ†ต์ ์ธ ์Šค์นผ๋ผ RMs ์‚ฌ์ด์˜ trade off๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์Œ๊ฐ„ ๋ฐฉ๋ฒ•์€ ํ›ˆ๋ จ๊ณผ ์ถ”๋ก  ์‚ฌ์ด์˜ ๋ถˆ์ผ์น˜๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ ๊ฐ„ ๋ฐฉ๋ฒ•์€ ์ ˆ๋Œ€์  ์ฃผ์„์„ ์œ„ํ•œ ๋น„์šฉ์ด ๋งŽ์ด ๋“œ๋Š” ์ž‘์—…์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. PaTaRM์€ ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ์„ ํ˜ธ๋„ ์ธ์‹ ๋ณด์ƒ(PAR) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์Œ๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ ๊ฐ„ ํ›ˆ๋ จ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ์œผ

Model
No Image

PhysWorld: From Real Videos to World Models of Deformable Objects via Physics-Aware Demonstration Synthesis

: PhysWorld ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์‹ค์ œ ์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์˜ ๋ถ€์กฑ์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜์˜ ์ ‘๊ทผ๋ฒ•์„ ์ทจํ•œ๋‹ค. ์ด๋Š” ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์ผ๊ด€๋œ ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ์ƒ์„ฑํ•˜๊ณ , ๋‹ค์–‘ํ•œ ์šด๋™ ํŒจํ„ด์„ ํ•ฉ์„ฑํ•˜์—ฌ ๋ฐ๋ชจ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์„ ํฌํ•จํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ€์†Œ์„ฑ ๋ฌผ์ฒด๋“ค์˜ ์—ญํ•™์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ํšจ์œจ์ ์ธ ์„ธ๊ณ„ ๋ชจ๋ธ ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋˜ํ•œ, PhysWorld๋Š” ์‹ค์ œ ์˜์ƒ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๋”์šฑ ์ •๊ตํ•˜๊ณ  ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ๋ฐ์ดํ„ฐ์˜ ๊ฒฐํ•ฉ์ด๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋กœ

Model
No Image

Policy Gradient-Based EMT-in-the-Loop Learning to Mitigate Sub-Synchronous Control Interactions

ํ•˜์œ„ ๋™๊ธฐ ์ œ์–ด ์ƒํ˜ธ ์ž‘์šฉ(SSCI)์€ ์ „๋ ฅ๋ง์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋ฉฐ, ์ด๋Š” ์ œ์–ด ์ด๋“์˜ ์ž˜๋ชป๋œ ํŠœ๋‹๊ณผ ํŠน์ • ๊ทธ๋ฆฌ๋“œ ๊ตฌ์„ฑ์˜ ์กฐํ•ฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ SSCI๋Š” ์•ˆ์ •์„ฑ๊ณผ ์„ฑ๋Šฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์›์น˜ ์•Š๋Š” ์ง„๋™์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SSCI๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ EMT in the loop ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ์™€ ๊ฐ•ํ™” ํ•™์Šต ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ทธ๋ฆฌ๋“œ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜๊ณ  ์ œ์–ด ์ด๋“์„ ์ ์‘์ ์œผ๋กœ ํŠœ๋‹ํ•ฉ๋‹ˆ๋‹ค. ์ •์ฑ… ๊ธฐ์šธ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ SSCI๋ฅผ ์–ต์ œํ•˜๋Š” ์ตœ์ ์˜ ์ œ์–ด ์ด๋“์„ ์ฐพ๋Š” ๋ฐ

Learning
No Image

Prudential Reliability of Large Language Models in Reinsurance: Governance, Assurance, and Capital Efficiency

: ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๊ฐ๋… ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์žฌ๋ณดํ—˜ ๋ถ„์•ผ์—์„œ LLM์˜ ์‹ ๋ขฐ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ํฌ๊ด„์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ๊ณตํ•œ๋‹ค. ๋‹ค์„ฏ ๊ฐ€์ง€ ๊ธฐ๋‘ฅ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์•„ํ‚คํ…์ฒ˜๋Š” ๊ฑด์ „์„ฑ ๊ทœ์ œ ๊ธฐ๊ด€์˜ ์ง€์นจ์„ ์‹ค์šฉ์ ์ด๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์ œ์–ด ๋ฐฉ์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ LLM์ด ์žฌ๋ณดํ—˜ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ์ง€ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. RAIRAB ๋ฒค์น˜๋งˆํฌ๋ฅผ ํ†ตํ•ด ๊ฑฐ๋ฒ„๋„Œ์Šค ๋‚ด์žฌํ˜• LLM์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ํˆฌ๋ช…์„ฑ์„ ํ‰๊ฐ€ํ•จ์œผ๋กœ์จ, ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฑด์ „์„ฑ ๊ธฐ์ค€์— ๋ถ€ํ•ฉํ•˜๋Š” AI ์‹œ์Šคํ…œ์„ ์‹๋ณ„ํ•˜๊ณ  ์ด‰์ง„ํ•œ๋‹ค.

Model
No Image

Quadratic Direct Forecast for Training Multi-Step Time-Series Forecast Models

์‹œ๊ฐ„ ์‹œ๋ฆฌ์ฆˆ ์˜ˆ์ธก์€ ๋ฏธ๋ž˜์˜ ์ถ”์„ธ๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์˜์‚ฌ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ํ›ˆ๋ จ ๋ชฉํ‘œ๋Š” ๋ฏธ๋ž˜ ๋‹จ๊ณ„ ๊ฐ„์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์•„ ํŽธํ–ฅ๋œ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ QDF ๋ฐฉ๋ฒ•๋ก ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ ˆ์ด๋ธ” ์ž์œจ ์ƒ๊ด€ ๊ด€๊ณ„ ํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•œ ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋Š” ๊ฐ ์˜ˆ์ธก ์ž‘์—…์— ์ ์ ˆํ•œ ๊ฐ€์ค‘์น˜๋ฅผ ํ• ๋‹นํ•˜์—ฌ, ๋ฏธ๋ž˜ ๋‹จ๊ณ„์— ๋Œ€ํ•œ ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋˜ํ•œ, QDF๋Š” ๋‹ค์–‘ํ•œ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ตœ์ฒจ๋‹จ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•จ์œผ๋กœ์จ ๊ทธ ์œ ์šฉ์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค.

Model
No Image

Quality Assurance of LLM-generated Code: Addressing Non-Functional Quality Characteristics

์ด ๋…ผ๋ฌธ์€ LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ์— ๋Œ€ํ•œ ํ’ˆ์งˆ ๋ณด์ฆ์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ๋Šฅ์  ์ •ํ™•์„ฑ ์™ธ์—๋„ ๋น„๊ธฐ๋Šฅ์  ํ’ˆ์งˆ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ด ์™œ ์ค‘์š”ํ•œ์ง€ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ๋ณด์•ˆ, ์œ ์ง€๋ณด์ˆ˜์„ฑ ๋ฐ ์„ฑ๋Šฅ ํšจ์œจ์„ฑ๊ณผ ๊ฐ™์€ ์ธก๋ฉด์€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์—์„œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋ฉฐ, LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๊ฐ€ ์ด๋Ÿฌํ•œ ํ’ˆ์งˆ ๊ธฐ์ค€์„ ์ถฉ์กฑํ•ด์•ผ ํ•จ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ์ฒด๊ณ„์ ์ธ ๋ฌธํ—Œ๊ณ ์ฐฐ๊ณผ ์‚ฐ์—… ์›Œํฌ์ˆ์„ ํ†ตํ•ด ํ•™๊ณ„์™€ ์—…๊ณ„์˜ ๊ด€์‹ฌ๊ณผ ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ๊ณผ ์‹ค์ œ ์ ์šฉ ์‚ฌ์ด์˜ ๊ฐ„๊ทน์„ ๋“œ๋Ÿฌ๋ƒ…๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ƒ์„ฑ๋œ ์ฝ”๋“œ๊ฐ€ ๊ธฐ์ˆ  ๋ถ€์ฑ„๋ฅผ ์ถ•์ ํ•  ์ˆ˜

No Image

Reconfigurable Quantum Instruction Set Computers for High Performance Attainable on Hardware

์–‘์ž ์ปดํ“จํŒ… ๋ถ„์•ผ์—์„œ ํ•˜๋“œ์›จ์–ด ์„ฑ๋Šฅ ํ–ฅ์ƒ์€ ์ค‘์š”ํ•œ ๊ณผ์ œ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด CNOT/CZ ๊ฒŒ์ดํŠธ ๊ธฐ๋ฐ˜์˜ ISA๋Š” ๊ฒŒ์ดํŠธ ๊ต์ • ์˜ค๋ฒ„ํ—ค๋“œ์™€ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ReQISC๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด SU(4) ๋ชจ๋“ˆ์„ ํ™œ์šฉํ•˜์—ฌ ์ž„์˜์˜ 2Q ๊ฒŒ์ดํŠธ๋ฅผ ์ง์ ‘ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ด๋ก ์ ์œผ๋กœ ์ตœ์ ์˜ ๊ฒŒ์ดํŠธ ์ง€์† ์‹œ๊ฐ„์„ ๋ณด์žฅํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ์–‘์ž ์ปคํ”Œ๋ง ํ•ด๋ฐ€ํ† ๋‹ˆ์–ธ์— ์ ์šฉ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ReQISC๋Š” ํ”„๋กœ๊ทธ๋žจ ์ธ์‹ ํŒจ์Šค, ํšŒ๋กœ ๋ ˆ๋ฒจ ์ตœ์ ํ™”์šฉ ๋ฌด๊ด€ ํŒจ์Šค, ๊ทธ๋ฆฌ๊ณ  SU(4) ๊ธฐ๋ฐ˜ ๋ผ์šฐํŒ… ํŒจ์Šค๋ฅผ ํฌํ•จํ•œ ์—”

RGE-GCN: Recursive Gene Elimination with Graph Convolutional Networks for RNA-seq based Early Cancer Detection

RGE-GCN: Recursive Gene Elimination with Graph Convolutional Networks for RNA-seq based Early Cancer Detection

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ์ฐจ์›์ ์ธ RNA seq ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…”๋„ ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ์ธ RGE GCN์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์œ ์ „์ž ๋ฐœํ˜„ ํ”„๋กœํŒŒ์ผ๋กœ๋ถ€ํ„ฐ ์ƒ˜ํ”Œ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์•” ๋Œ€ ์ •์ƒ ์ƒ˜ํ”Œ์„ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ Integrated Gradients๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ ์œ ์ „์ž์˜ ์ค‘์š”๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์žฌ๊ท€์ ์ธ ์ œ๊ฑฐ ๊ณผ์ •์„ ํ†ตํ•ด ๊ฐ€์žฅ ์ •๋ณด๊ฐ€ ๋งŽ์€ ์œ ์ „์ž๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์˜ˆ์ธก ์ •ํ™•๋„ ๋ชจ๋‘์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, RGE GCN์€

Network Detection
No Image

Supervised Fine-Tuning or In-Context Learning? Evaluating LLMs for Clinical NER

์ž„์ƒ NER ๊ณผ์—…์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” CADEC ์ฝ”ํผ์Šค๋ฅผ ํ™œ์šฉํ•œ๋‹ค. BERT ์Šคํƒ€์ผ ์ธ์ฝ”๋”๋Š” ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์–ธ์–ด ๋ชจ๋ธ์ด์ง€๋งŒ, RoBERTa large์™€ BioClinicalBERT๋Š” BERT Base ๋Œ€๋น„ ์ œํ•œ์ ์ธ ๊ฐœ์„ ๋งŒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Š” ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์ด ์ž„์ƒ NER ๊ณผ์—…์—์„œ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ฐ˜๋ฉด, GPT 4o๋ฅผ ์‚ฌ์šฉํ•œ ICL๊ณผ SFT๋Š” ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ํŠนํžˆ, ๊ฐ„๋‹จํ•œ ํ”„๋กฌํ”„ํŠธ ํ•˜์˜ ICL์€ ๋ณต์žกํ•œ ํ”„๋กฌํ”„ํŠธ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๋ฉฐ, ์ด๋Š” ๋‹จ์ˆœํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์ง€์‹œ๊ฐ€ ๋ชจ๋ธ์— ๋” ํšจ๊ณผ์ ์ž„์„

Learning
No Image

SymLight: Exploring Interpretable and Deployable Symbolic Policies for Traffic Signal Control

์‹ฌ๋ผ์ดํŠธ(SymLight)๋Š” ๊ตํ†ต ์‹ ํ˜ธ ์ œ์–ด(TSC)๋ฅผ ์œ„ํ•œ ๊ธฐํ˜ธ ์ •์ฑ… ํƒ์ƒ‰ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ์„œ, MCTS ๊ธฐ๋ฐ˜์˜ ์šฐ์„ ์ˆœ์œ„ ํ•จ์ˆ˜ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ์ •์ฑ…๋“ค์˜ ๊ณผ๋„ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”์™€ ํˆฌ๋ช…์„ฑ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹ฌ๋ผ์ดํŠธ๋Š” ๊ฐ„๊ฒฐํ•˜๋ฉด์„œ๋„ ํ‘œํ˜„๋ ฅ์ด ๋›ฐ์–ด๋‚œ ์šฐ์„ ์ˆœ์œ„ ํ•จ์ˆ˜ ํ‘œํ˜„๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ ํ–‰๋™ ๊ณต๊ฐ„์˜ ์กฐํ•ฉ ํญ๋ฐœ ๋ฌธ์ œ๋ฅผ ์™„ํ™”์‹œํ‚ต๋‹ˆ๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ์  ๋กค์•„์›ƒ ์ „๋žต์„ ํ†ตํ•ด ์ด์ „์— ๋ฐœ๊ฒฌ๋œ ๊ณ ํ’ˆ์งˆ ์šฐ์„ ์ˆœ์œ„ ํ•จ์ˆ˜์˜ ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ํƒ์ƒ‰ ๊ณผ์ •์„ ํšจ์œจ์ ์œผ๋กœ ์œ ๋„ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋‹ค์–‘ํ•œ ๋ฒ ์ด

No Image

The FM Agent

FM Agent๋Š” LLM์˜ ์ถ”๋ก  ๋Šฅ๋ ฅ๊ณผ ์ง„ํ™”์  ํƒ์ƒ‰์˜ ํšจ์œจ์„ฑ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ฝœ๋“œ ์Šคํƒ€ํŠธ ์ดˆ๊ธฐํ™” ๋‹จ๊ณ„๋Š” ์ „๋ฌธ๊ฐ€ ์ง€์นจ์„ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ๋น ๋ฅด๊ฒŒ ํ•™์Šตํ•˜๊ณ  ์ ์‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ƒˆ๋กœ์šด ์ง„ํ™”์  ์ƒ˜ํ”Œ๋ง ์ „๋žต์€ ๋ฐ˜๋ณต์ ์ธ ์ตœ์ ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์—ฌ ๋” ๋‚˜์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋„๋ฉ”์ธ๋ณ„ ํ‰๊ฐ€์ž๋Š” ์ •ํ™•์„ฑ๊ณผ ํšจ๊ณผ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์˜ฌ๋ฐ”๋ฅธ ๋ฐฉํ–ฅ์œผ๋กœ ์—์ด์ „ํŠธ๋ฅผ ์œ ๋„ํ•˜๋ฉฐ, LLM์˜ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•ด ๋”์šฑ ์ •๊ตํ•œ ํƒ์ƒ‰์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๋ถ„์‚ฐํ˜• ๋น„๋™๊ธฐ ์‹คํ–‰ ์ธํ”„๋ผ๋Š” ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ํšจ์œจ์ ์ธ ๋ฌธ์ œ ํ•ด

No Image

The Geometric View of Theories

์ด ๋…ผ๋ฌธ์€ ๊ณผํ•™ ์ด๋ก ์„ ์ดํ•ดํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋ฌผ๋ฆฌํ•™์—์„œ ๋ฐœ๊ฒฌ๋˜๋Š” ์ด์ค‘์„ฑ๊ณผ ์ค€ ์ด์ค‘์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ €์ž๋Š” ์ด๋ก ์„ ๋‹จ์ˆœํ•œ ๋ชจ๋ธ๋“ค์˜ ์ง‘ํ•ฉ์œผ๋กœ ๋ณด๋Š” ๊ฒƒ์„ ๋„˜์–ด์„œ์„œ ๊ธฐํ•˜ํ•™์  ๊ด€์ ์—์„œ ๋ฐ”๋ผ๋ณธ๋‹ค. ์ด๋Š” ์ด๋ก ์˜ ๊ตฌ์กฐ์™€ ๊ทธ ๋‚ด์žฌ๋œ ์œ„์ƒ์ˆ˜ํ•™์  ๋ฐ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ œ์•ˆ๋œ '๋ชจ๋ธ ๋ฒˆ๋“ค' ๊ฐœ๋…์€ ๋‹ค์–‘ํ•œ ์ด๋ก ๋“ค์„ ํ•˜๋‚˜์˜ ๊ตฌ์กฐ๋กœ ํ†ตํ•ฉํ•˜๋ฉฐ, ์ค€ ์ด์ค‘์„ฑ์ด ์„ฌ์œ  ์‚ฌ์ด์˜ ์ „์ด ํ•จ์ˆ˜๋กœ์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ์ด ๊ด€์ ์€ ๋ฌผ๋ฆฌ ์ด๋ก ์— ๋Œ€ํ•œ ํ˜„์‹ค์ฃผ์˜ ํ•ด์„์„ ํฌํ•จํ•œ ์—ฌ๋Ÿฌ ์ฒ ํ•™์  ๋ฌธ์ œ๋“ค์„ ์ œ๊ธฐํ•œ๋‹ค.

The Hidden Cost of Straight Lines: Quantifying Misallocation Risk in Voronoi-based Service Area Models

The Hidden Cost of Straight Lines: Quantifying Misallocation Risk in Voronoi-based Service Area Models

๋ณธ ๋…ผ๋ฌธ์€ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ธฐ๋Šฅ์  ์ ‘๊ทผ์„ฑ์„ ์ œ๋Œ€๋กœ ๋Œ€๋ณ€ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฐ€์ •์—์„œ ์ถœ๋ฐœํ•˜์—ฌ, ๋ณด๋กœ๋…ธ์ด ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค ์˜์—ญ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ๋ณด์—ฌ์ฃผ๊ณ  ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ํ™•๋ฅ ๋ก ์  ํ‹€์„ ๊ฐœ๋ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ํ‹€์€ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ์™€์˜ ๋ถˆ์ผ์น˜๋ฅผ ๋กœ๊ทธ์ •๊ทœ ๋ถ„ํฌ๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ๋งํ•˜๊ณ , ์ง€์—ญ ๊ธฐํ•˜ํ•™์— ๋”ฐ๋ผ ํ• ๋‹น ์˜ค๋ฅ˜ ํ™•๋ฅ ์„ ์œ ๋„ํ•ฉ๋‹ˆ๋‹ค. ์ŠคํŽ˜์ธ ์—‘์ŠคํŠธ๋ ˆ๋งˆ๋‘๋ผ ์ง€์—ญ์˜ ๊ณต์žฅ ์ง€์ž์ฒด ๊ด€์ธก์น˜(n 383)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์ด ํ‹€์ด 15.4%์˜ ์ง€์ž์ฒด๊ฐ€ ๊ธฐ๋Šฅ์ ์œผ๋กœ ์˜คํ• ๋‹น๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด๋Š” ์ด๋ก ์  ์˜ˆ์ธก ๊ตฌ๊ฐ„๊ณผ ์ผ์น˜ํ•˜๋ฉฐ, ๋ณต์žกํ•œ ๊ณต๊ฐ„ ๋ชจ๋ธ๊ณผ 95%์˜ ์ผ์น˜๋ฅผ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

Model
Uncovering Competency Gaps in Large Language Models and Their Benchmarks

Uncovering Competency Gaps in Large Language Models and Their Benchmarks

[์ œ๋ชฉ KO] ์–ธ์–ด ๋ชจ๋ธ๊ณผ ๋ฒค์น˜๋งˆํฌ์˜ ์—ญ๋Ÿ‰ ๊ฒฉ์ฐจ ํ•ด๋ถ€ํ•˜๊ธฐ [์ดˆ๋ก KO] ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ํ‰๊ฐ€๋Š” ํ‘œ์ค€ํ™”๋œ ๋ฒค์น˜๋งˆํฌ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฒค์น˜๋งˆํฌ๋Š” ํŠน์ • ๋Šฅ๋ ฅ ์ธก๋ฉด์—์„œ ์œ ์šฉํ•œ ์ง‘๊ณ„๋œ ์ง€ํ‘œ๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ง‘๊ณ„๋œ ์ง€ํ‘œ๋Š” (i) LLM์ด ์•ฝํ•œ ํŠน์ • ํ•˜์œ„ ์˜์—ญ('๋ชจ๋ธ ๊ฒฉ์ฐจ')๊ณผ (ii) ๋ฒค์น˜๋งˆํฌ ์ž์ฒด์—์„œ ๊ท ํ˜•์ด ๋งž์ง€ ์•Š๋Š” ์ปค๋ฒ„๋ฆฌ์ง€('๋ฒค์น˜๋งˆํฌ ๊ฒฉ์ฐจ')๋ฅผ ๊ฐ€๋ฆด ์ˆ˜ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ž๋™์œผ๋กœ ๋‘ ๊ฐ€์ง€ ์œ ํ˜•์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ชจ๋‘ ์ฐพ์•„๋‚ด๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ํฌ์†Œ ์ž๋™ ์ธ์ฝ”๋”(SAE)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋‚ด๋ถ€ ํ‘œํ˜„์— ๊ธฐ๋ฐ˜์„ ๋‘

Model
No Image

VFocus: Better Verilog Generation from Large Language Model via Focused Reasoning

์‚ฌ์ „ ์ˆœ์œ„ ์ง€์ • ๋‹จ๊ณ„ : VFocus๋Š” LLM ํ”„๋กฌํ”„ํŠธ๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ฝ”๋“œ ํ›„๋ณด๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ๊ตฌ๋ฌธ์ ์œผ๋กœ ์œ ํšจํ•œ ์ถœ๋ ฅ์„ ์–ป๊ธฐ ์œ„ํ•ด ์žฌ์‹œ๋„ํ•˜๋ฉฐ, ๊ธฐ๋Šฅ์  ์ •ํ™•์„ฑ์„ ์œ„ํ•œ '์ถ”๋ก  ๋‹ฌ์ฝคํ•œ ์ง€์ ' ๋‚ด์— ์žˆ๋Š” ํ›„๋ณด๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ€๋„ ์œ ๋„ ํ•„ํ„ฐ๋ง ์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ์ˆœ์œ„ ์ง€์ • ๋‹จ๊ณ„ : ๊ฐ ์ฝ”๋“œ ํ›„๋ณด์— ๋Œ€ํ•ด ์ž๋™ ์ƒ์„ฑ๋œ ํ…Œ์ŠคํŠธ ๋ฒค์น˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ž๊ธฐ ์ผ๊ด€์„ฑ ๊ธฐ๋ฐ˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์ ์šฉํ•˜์—ฌ ๊ฐ€์žฅ ์ผ๊ด€๋œ ์ถœ๋ ฅ์„ ์‹๋ณ„ํ•ฉ๋‹ˆ๋‹ค. ์‚ฌํ›„ ์ˆœ์œ„ ์ง€์ • ์ •์ œ ๋‹จ๊ณ„ : VFocus๋Š” ์ƒ์œ„ ๋žญํฌ๋œ ํ›„๋ณด์— ๋Œ€ํ•ด ๋ถˆ์ผ์น˜ ๋งˆ์ด๋‹์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ถ”๋ก  ๊ฐ•ํ™” LL

Model
No Image

A Memory-Efficient Retrieval Architecture for RAG-Enabled Wearable Medical LLMs-Agents

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์˜๋ฃŒ ๋ถ„์•ผ LLM ํ™œ์šฉ : ๊ฐœ์ธ ์˜๋ฃŒ ๊ธฐ๋ก, ์ตœ์‹  ๋…ผ๋ฌธ, ์•ฝ๋ฌผ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๋“ฑ ๋ฐฉ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ†ตํ•ฉยทํ•ด์„ํ•ด์•ผ ํ•จ. RAG์˜ ์žฅ์  : LLM ์ž์ฒด๋ฅผ ์žฌํ•™์Šตํ•˜์ง€ ์•Š๊ณ ๋„ ์™ธ๋ถ€ ์ง€์‹๋ฒ ์ด์Šค๋ฅผ ๋™์ ์œผ๋กœ ์—ฐ๊ฒฐํ•ด ์ตœ์‹  ์ •๋ณด๋ฅผ ๋ฐ˜์˜ ๊ฐ€๋Šฅ. ์—์ง€ ๋””๋ฐ”์ด์Šค์˜ ์ œ์•ฝ : ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰ยท์ „๋ ฅ ์ œํ•œ์ด ์‹ฌํ•ด, ๊ธฐ์กด RAG(ํŠนํžˆ ์ „์ฒด ์ž„๋ฒ ๋”ฉ์„ INT8 ํ˜•ํƒœ๋กœ ์ €์žฅยท๊ฒ€์ƒ‰) ๋ฐฉ์‹์€ ์‹ค์šฉ์„ฑ์ด ๋‚ฎ์Œ. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๋‹จ๊ณ„ | ๋ชฉํ‘œ | ๊ตฌํ˜„ ๋ฐฉ์‹ | | | | | | 1๋‹จ๊ณ„ (๊ทผ์‚ฌ ๊ฒ€์ƒ‰) | ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ž ์žฌ ํ›„๋ณด ๋ฅผ ๋น 

A Unified Architecture for N-Dimensional Visualization and Simulation: 4D Implementation and Evaluation including Boolean Operations

A Unified Architecture for N-Dimensional Visualization and Simulation: 4D Implementation and Evaluation including Boolean Operations

์ด ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์›(ํŠนํžˆ 4์ฐจ์›) ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐํ™”์™€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ณดํ†ต ์ฐจ์›๋ณ„๋กœ ํŠนํ™”๋œ ๋„๊ตฌ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ฑฐ๋‚˜, ์ฐจ์› ์ถ•์†Œ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด 3D ํ˜น์€ 2D ํ™”๋ฉด์— ํˆฌ์˜ํ•˜๋Š” ๋ฐฉ์‹์„ ์ฑ„ํƒํ•œ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ์—ฐ๊ตฌ๋Š” โ€œNโ€‘dimensionalโ€์ด๋ผ๋Š” ์ถ”์ƒ์  ๊ฐœ๋…์„ ์„ค๊ณ„ ๋‹จ๊ณ„๋ถ€ํ„ฐ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ์ฐจ์›์— ๊ตฌ์• ๋ฐ›์ง€ ์•Š๋Š” ๋ชจ๋“ˆ์‹ ๊ตฌ์กฐ๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„์„ฑ์„ ๊ฐ€์ง„๋‹ค. ํ•ต์‹ฌ ๊ธฐ์ˆ  ์š”์†Œ๋Š” ๋„ค ๊ฐ€์ง€๋กœ ์š”์•ฝ๋œ๋‹ค. ์ฒซ์งธ, ํ€ตํ— ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๋ณผ๋ก ๊ป์งˆ ๋ฉ”์‰ฌ ์ƒ์„ฑ์€ ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์˜ ๊ธฐํ•˜ํ•™์  ๊ฒฝ

No Image

Advancing Equitable AI: Evaluating Cultural Expressiveness in LLMs for Latin American Contexts

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํŽธํ–ฅ์˜ ๊ตฌ์กฐ์  ์›์ธ : ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๋Œ€ํ˜• LLM์€ ์˜์–ด ์œ„์ฃผ ๋ฐ์ดํ„ฐ์™€ ์„œ๊ตฌ ๋ฌธํ™”์— ์ตœ์ ํ™”๋ผ ์žˆ์–ด, ๋ผํ‹ด์•„๋ฉ”๋ฆฌ์นด์™€ ๊ฐ™์€ ๋น„์˜์–ด๊ถŒ ์ง€์—ญ์˜ ์–ธ์–ดยท๋ฌธํ™”๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Š” ๊ธฐ์ˆ  ๊ฒฉ์ฐจ๋ฅผ ์‹ฌํ™”์‹œํ‚ค๊ณ , ํ˜„์ง€ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋ถ€์ •ํ™•ํ•˜๊ฑฐ๋‚˜ ๋ฌธํ™”์ ์œผ๋กœ ๋ถ€์ ์ ˆํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ์–ธ์–ด ๋‹ค์–‘์„ฑ : ์ŠคํŽ˜์ธ์–ดยทํฌ๋ฅดํˆฌ๊ฐˆ์–ด ์™ธ์—๋„ ์ผ€์ถ”์•„์–ดยท๋‚˜์™€ํ‹€ ๋“ฑ ํ† ์ฐฉ ์–ธ์–ด๊ฐ€ ์กด์žฌํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋“ค ์–ธ์–ด๋Š” ํ•™์Šต ์ฝ”ํผ์Šค์—์„œ ๊ฑฐ์˜ ๋ฐฐ์ œ๋ผ ์žˆ๋‹ค. ์ด๋Š” ๋ฌธํ™”์  ์ •์ฒด์„ฑ ์ƒ์‹ค๊ณผ ์ง€์‹ ์ „์Šน์— ๋ถ€์ •์  ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ์„ค๊ณ„ ๋ฌธํ™”ยท์—ญ์‚ฌ ๊ธฐ

No Image

Conformal Prediction-Driven Adaptive Sampling for Digital Water Twins

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋””์ง€ํ„ธ ํŠธ์œˆ๊ณผ ๋ฌผ ๊ณต๊ธ‰๋ง : ๋ฌผ ๊ณต๊ธ‰๋ง์€ ๋ณต์žกํ•œ ๋™์  ์‹œ์Šคํ…œ์œผ๋กœ, ์‹ค์‹œ๊ฐ„ ์ƒํƒœ ์ถ”์ •์ด ์šด์˜ ํšจ์œจ๊ณผ ์‚ฌ๊ณ  ๋ฐฉ์ง€์— ํ•ต์‹ฌ์ ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ผ์„œ ์„ค์น˜ ๋น„์šฉ๊ณผ ์œ ์ง€๋ณด์ˆ˜ ์ œ์•ฝ์œผ๋กœ ์ „์ฒด ๋„คํŠธ์›Œํฌ์— ๊ณ ๋ฅด๊ฒŒ ์„ผ์„œ๋ฅผ ๋ฐฐ์น˜ํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ๋ถˆํ™•์‹ค์„ฑ ๊ธฐ๋ฐ˜ ์ƒ˜ํ”Œ๋ง์˜ ์˜์˜ : ๋…ธ๋“œ๋งˆ๋‹ค ์ˆ˜์š” ๋ณ€๋™์„ฑ๊ณผ ๋ชจ๋ธ๋ง ์˜ค์ฐจ๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์—, ๋ถˆํ™•์‹ค์„ฑ์ด ํฐ ๋…ธ๋“œ์— ์„ผ์„œ๋ฅผ ์ง‘์ค‘ํ•˜๋ฉด ์ „์ฒด ์ถ”์ • ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 2. ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ์„ค๋ช… | ์ฃผ์š” ๊ธฐ์ˆ  | | | | | | ์˜ˆ์ธก ๋ชจ๋ธ | ๊ฐ ๋…ธ๋“œ์˜ ๋ฏธ๋ž˜ ์ˆ˜์š”๋ฅผ LSTM(

Cultural Rights and the Rights to Development in the Age of AI: Implications for Global Human Rights Governance

Cultural Rights and the Rights to Development in the Age of AI: Implications for Global Human Rights Governance

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ๋ฐœ์ „์ด ๋ฌธํ™”์  ๊ถŒ๋ฆฌ์™€ ๋ฐœ์ „์˜ ๊ถŒ๋ฆฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”์‹œํ‚ค๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. AI๊ฐ€ ๋ฌธํ™” ์ฝ˜ํ…์ธ ์˜ ์ฐฝ์กฐ์™€ ํ‘œํ˜„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉด์„œ, ๊ฐœ์ธ๊ณผ ์ปค๋ฎค๋‹ˆํ‹ฐ์˜ ์ง€์  ์žฌ์‚ฐ ์‚ฌ์šฉ ๋ฐ ๋ถ„๋ฐฐ์—๋„ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋Š” ๊ฒฝ์ œ์ , ์‚ฌํšŒ์ , ๋””์ง€ํ„ธ ๊ฒฉ์ฐจ๋ฅผ ๋”์šฑ ๋ฒŒ๋ฆฌ๊ณ  ์†Œ์ˆ˜์ž ์ปค๋ฎค๋‹ˆํ‹ฐ์— ๋Œ€ํ•œ ๋ถˆํ‰๋“ฑ์„ ๊ฐ•ํ™”ํ•  ์œ„ํ—˜๋„ ๋‚ดํฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ AI์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„์™€ ๋ฐฐ์น˜์—์„œ ๋ฌธํ™”์  ๋ฐ ๋ฐœ์ „์  ๊ฐ€์ •์ด ์–ด๋–ป๊ฒŒ ๋ฐ˜์˜๋˜๋Š”์ง€ ๋ถ„์„ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•œ ๊ฐœ์ธ๊ณผ ๊ตฌ์กฐ์ ์ธ ์˜ํ–ฅ์„ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด์˜ AI ํ†ต์ œ ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์—์„œ ๋ฌธํ™”์  ๊ถŒ๋ฆฌ

No Image

Detecting Silent Failures in Multi-Agentic AI Trajectories

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฉ€ํ‹ฐ์—์ด์ „ํŠธ AI ๋Š” ์—ฌ๋Ÿฌ LLM์ด ํ˜‘์—…ยท๊ฒฝ์Ÿํ•˜๋ฉฐ ๋ณตํ•ฉ์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋น„๊ฒฐ์ •์„ฑ ๋•Œ๋ฌธ์— ๋™์ผ ์ž…๋ ฅ์— ๋Œ€ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ๊ถค์ ์ด ์ƒ์„ฑ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด LLM ํ‰๊ฐ€ ๋Š” ์ •๋‹ต ์ผ์น˜์œจ, BLEU, ROUGE ๋“ฑ ์ •๋Ÿ‰์  ์ง€ํ‘œ์— ์˜์กดํ•˜์ง€๋งŒ, ์นจ๋ฌต ์˜ค๋ฅ˜ (์˜ˆ: ๋ชฉํ‘œ์—์„œ ์ ์  ๋ฉ€์–ด์ง€๋Š” drift, ๋ฌดํ•œ ๋ฃจํ”„, ์ค‘์š”ํ•œ ์ •๋ณด ๋ˆ„๋ฝ)๋Š” ์ด๋Ÿฌํ•œ ์ง€ํ‘œ์— ์ž˜ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š๋Š”๋‹ค. ์‹ค๋ฌด์—์„œ๋Š” ์‚ฌ์šฉ์ž ๊ฒฝํ—˜ ์ €ํ•˜ ์™€ ์‹œ์Šคํ…œ ์‹ ๋ขฐ์„ฑ ์†์‹ค ์„ ์ดˆ๋ž˜ํ•˜๋ฏ€๋กœ, ์ž๋™ํ™”๋œ ๋น„์ •์ƒ ํƒ์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์ ˆ์‹คํžˆ ํ•„์š”ํ•˜๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๋‚ด์šฉ

No Image

Discourse-Aware Scientific Paper Recommendation via QA-Style Summarization and Multi-Level Contrastive Learning

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์˜คํ”ˆ ์•ก์„ธ์Šค ๊ธ‰์ฆ ๊ณผ ํ”„๋ผ์ด๋ฒ„์‹œ ์ œ์•ฝ ์œผ๋กœ ์‚ฌ์šฉ์žโ€‘๊ธฐ๋ฐ˜ ํ˜‘์—… ํ•„ํ„ฐ๋ง์ด ์–ด๋ ค์›Œ์กŒ์œผ๋ฉฐ, ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ฝ˜ํ…์ธ  ์ถ”์ฒœ์ด ์ฃผ๋ฅ˜๊ฐ€ ๋˜์—ˆ๋‹ค. ๊ธฐ์กด ์ฝ˜ํ…์ธ  ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ๋ฌธ์„œ ์ „์ฒด๋ฅผ ํ‰๋ฉด ํ…์ŠคํŠธ ๋กœ ์ฒ˜๋ฆฌํ•ด, ๋…ผ๋ฌธ์˜ ๋‹ดํ™” ๊ตฌ์กฐ(OMRC) ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Š” (a) ํ•ต์‹ฌ ์ •๋ณด ์†์‹ค, (b) ์˜๋ฏธ์  ๋ถˆ์™„์ „์„ฑ, (c) ๊ฒฐ๊ณผ ํ•ด์„ ์–ด๋ ค์›€์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ํ•œ๊ณ„๋ฅผ ๋งŒ๋“ ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๊ธฐ๋ฒ• | ๊ตฌ์„ฑ ์š”์†Œ | ์—ญํ•  | ์ฃผ์š” ๊ธฐ์ˆ  | | | | | | QAโ€‘Style OMRC Summarization | ๋…ผ๋ฌธ์„ ๋ชฉ

Learning
No Image

Endowing GPT-4 with a Humanoid Body: Building the Bridge Between Off-the-Shelf VLMs and the Physical World

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ฐ์ดํ„ฐ ๋น„์šฉ ๋ฌธ์ œ : ์ธ๊ฐ„ํ˜• ๋กœ๋ด‡์„ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ยท์‹ค์ œ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์€ ์‹œ๊ฐ„ยท์žฌ์ •์  ๋ถ€๋‹ด์ด ํฌ๋‹ค. VLM์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ : GPTโ€‘4์™€ ๊ฐ™์€ ์ตœ์‹  VLM์€ ๋ฐฉ๋Œ€ํ•œ ์›น ํ…์ŠคํŠธยท์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•ด ๊ด‘๋ฒ”์œ„ํ•œ ์ƒํ™ฉ ์ธ์‹ยท์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ, ๋กœ๋ด‡ ์ œ์–ด์— ์ง์ ‘ ํ™œ์šฉํ•˜๋ฉด ๋ฐ์ดํ„ฐ ์˜์กด๋„๋ฅผ ํฌ๊ฒŒ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ | ๊ธฐ์—ฌ ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | Embodied Instruction Compiler : VLM์ด ์‹œ๊ฐยท์–ธ์–ด ์ž…๋ ฅ์„ ๋ฐ›์•„ ํ™˜๊ฒฝ ์ƒํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ๊ณ ์ˆ˜์ค€ ๋ช…๋ น์„

No Image

Enhancing Interpretability for Vision Models via Shapley Value Optimization

๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ(DNN)๋Š” ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜์ง€๋งŒ, ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ์™€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์€ ์—ฌ์ „ํžˆ ๋ถˆํˆฌ๋ช…ํ•˜๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ์‚ฌํ›„ ์„ค๋ช… ๋ฐฉ๋ฒ•๊ณผ ์ž์ฒด ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์‹ ๊ฒฝ๋ง์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์—๋Š” ๊ฐ๊ฐ์˜ ์ œ์•ฝ์ด ์žˆ๋‹ค: ์‚ฌํ›„ ์„ค๋ช… ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ๋ชจ๋ธ์˜ ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜๊ณ , ์ž์ฒด ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์‹ ๊ฒฝ๋ง์€ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด Shapley ๊ฐ’ ์ถ”์ •์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹

Model
No Image

EU-Agent-Bench: Measuring Illegal Behavior of LLM Agents Under EU Law

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ LLM ์—์ด์ „ํŠธ์˜ ๊ธ‰์ฆ : ์ตœ๊ทผ LLM์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ž๋™ํ™” ์—์ด์ „ํŠธ๊ฐ€ ๋„๊ตฌ ํ˜ธ์ถœ, ์›น ๊ฒ€์ƒ‰, ๋ฐ์ดํ„ฐ ์กฐ์ž‘ ๋“ฑ ์‹ค์ œ ์—…๋ฌด์— ํˆฌ์ž…๋˜๊ณ  ์žˆ๋‹ค. ๋ฒ•์  ์œ„ํ—˜์„ฑ : EU GDPR, ์ฐจ๋ณ„ ๊ธˆ์ง€๋ฒ•, ๊ณผํ•™ ์—ฐ๊ตฌ ์œค๋ฆฌ ๊ทœ์ • ๋“ฑ ๊ฐ•๋ ฅํ•œ ๊ทœ์ œ๊ฐ€ ์กด์žฌํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์—์ด์ „ํŠธ๊ฐ€ โ€œ๋ฌดํ•ดํ•ด ๋ณด์ด๋Š”โ€ ์‚ฌ์šฉ์ž ์ž…๋ ฅ์„ ํ†ตํ•ด ๋ฒ•์„ ์œ„๋ฐ˜ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ๋ฒค์น˜๋งˆํฌ ๋ถ€์žฌ : ๊ธฐ์กด LLM ์•ˆ์ „ ๋ฒค์น˜๋งˆํฌ๋Š” ์ฃผ๋กœ ํ—ˆ์œ„ ์ •๋ณด, ์œ ํ•ด ์ฝ˜ํ…์ธ  ๋“ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๋ฒ•์  ์ค€์ˆ˜ ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๋Š” ๋„๊ตฌ๋Š” ๊ฑฐ์˜ ์—†์—ˆ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ | ๋ฒˆํ˜ธ |

Explainable Adversarial-Robust Vision-Language-Action Model for Robotic Manipulation

Explainable Adversarial-Robust Vision-Language-Action Model for Robotic Manipulation

๋ณธ ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ๋†์—… ์‹œ์Šคํ…œ์ด ๊ด‘ํ•™์  ๋ณ€๋™์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ ๋Œ€ ๊ณต๊ฒฉ ์ƒํ™ฉ์—์„œ๋„ ๊ฒฌ๊ณ ํ•œ ๋™์ž‘ ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ชจ๋ธ์˜ ํ•ต์‹ฌ์€ OpenVLA OFT ํ”„๋ ˆ์ž„์›Œํฌ์™€ Evidence 3 ๋ชจ๋“ˆ์„ ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. Evidence 3 ๋ชจ๋“ˆ์€ ๊ด‘ํ•™์  ๋ณ€๋™์„ ๊ฐ์ง€ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๊ฐ€ ์‹œ์Šคํ…œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ž์—ฐ์–ด๋กœ ์„ค๋ช…ํ•จ์œผ๋กœ์จ, ์‹œ์Šคํ…œ์˜ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ด ๋ชจ๋ธ์ด ๊ธฐ์กด ๋ชจ๋ธ๋ณด๋‹ค ํ˜„์žฌ ํ–‰๋™๊ณผ ๋‹ค์Œ ํ–‰๋™ ์˜ˆ์ธก์—์„œ ๊ฐ๊ฐ 21.7%์™€ 18.4%์˜ L1 ์†์‹ค ๊ฐ์†Œ๋ฅผ ๋ณด์ธ ๊ฒƒ์€, ์ ๋Œ€

Model
No Image

Fine-Tuning LLMs to Generate Economical and Reliable Actions for the Power Grid

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ PSPS ๋Š” ํ™”์žฌ ์œ„ํ—˜์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ ๋ผ์ธ์„ ์ฐจ๋‹จํ•˜๋Š” ๋น„์ƒ ์กฐ์น˜์ด๋ฉฐ, ์ฐจ๋‹จ๋œ ๋ผ์ธ ์™ธ์— ์ถ”๊ฐ€์ ์ธ ๊ฐœ๋ฐฉํ˜•(openโ€‘only) ์Šค์œ„์นญ ์„ ํ†ตํ•ด ๊ณผ๋ถ€ํ•˜ ์™„ํ™”์™€ ๋ถ€ํ•˜ ์ฐจ๋‹จ ์ตœ์†Œํ™”๋ฅผ ๋„๋ชจํ•œ๋‹ค. ์ „ํ†ต์ ์ธ MILP ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๋Š” ์‹œ๊ฐ„ ์ œ์•ฝ ์ด ํฐ ํ˜„์žฅ ์ƒํ™ฉ์—์„œ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ค์›Œ, ํ•™์Šต ๊ธฐ๋ฐ˜ ํ”„๋ก์‹œ ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. LLM์€ ์ž์—ฐ์–ด ์ž…๋ ฅ โ†’ ๊ตฌ์กฐํ™”๋œ ์ถœ๋ ฅ ๋ณ€ํ™˜์— ๊ฐ•์ ์ด ์žˆ์–ด, ์šด์˜์ž๊ฐ€ ์‹œ๋‚˜๋ฆฌ์˜ค ์š”์•ฝ ์„ ํ…์ŠคํŠธ๋กœ ์ œ๊ณตํ•˜๊ณ , ๋ชจ๋ธ์ด ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ์•ก์…˜ ๋ฆฌ์ŠคํŠธ ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋„๋ก ์„ค๊ณ„ํ•œ๋‹ค. 2. ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋ชฉ์ 

Electrical Engineering and Systems Science
No Image

Fourier Neural Operators for Structural Dynamics Models: Challenges, Limitations and Advantages of Using a Spectrogram Loss

| ๊ตฌ๋ถ„ | ์ฃผ์š” ๋‚ด์šฉ | ์˜๋ฏธยท์‹œ์‚ฌ์  | | | | | | ์—ฐ๊ตฌ ๋ชฉ์  | FNO๋ฅผ ๋‹ค์–‘ํ•œ ๋น„์„ ํ˜•ยท๋น„์ •์ƒ ๊ตฌ์กฐ๋™์—ญํ•™ ์‹œ์Šคํ…œ์— ์ ์šฉํ•ด ํ•œ๊ณ„์™€ ์žฅ์ ์„ ๊ทœ๋ช… | FNO๊ฐ€ โ€œ๋ฒ”์šฉโ€ ๋Œ€์ฒด ๋ชจ๋ธ์ธ์ง€ ๊ฒ€์ฆํ•˜๊ณ , ์‹ค์ œ ์—”์ง€๋‹ˆ์–ด๋ง ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ | | ์‹คํ—˜ ์„ค๊ณ„ | ๋‹ค์ˆ˜์˜ ๊ฐ•์ œ ํ•จ์ˆ˜(์ž„ํŽ„์Šค, ์‚ฌ์ธ, ๋žœ๋ค ๋“ฑ) <br> ์„ ํ˜• vs ๋น„์„ ํ˜• ์‹œ์Šคํ…œ (์˜ˆ: ๋‹จ์ผ ์ž์œ ๋„ ์ง„๋™๊ธฐ, ๋‹ค์ž์œ ๋„ ํ’๋ ฅํ„ฐ๋นˆ) <br> ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ทœ๋ชจ ๋‹ค์–‘ํ™” | ์‹œ์Šคํ…œ ํŠน์„ฑ(์„ ํ˜•์„ฑ, ๋น„์„ ํ˜•์„ฑ)๊ณผ ๋ฐ์ดํ„ฐ ์–‘์ด ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋…๋ฆฝ์ ์œผ๋กœ ํ‰๊ฐ€ | | ํ•ต์‹ฌ ๋ฐœ๊ฒฌ | 1. ์„ ํ˜•

Model
From Verification Burden to Trusted Collaboration: Design Goals for LLM-Assisted Literature Reviews

From Verification Burden to Trusted Collaboration: Design Goals for LLM-Assisted Literature Reviews

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์ด ํ•™์ˆ  ๊ธ€์“ฐ๊ธฐ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ๋ฌธํ—Œ ๊ฒ€ํ†  ๊ณผ์ •์—์„œ์˜ ๊ตฌ์ฒด์ ์ธ ์ ์šฉ ๋ฐฉ๋ฒ•๊ณผ ์ œํ•œ ์‚ฌํ•ญ์„ ํƒ์ƒ‰ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์ด LLMs๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด์„œ ๊ฒช๋Š” ์ฃผ์š” ๋ฌธ์ œ๋กœ ์‹ ๋ขฐ์„ฑ ๋ถ€์กฑ, ์ง€์†์ ์ธ ๊ฒ€์ฆ ํ•„์š”์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ ๋„๊ตฌ์˜ ๋ณต์žก์„ฑ์„ ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ 6๊ฐ€์ง€ ์„ค๊ณ„ ๋ชฉํ‘œ์™€ ์ด๋ฅผ ์‹คํ˜„ํ•˜๋Š” ๊ณ ์ˆ˜์ค€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ด€๋ จ ๋…ผ๋ฌธ์„ ์‹œ๊ฐํ™”ํ•˜์—ฌ ์‰ฝ๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ์˜ ๊ฒ€์ฆ ๊ณผ์ •์„ ํ†ตํ•ด ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด

No Image

GAMA: A Neural Neighborhood Search Method with Graph-aware Multi-modal Attention for Vehicle Routing Problem

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ VRP ๋Š” ๋ฌผ๋ฅ˜ยท๋ฐฐ๋‹ฌ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ ์ธ NPโ€‘hard ๋ฌธ์ œ์ด๋ฉฐ, ์ „ํ†ต์ ์ธ ํœด๋ฆฌ์Šคํ‹ฑยท๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ์ด ๊ฐ•๋ ฅํ•˜์ง€๋งŒ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ยท๋„๋ฉ”์ธ ์ง€์‹์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. Neural Neighborhood Search (NNS) ๋Š” ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ์ •์ฑ…์ด ํ˜„์žฌ ํ•ด์˜ ์ด์›ƒ์„ ํƒ์ƒ‰ํ•˜๋„๋ก ํ•™์Šต์‹œ์ผœ, ๋น ๋ฅธ ๊ทผ์‚ฌํ•ด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด NNS๋Š” 1) ๋‹จ์ผ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ (์˜ˆ: ๊ฒฝ๋กœ ์ˆœ์„œ๋งŒ)๋กœ ์ƒํƒœ๋ฅผ ํ‘œํ˜„, 2) ๋‹จ์ˆœ ์—ฐ๊ฒฐ ๋ฐฉ์‹์œผ๋กœ ์—ฌ๋Ÿฌ ์ •๋ณด๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์†์‹คํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ GAMA | ์š”์†Œ |

No Image

Group Interventions on Deep Networks for Causal Discovery in Subsystems

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ธ๊ณผ ํƒ์ƒ‰์˜ ํ•œ๊ณ„ : ์ „ํ†ต์ ์ธ ์ธ๊ณผ ํƒ์ƒ‰ ๊ธฐ๋ฒ•(Granger, PCMCI, NOTEARS ๋“ฑ)์€ ์ฃผ๋กœ ๋ณ€์ˆ˜ ์Œ ๊ฐ„ ์ธ๊ณผ์„ฑ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‹œ์Šคํ…œ(๋‡Œ, ๊ธฐํ›„ ๋“ฑ)์€ ๋‹ค์ˆ˜์˜ ๋ณ€์ˆ˜๋“ค์ด ์„œ๋กœ ์–ฝํžŒ ์„œ๋ธŒ์‹œ์Šคํ…œ ํ˜•ํƒœ๋กœ ์ž‘๋™ํ•œ๋‹ค. ๊ทธ๋ฃน ์ˆ˜์ค€ ์ธ๊ณผ์„ฑ : ๊ทธ๋ฃน(์„œ๋ธŒ์‹œ์Šคํ…œ) ๊ฐ„ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๋ฉด, ๊ฐœ๋ณ„ ๋ณ€์ˆ˜ ์ˆ˜์ค€์—์„œ ๋†“์น  ์ˆ˜ ์žˆ๋Š” ์ง‘ํ•ฉ์  ํšจ๊ณผ ์™€ ์ „๋‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋‚ด์šฉ | ์ฃผ์š” ๊ธฐ๋ฒ• | | | | | | 1. ๊ตฌ์กฐ์  ๋”ฅ ๋ชจ๋ธ๋ง | ๋ชจ๋“  ์‹œ๊ณ„์—ด์„ ๊ทธ๋ฃนํ™”

System Network
No Image

Heterogeneous Robot Collaboration in Unstructured Environments with Grounded Generative Intelligence

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์ด์งˆ ๋กœ๋ด‡ ํŒ€ : ์„œ๋กœ ๋‹ค๋ฅธ ์ด๋™ยท์„ผ์„œยท์ž‘์—… ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ ๋กœ๋ด‡๋“ค์ด ํ˜‘์—…ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์€ ์žฌ๋‚œ ๊ตฌ์กฐ, ํƒ์‚ฌ, ๋ฌผ๋ฅ˜ ๋“ฑ์—์„œ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ๋ฌด๊ตฌ์กฐ ํ™˜๊ฒฝ : ์‚ฌ์ „ ์ง€๋„ยท์ •ํ™•ํ•œ ๋ชจ๋ธ์ด ์—†๋Š”, ๋™์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” ์ „ํ†ต์ ์ธ ๊ณ„ํšโ€‘์‹คํ–‰ ํŒŒ์ดํ”„๋ผ์ธ์ด ์‰ฝ๊ฒŒ ๋ถ•๊ดดํ•œ๋‹ค. ์ƒ์„ฑํ˜• ์ธํ…”๋ฆฌ์ „์Šค : LLM์„ ์ด์šฉํ•ด ์ž์—ฐ์–ด๋กœ ๋œ ๋ฏธ์…˜์„ ์ž๋™์œผ๋กœ ํ•ด์„ยท๋ถ„ํ•ดํ•˜๋Š” ์‹œ๋„๊ฐ€ ๋Š˜๊ณ  ์žˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„ ๊ตฌ์กฐํ™”๋œ ํ™˜๊ฒฝ(์˜ˆ: ์‹ค๋‚ด ์ง€๋„, ์ •ํ•ด์ง„ ์ž‘์—… ๊ณต๊ฐ„)์—์„œ๋งŒ ๊ฒ€์ฆ๋ผ ์™”๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„์  | ๊ตฌ์ฒด์  ๊ธฐ์—ฌ

< Category Statistics (Total: 5502) >

Electrical Engineering and Systems Science
103
General
4467
General Relativity
6
HEP-EX
3
HEP-PH
4
HEP-TH
4
MATH-PH
6
Quantum Physics
20

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut