KOINEU Logo
Matching Ranks Over Probability Yields Truly Deep Safety Alignment

Matching Ranks Over Probability Yields Truly Deep Safety Alignment

: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์•ˆ์ „์„ฑ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ๊ณต๊ฒฉ๊ณผ ์ด๋ฅผ ์šฐํšŒํ•˜๋Š” ๋ฐฉ์‹์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. 1. ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ๊ณต๊ฒฉ ๋ฐ RAP ๊ณต๊ฒฉ ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ๊ณต๊ฒฉ์€ ์‚ฌ์šฉ์ž๊ฐ€ LLM์— ์œ ํ•ดํ•œ ์š”์ฒญ์„ ํ•  ๋•Œ, ํ™•์ธ์„ ์œ„ํ•œ ๊ธ์ •์ ์ธ ํ…์ŠคํŠธ๋ฅผ ๋ฏธ๋ฆฌ ์ž…๋ ฅํ•˜์—ฌ ๋””์ฝ”๋”ฉ ๊ณผ์ •์„ ์‹œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด๋Š” LLM์ด ์•ˆ์ „ ์ •๋ ฌ๋˜์–ด ์žˆ์–ด๋„ ์œ ํ•ดํ•œ ๋‚ด์šฉ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. RAP (Rank Assisted Prefilling) ๊ณต๊ฒฉ์€ ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ์™€ ๊ฐ ๋””์ฝ”๋”ฉ ๋‹จ๊ณ„์—์„œ ์ƒ์œ„

Med-CMR: A Fine-Grained Benchmark Integrating Visual Evidence and Clinical Logic for Medical Complex Multimodal Reasoning

Med-CMR: A Fine-Grained Benchmark Integrating Visual Evidence and Clinical Logic for Medical Complex Multimodal Reasoning

: 1. ๋ฉ”๋“œ CMR์˜ ํ•ต์‹ฌ ํŠน์ง• ๋ฐ ์ค‘์š”์„ฑ ๋ฉ”๋“œ CMR์€ ์‹œ๊ฐ์  ์ฆ๊ฑฐ์™€ ์ž„์ƒ ๋…ผ๋ฆฌ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๋ณต์žกํ•œ ์˜๋ฃŒ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ์—์„œ ๋‹ค๋ฃจ์ง€ ๋ชปํ–ˆ๋˜ ๋‹ค์–‘ํ•œ ๋ณต์žก์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์„ธ๋ฐ€ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ํ‹€์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ฒด๊ณ„์ ์ธ ๊ธฐ๋Šฅ ๋ถ„ํ•ด: ๋ฉ”๋“œ CMR์€ ์˜๋ฃŒ ์ถ”๋ก ์„ ์‹œ๊ฐ์  ์ดํ•ด์™€ ์ž„์ƒ ๋…ผ๋ฆฌ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ๊ฐ์„ ๋” ์„ธ๋ถ„ํ™”ํ•œ ํ•˜์œ„ ์ฐจ์›์œผ๋กœ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ํŠน์ • ๋Šฅ๋ ฅ์„ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋„์ „์ ์ธ ์ž‘์—… ์„ค๊ณ„: ๋ฉ”๋“œ CMR์€ ์ž‘์€ ๋ฌผ์ฒด ๊ฐ์ง€

Mirror Mode in Fire Emblem: Beating Players at their own Game with Imitation and Reinforcement Learning

Mirror Mode in Fire Emblem: Beating Players at their own Game with Imitation and Reinforcement Learning

๋ณธ ์—ฐ๊ตฌ๋Š” ํ„ด์ œ ์ „๋žต ๊ฒŒ์ž„์—์„œ ์  AI๊ฐ€ ํ”Œ๋ ˆ์ด์–ด์˜ ์ „๋žต์„ ๋ชจ๋ฐฉํ•˜๋Š” '๊ฑฐ์šธ ๋ชจ๋“œ'๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ํ‰๊ฐ€ํ•œ ๋‚ด์šฉ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ฒŒ์ž„ ๊ฒฝํ—˜์„ ํ˜์‹ ์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ค๊ณ , ํ”Œ๋ ˆ์ด์–ด ๋งŒ์กฑ๋„๋ฅผ ๋†’์ด๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. 1. ๊ฑฐ์šธ ๋ชจ๋“œ์˜ ๊ฐœ๋… ๋ฐ ๊ตฌํ˜„ ๊ฑฐ์šธ ๋ชจ๋“œ๋Š” ์  AI๊ฐ€ ํ”Œ๋ ˆ์ด์–ด์˜ ์ „๋žต์„ ํ•™์Šตํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ–‰๋™ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ฒŒ์ž„ ๊ฒฝํ—˜์„ ๋”์šฑ ํฅ๋ฏธ๋กญ๊ณ  ๋„์ „์ ์œผ๋กœ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ Unity ์—”์ง„์„ ์‚ฌ์šฉํ•˜์—ฌ Fire Emblem Heroes ์˜ ๊ฐ„์†Œํ™”๋œ ๋ฒ„์ „์—์„œ ํ‘œ์ค€ ๋ชจ๋“œ์™€ ๊ฑฐ์šธ ๋ชจ๋“œ๋ฅผ ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค. 2. ํ•™์Šต ์•Œ๊ณ ๋ฆฌ

Learning
Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators

Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators

: ๋ณธ ๋…ผ๋ฌธ์€ ๋‰ด๋กœ๋ชจ๋ฅดํ”„ ๊ฐ€์†๊ธฐ์˜ ์„ฑ๋Šฅ ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๋‰ด๋กœ๋ชจ๋ฅดํ”„ ๊ฐ€์†๊ธฐ๋Š” ํฌ์†Œ ์‹ ๊ฒฝ๋ง ์ถ”๋ก ์— ํŠนํ™”๋œ ๋…ํŠนํ•œ ์„ค๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๊ฐ ๋…ผ๋ฆฌ ๋‰ด๋Ÿฐ์ด ์˜จ์นฉ์˜ ์ „์šฉ ๋ฌผ๋ฆฌ ๊ณ„์‚ฐ ๋‹จ์œ„์— ๋งคํ•‘๋˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์‹œ๊ฐ„ ๋‹ค์ค‘ ์ ‘์† ๋ฐฉ์‹๊ณผ ๋Œ€์กฐ๋œ๋‹ค. ์ตœ๊ทผ ๊ตฌํ˜„์€ ์—ฃ์ง€ GPU์™€ ๋น„๊ตํ•ด ์„ฑ๋Šฅ ๋ฐ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์ด ์šฐ์ˆ˜ํ•˜์ง€๋งŒ, ๋‰ด๋กœ๋ชจ๋ฅดํ”„ ๊ฐ€์†๊ธฐ์˜ ๋…ํŠนํ•œ ์•„ํ‚คํ…์ฒ˜ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์„ฑ๋Šฅ ์—ญํ•™์— ๋Œ€ํ•œ ์ดํ•ด๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฐ„๊ทน์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด '๋ณ‘๋ชฉ ํ˜„์ƒ ๋ถ„์„' ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ

Model
More Consistent Accuracy PINN via Alternating Easy-Hard Training

More Consistent Accuracy PINN via Alternating Easy-Hard Training

๋ณธ ๋…ผ๋ฌธ์€ PINNs์˜ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ์ „๋žต์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํ•˜๋“œ ์šฐ์„ ์ˆœ์œ„์™€ ์‰ฌ์šด ์šฐ์„ ์ˆœ์œ„ ์ง€์ •์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด PINNs์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต ์ „๋žต ๋น„๊ต ํ•˜๋“œ ์šฐ์„ ์ˆœ์œ„: ์ด ๋ฐฉ๋ฒ•์€ ๋†’์€ ์†์‹ค ์ƒ˜ํ”Œ ํฌ์ธํŠธ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ๋ชจ๋ธ์ด PDE ๋„๋ฉ”์ธ์˜ ๋” ๋„์ „์ ์ธ ์˜์—ญ์— ์ง‘์ค‘ํ•˜๋„๋ก ์œ ๋„ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ž”์—ฌ ๊ธฐ๋ฐ˜ Smote(RSmote)๋Š” ๋ถˆ๊ท ํ˜• ํ•™์Šต ์ „๋žต์„ ์œ„ํ•œ ์ง€์—ญ์  ์ ์‘ํ˜• ์ƒ˜ํ”Œ๋ง ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ณ„์‚ฐ์ ์œผ๋กœ ํฐ ์ž”์—ฌ ์†์‹ค์ด ์žˆ๋Š” ์˜

Multi-granularity Interactive Attention Framework for Residual Hierarchical Pronunciation Assessment

Multi-granularity Interactive Attention Framework for Residual Hierarchical Pronunciation Assessment

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ๊ณผ ๋ฌธ์ œ์  ๋ณธ ๋…ผ๋ฌธ์€ ์ž๋™ ๋ฐœ์Œ ํ‰๊ฐ€(APA)์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ํŠนํžˆ ์ปดํ“จํ„ฐ ์ง€์› ๋ฐœ์Œ ํ›ˆ๋ จ ์‹œ์Šคํ…œ(CAPT)์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์Œ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. APA๋Š” ํ™”์ž์˜ ๋ฐœ์Œ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์„ธ๋ถ€์ ์ธ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜์—ฌ ์™ธ๊ตญ์–ด ํ•™์Šต์„ ์ง€์›ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ APA ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์ˆ˜์ค€์—์„œ ๋ฐœ์Œ์„ ํ‰๊ฐ€ํ•˜๊ฑฐ๋‚˜, ์—ฌ๋Ÿฌ ์ˆ˜์ค€ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•œ ์ฑ„ ์ผ๋ฐฉํ–ฅ ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ณต์žก์„ฑ๊ณผ ๋‹ค์ˆ˜์ค€ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 2. HIA ํ”„๋ ˆ

Computer Science Framework NLP
Multi-view diffusion geometry using intertwined diffusion trajectories

Multi-view diffusion geometry using intertwined diffusion trajectories

: ์ด ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ๋ทฐ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ์ธ Multi View Diffusion Trajectories (MDTs)๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. MDTs๋Š” ์‹œ๊ฐ„ ๋ถˆ์ผ์น˜ ํ™•์‚ฐ ๊ณผ์ •์„ ํ†ตํ•ด ์—ฌ๋Ÿฌ ๋ทฐ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ์ผ๋ จ์˜ ์–ฝํžŒ ์—ฐ์‚ฐ์ž๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ์ƒํ˜ธ ์ž‘์šฉ์„ ํฌ์ฐฉํ•ฉ๋‹ˆ๋‹ค. 1. ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„ํ™” ๊ธฐ์กด ๋‹ค์ค‘ ๊ด€์  ํ™•์‚ฐ ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ํ•ฉ์„ฑ ์—ฐ์‚ฐ์ž๋กœ ์—ฌ๋Ÿฌ ๋ทฐ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๋ฐฉ์‹์„ ์ทจํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ์ ‘๊ทผ๋ฒ•์€ ์œ ์—ฐ์„ฑ์ด ๋ถ€์กฑํ•˜๊ณ , ๊ฐ ๋ทฐ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ ํŒจํ„ด์„ ์ •ํ™•ํ•˜๊ฒŒ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ

Network of Theseus (like the ship)

Network of Theseus (like the ship)

: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์ด ๋…ผ๋ฌธ์€ ๊ธฐ๊ณ„ ํ•™์Šต์—์„œ ํ›ˆ๋ จ๊ณผ ์ถ”๋ก  ์‚ฌ์ด์˜ ์ „ํ†ต์ ์ธ ์—ฐ๊ฒฐ์„ฑ์— ๋„์ „ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ํŠน์ • ์•„ํ‚คํ…์ฒ˜๊ฐ€ ํŠน์ • ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ›ˆ๋ จ๋˜๋ฉด, ๊ทธ์™€ ๊ฐ™์€ ์•„ํ‚คํ…์ฒ˜๋Š” ์ถ”๋ก  ์‹œ์—๋„ ์‚ฌ์šฉ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฐ€์ •์ด ๋„๋ฆฌ ๋ฐ›์•„๋“ค์—ฌ์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ „ํ†ต์ ์ธ ์—ฐ๊ฒฐ์„ฑ์„ ๋„์ „ํ•˜๋ฉฐ, ๋Œ€์‹  ํ›ˆ๋ จ๊ณผ ์ถ”๋ก ์„ ๋ถ„๋ฆฌํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 2. Network of Theseus (NoT)์˜ ๊ฐœ๋… Network of Theseus (NoT)๋Š” ํŠน์ • ๊ฐ€์ด๋“œ ์•„ํ‚คํ…์ฒ˜์—์„œ ์‹œ์ž‘ํ•˜์—ฌ ์ ์ง„์ ์œผ๋กœ ๋‹ค๋ฅธ ํƒ€๊ฒŸ ๋ชจ๋“ˆ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ

Network
Not All Transparency Is Equal: Source Presentation Effects on Attention, Interaction, and Persuasion in Conversational Search

Not All Transparency Is Equal: Source Presentation Effects on Attention, Interaction, and Persuasion in Conversational Search

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ™”ํ˜• ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์—์„œ ๋‹ค์–‘ํ•œ ์ถœ์ฒ˜ ํ‘œ์‹œ ๋ฐฉ์‹์ด ์‚ฌ์šฉ์ž์˜ ํ–‰๋™๊ณผ ํƒœ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ํŠนํžˆ, ๋„ค ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ถœ์ฒ˜ ํ‘œ์‹œ ๋””์ž์ธ(์ ‘๊ธฐ ๊ฐ€๋Šฅํ•œ ๋ชฉ๋ก, ํ˜ธ๋ฒ„ ์นด๋“œ, ํ‘ธํ„ฐ ๋ชฉ๋ก, ์ •๋ ฌ๋œ ์‚ฌ์ด๋“œ๋ฐ”)์ด ์‚ฌ์šฉ์ž์˜ ์ฃผ์˜๋ ฅ, ์ƒํ˜ธ์ž‘์šฉ ๋ฐ ์„ค๋“์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ถœ์ฒ˜ ํ‘œ์‹œ ๋ฐฉ์‹์ด ๋‹จ์ˆœํžˆ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ ์ด์ƒ์œผ๋กœ ์‚ฌ์šฉ์ž ํ–‰๋™๊ณผ ํƒœ๋„ ๋ณ€ํ™”์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ž…์ฆํ•œ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ๋Œ€ํ™”ํ˜• ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์€ ์ ์ฐจ ์ถœ์ฒ˜ ์ธ์šฉ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ถœ์ฒ˜ ํ‘œ์‹œ ๋ฐฉ์‹

ProAgent: Harnessing On-Demand Sensory Contexts for Proactive LLM Agent Systems

ProAgent: Harnessing On-Demand Sensory Contexts for Proactive LLM Agent Systems

: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ํ”„๋กœ์•กํ‹ฐ๋ธŒ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์ธ ProAgent ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ์‚ฌ์šฉ์ž์˜ ๋ฌผ๋ฆฌ์  ๋ฐ ์ธ์ง€์  ๋ถ€๋‹ด์„ ์ค„์ด๋Š” ์„ ์ œ์ ์ธ ์ง€์› ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ProAgent์˜ ํ•ต์‹ฌ์€ ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ์™€ LLM ์ถ”๋ก ์„ ํ†ตํ•ฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ฃผ๋ณ€ ๋งฅ๋ฝ์„ ์ง€์†์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ ์‹œ์— ๋„์›€์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. ํ”„๋กœ์•กํ‹ฐ๋ธŒ ์—์ด์ „ํŠธ์˜ ํ•„์š”์„ฑ ๊ธฐ์กด์˜ ๋ฐ˜์‘ํ˜• ์—์ด์ „ํŠธ๋Š” ๋ช…์‹œ์ ์ธ ์‚ฌ์šฉ์ž ์ง€์‹œ๊ฐ€ ์žˆ์–ด์•ผ ์„œ๋น„์Šค๋ฅผ ์‹œ์ž‘ํ•˜๋ฏ€๋กœ, ์‚ฌ์šฉ์ž์˜ ๋ฌผ๋ฆฌ์  ๋ฐ ์ธ์ง€์  ๋ถ€๋‹ด์ด ํฌ๋‹ค. ์ด์— ๋ฐ˜ํ•ด ํ”„๋กœ์•กํ‹ฐ๋ธŒ ์—์ด์ „ํŠธ๋Š” ํ™˜๊ฒฝ์„ ์ž๋™์œผ

System
The Discovery Gap: How Product Hunt Startups Vanish in LLM Organic Discovery Queries

The Discovery Gap: How Product Hunt Startups Vanish in LLM Organic Discovery Queries

: ์ด ์—ฐ๊ตฌ๋Š” ChatGPT์™€ Perplexity ๊ฐ™์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์—์„œ Product Hunt ์Šคํƒ€ํŠธ์—…์˜ ๊ฐ€์‹œ์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, LLM ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์— ์Šคํƒ€ํŠธ์—…์ด ์–ผ๋งˆ๋‚˜ ์ž˜ ๋…ธ์ถœ๋˜๋Š”์ง€ ํƒ๊ตฌํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  ์ƒ˜ํ”Œ ์„ ํƒ : 112๊ฐœ์˜ Product Hunt ์Šคํƒ€ํŠธ์—…์„ ๋ฌด์ž‘์œ„๋กœ ์„ ์ •ํ•˜์—ฌ ์ด 2,240๊ฐœ์˜ ์ฟผ๋ฆฌ๋ฅผ ์‹คํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. LLM ํ…Œ์ŠคํŠธ : ChatGPT์™€ Perplexity ๋‘ ๊ฐ€์ง€ LLM์— ๋Œ€ํ•ด ์ง์ ‘์ ์ธ ์ฟผ๋ฆฌ์™€ ๋ฐœ๊ฒฌ์„ฑ ์Šคํƒ€์ผ์˜ ์งˆ๋ฌธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. 2. ์—ฐ๊ตฌ ๊ฒฐ

The Effect of Document Summarization on LLM-Based Relevance Judgments

The Effect of Document Summarization on LLM-Based Relevance Judgments

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ์š”์•ฝ ๊ธฐ๋ฐ˜ ํŒ๋‹จ์ด LLM ๊ธฐ๋ฐ˜ ๊ด€๋ จ์„ฑ ํ‰๊ฐ€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ: TREC ๋ฐ์ดํ„ฐ์…‹์„ ์ค‘์‹ฌ์œผ๋กœ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ์ž๋™ํ™”๋œ ๊ด€๋ จ์„ฑ ํŒ๋‹จ์ด ์ •๋ณด ๊ฒ€์ƒ‰(IR)์—์„œ ์ธ๊ฐ„ ์ฃผ์„๊ฐ€๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ์กฐ์‚ฌํ•œ๋‹ค. ํŠนํžˆ, LLM ๊ธฐ๋ฐ˜ ํŒ๋‹จ์ด ์ „์ฒด ๋ฌธ์„œ์™€ ์š”์•ฝ์„ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ์— ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€ ๋น„๊ตํ•˜๊ณ  ๋ถ„์„ํ•œ๋‹ค. ์„ธ ๊ฐ€์ง€ TREC ๋ฐ์ดํ„ฐ์…‹ (DL 19, DL 20, RAG 24)์„ ์ด์šฉํ•˜์—ฌ, ์ธ๊ฐ„ ์ฃผ์„๊ฐ€์˜ ๋ ˆ์ด๋ธ”๊ณผ LLM ๊ธฐ๋ฐ˜ ํŒ๋‹จ ๊ฐ„์˜ ์ผ์น˜๋„๋ฅผ ํ‰๊ฐ€ํ•˜๋ฉฐ, ์‹œ์Šคํ…œ ํšจ๊ณผ

The Initialization Determines Whether In-Context Learning Is Gradient Descent

The Initialization Determines Whether In-Context Learning Is Gradient Descent

: ์ด ๋…ผ๋ฌธ์€ ์ธ์ปจํ…์ŠคํŠธ ํ•™์Šต(ICL)์—์„œ ์ดˆ๊ธฐ ์ถ”์ธก์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ํŠนํžˆ ๊ทธ๋ž˜๋””์–ธํŠธ ํ•˜๊ฐ•(GD)๊ณผ ICL ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ICL ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ , ์ด๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์„ ํ˜• ์ž๊ธฐ ์ฃผ์˜(LSA) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ก ์  ๋ฐ ์‹คํ—˜์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. 1. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ ๋จผ์ € LSA๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ICL ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ดˆ๊ธฐ ์ถ”์ธก(yq LSA)์ด ์–ด๋–ป๊ฒŒ GD์™€ ๊ด€๋ จ๋˜์–ด ์žˆ๋Š”์ง€๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ‰๊ท (w )๊ฐ€ ์˜(0)์ธ์ง€ ์•„๋‹Œ์ง€์— ๋”ฐ

Learning
The Loss Landscape of Powder X-Ray Diffraction-Based Structure Optimization Is Too Rough for Gradient Descent

The Loss Landscape of Powder X-Ray Diffraction-Based Structure Optimization Is Too Rough for Gradient Descent

: ์ด ๋…ผ๋ฌธ์€ ๋ถ„๋ง X ์„  ํšŒ์ ˆ(XRD) ํŒจํ„ด์„ ํ†ตํ•ด ๊ฒฐ์ •์ฒด์˜ ์›์ž ๊ตฌ์กฐ๋ฅผ ๋ณต์›ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Gradient Descent, GD)์„ ํ™œ์šฉํ•œ ์ตœ์ ํ™” ์ ‘๊ทผ ๋ฐฉ์‹์ด ๊ฒฉ์ž ์™œ๊ณก ๋ฐ ์›์ž ์œ„์น˜์˜ ์ž‘์€ ๋ณ€ํ™”์— ๋ฏผ๊ฐํ•˜์—ฌ ๊ตญ๋ถ€ ์ตœ์ €์ ์— ๊ฐ‡ํžˆ๋Š” ๋ฌธ์ œ๋ฅผ ๊ฒฝํ—˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. 1. XRD ํŒจํ„ด๊ณผ ๊ตฌ์กฐ ๋ณต์›์˜ ์–ด๋ ค์›€ XRD๋Š” ๊ฒฐ์ • ๊ณ ์ฒด์˜ ์‹๋ณ„ ๋ฐ ํŠน์„ฑํ™”์— ๋„๋ฆฌ ํ™œ์šฉ๋˜์ง€๋งŒ, ์œ„์ƒ ์ •๋ณด ์†์‹ค๋กœ ์ธํ•ด ์™„์ „ํ•œ 3์ฐจ์› ๊ตฌ์กฐ ๋ณต์›์ด ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๊ด€์ฐฐ๋œ XRD ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€

The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation

The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation

๋ณธ ๋…ผ๋ฌธ์€ AI ๋ฐ ๋จธ์‹ ๋Ÿฌ๋‹(ML) ํ”„๋กœ์ ํŠธ์˜ ์„ฑ๊ณต์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๊ฐœ๋ฐœ์ž์˜ ์ƒ์‚ฐ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด๋กœ ์ธํ•œ ๋ฏธ์‹œ์  ํšจ์œจ์„ฑ ํ–ฅ์ƒ์ด ๊ฑฐ์‹œ์  ํ”„๋กœ์ ํŠธ ์„ฑ๊ณต์œผ๋กœ ์ง์ ‘ ์—ฐ๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. LLM์˜ ์˜ํ–ฅ LLM์€ ์ฝ”๋“œ ์ƒ์„ฑ๊ณผ ์ผ์ƒ์ ์ธ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์ž‘์—…์˜ ์ธ์ง€ ๋ถ€๋‹ด ๊ฐ์†Œ์— ํšจ๊ณผ์ ์ด์ง€๋งŒ, ๋ณต์žกํ•œ ์•„ํ‚คํ…์ฒ˜ ๊ฒฐ์ •์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, Copilot์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฐœ๋ฐœ์ž๋Š” ์ž‘์—… ์™„๋ฃŒ ์†๋„๊ฐ€ ์ตœ๋Œ€ 55% ๋น ๋ฅด๊ณ  ์ธ์ง€ ๋ถ€๋‹ด์ด ์ค„์–ด๋“ ๋‹ค

Learning
Towards 6G Native-AI Edge Networks: A Semantic-Aware and Agentic Intelligence Paradigm

Towards 6G Native-AI Edge Networks: A Semantic-Aware and Agentic Intelligence Paradigm

: ๋ณธ ๋…ผ๋ฌธ์€ 6์„ธ๋Œ€(6G) ๋ฌด์„  ํ†ต์‹ ๋ง์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ธ ์„ธ๋งคํ‹ฑ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜(SemCom)๊ณผ ์—์ด์ „ํŠธ ์ง€๋Šฅ์„ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” SemCom๊ณผ ์—์ด์ „ํŠธ ์ง€๋Šฅ์„ ์–ด๋–ป๊ฒŒ ๊ณต๋™ ์„ค๊ณ„ํ•˜๊ณ  ๋ฐฐํฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ์‡„ ๋ฃจํ”„ ๋ฐ ์ž๊ธฐ ์ง„ํ™”ํ˜• ๋„ค์ดํ‹ฐ๋ธŒ AI RAN์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. 1. 6G์˜ ๋ชฉํ‘œ์™€ SemCom์˜ ์ค‘์š”์„ฑ 6G๋Š” ๋‹จ์ˆœํžˆ ๋น ๋ฅธ ๋ฐ์ดํ„ฐ ์†๋„์™€ ๋‚ฎ์€ ์ง€์—ฐ ์‹œ๊ฐ„์„ ๋„˜์–ด, ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ™•์žฅ ํ˜„์‹ค(XR), ์‚ฐ์—… ๋””์ง€ํ„ธ ํŠธ์œˆ, ๋Œ€๊ทœ๋ชจ ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท(IoT) ๋ฐ ์ž์œจ ์ฃผํ–‰ ์ฐจ

Network
Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings

Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings

: ์ด ๋…ผ๋ฌธ์€ ์ธก์ •๋˜์ง€ ์•Š์€ ์œ ์—ญ์—์„œ์˜ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์žˆ์–ด ์ง€๊ตฌ ๊ธฐ์ดˆ ๋ชจ๋ธ(FMs)์˜ ์ž ์žฌ๋ ฅ์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. FMs๋Š” ๋Œ€๊ทœ๋ชจ ๋น„์ง€๋„ ์ง€๊ตฌ ์‹œ์Šคํ…œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์ „ ํ›ˆ๋ จํ•˜์—ฌ ๋ณต์žกํ•œ ํ™˜๊ฒฝ ์‹ ํ˜ธ๋ฅผ ๋ฒ”์šฉ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ์ž๊ธฐ ์ง€๋„ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ž„๋ฒ ๋”ฉ์€ ๊ฐ ์œ„์น˜๋ฅผ ํ’๋ถ€ํ•˜๊ณ  ์ „์ด ๊ฐ€๋Šฅํ•œ ํ‘œํ˜„์œผ๋กœ ์„ค๋ช…ํ•˜๋ฉฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ์ˆ˜์ž‘์—… ์†์„ฑ๋ณด๋‹ค ๋” ๋‚˜์€ ์œ ์‚ฌ์„ฑ ์ •์˜๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ์œ ์‚ฌ์„ฑ ๋ถ„์„์€ ์œ ์—ญ ์„ค๋ช…์ž์˜ ๊ฑฐ๋ฆฌ์™€ ์œ ์‚ฌ์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๊ณต๊ฐ„์  ๊ทผ์ ‘์„ฑ๊ณผ ํฌ๋ฐ•ํ•œ ์†์„ฑ์€ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ˆ˜๋ฌธํ•™์  ๊ณผ์ •์€ ๊ณต

Model
Waveform-Based Probabilistic Seismic Hazard Analysis Using Ground-Motion Generative Models

Waveform-Based Probabilistic Seismic Hazard Analysis Using Ground-Motion Generative Models

: ๋ณธ ๋…ผ๋ฌธ์€ ํ™•๋ฅ ์  ์ง€์ง„์œ„ํ—˜ ๋ถ„์„(PSHA)์˜ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ํŒŒํ˜• ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•๋ก ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ PSHA๋Š” ์ฃผ๋กœ ํŠน์ • ๊ฐ•๋„ ์ˆ˜์ค€์„ ์ดˆ๊ณผํ•  ํ™•๋ฅ ๋กœ ์ง€์ง„ ์œ„ํ—˜์„ ํ‰๊ฐ€ํ•˜์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€๋ฉด ์šด๋™ ํŒŒํ˜•์„ ์ง์ ‘ ๋ชจ๋ธ๋งํ•˜์—ฌ ์ด ์œ„ํ—˜์„ ํ‘œํ˜„ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. 1. ํŒŒํ˜• ๊ธฐ๋ฐ˜ PSHA์˜ ๊ฐœ๋… ๋ฐ ๋ฐฉ๋ฒ•๋ก  ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ํŒŒํ˜• ๊ธฐ๋ฐ˜ PSHA๋Š” ์ง€์ง„ ์›์ฒœ, ๊ฒฝ๋กœ, ํ˜„์žฅ ์ •๋ณด๋ฅผ ์กฐ๊ฑด์œผ๋กœ ํ•˜๋Š” ์ง€๋ฉด ์šด๋™ ํŒŒํ˜•์˜ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ๋ชจ๋ธ๋งํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์ง€๋ฉด ์šด๋™ ์ƒ์„ฑ ๋ชจ๋ธ(S GMGM, CW G

Analysis Model
ํ™•๋ฅ ์  ํŠธ๋ฆฌ ํƒ์ƒ‰์œผ๋กœ ๊ฐ•ํ™”๋œ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ ์ถ”๋ก 

ํ™•๋ฅ ์  ํŠธ๋ฆฌ ํƒ์ƒ‰์œผ๋กœ ๊ฐ•ํ™”๋œ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ ์ถ”๋ก 

: ๋ณธ ๋…ผ๋ฌธ์€ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ(DLMs)์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. DLMs๋Š” ์ด์‚ฐ ์‹œํ€€์Šค ์ƒ์„ฑ์—์„œ ์ž์œจ์ (Autoregressive, AR) ๋ชจ๋ธ์— ๋Œ€ํ•ญํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„์ „์ž๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ํ† ํฐ์„ ๋…๋ฆฝ์ ์œผ๋กœ ๋งˆ์Šคํ‚นํ•˜์—ฌ ์˜ค์—ผ ๊ณผ์ •์„ ์—ญ์ „์‹œํ‚ค๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•˜๋ฉฐ, ์ด๋Š” ๋ณ‘๋ ฌ ์ •์ œ์™€ ๊ธ€๋กœ๋ฒŒ ์ผ๊ด€์„ฑ ํ–ฅ์ƒ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. DLMs์˜ ์ถ”๋ก  ๊ณผ์ • DLMs์˜ ์ถ”๋ก  ๊ณผ์ •์€ ๋ณธ์งˆ์ ์œผ๋กœ ๊ฒ€์ƒ‰ ๋ฌธ์ œ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ์˜ค์—ผ๋œ ์‹œํ€€์Šค๋กœ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ, ๋ชจ๋ธ์€ ์–ด๋–ค ์œ„์น˜๋ฅผ ํ•ด์ œํ•˜๊ณ  ์–ด๋–ค ํ† ํฐ์„ ํ• ๋‹นํ• ์ง€ ๋ฐ˜๋ณต์ 

A Comprehensive Framework for Automated Quality Control in the Automotive Industry

A Comprehensive Framework for Automated Quality Control in the Automotive Industry

: ์ž๋™์ฐจ ์‚ฐ์—…์—์„œ ํ’ˆ์งˆ ๊ด€๋ฆฌ๋Š” ์ œํ’ˆ์˜ ์„ฑ๋Šฅ๊ณผ ์•ˆ์ „์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ž๋™์ฐจ ์ œ์กฐ์—…์˜ ํ’ˆ์งˆ ๊ด€๋ฆฌ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜๊ณ  ํ˜์‹ ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์‹œ๊ฐ์  ๊ฒ€์‚ฌ์— ์˜์กดํ•ด ์™”๋˜ ์ด ๋ถ„์•ผ์— ๋กœ๋ด‡ ์†”๋ฃจ์…˜์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์ƒ์‚ฐ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๊ฐ€ ์—ด๋ฆฐ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ์•Œ๋ฃจ๋ฏธ๋Š„ HPDC ๋ถ€ํ’ˆ์˜ ํ‘œ๋ฉด๊ณผ ๋‚˜์‚ฌ์‚ฐ ๊ฒฐํ•จ์„ ์ž๋™์œผ๋กœ ๊ฒ€์‚ฌํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ํ•˜๋“œ์›จ์–ด ์š”์†Œ, ์ฆ‰ ๊ณ ํ•ด์ƒ๋„ ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ ๋น„์ „ ์‹œ์Šคํ…œ, ์ „๋ฌธ ์กฐ๋ช… ์žฅ์น˜, ํ˜‘๋™ ๋กœ๋ด‡์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํ†ตํ•ฉ์€

Framework
Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism

Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism

LLM์ด ์‚ฌํšŒ์— ํ†ตํ•ฉ๋จ์— ๋”ฐ๋ผ, ๊ทธ๋“ค์˜ ๊ฐ€์น˜์™€ ํ–‰๋™ ์„ฑํ–ฅ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ LLM์˜ ์ดํƒ€์‹ฌ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ , ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด(์•”๋ฌต์ , ํ–‰๋™์ , ๋ช…์‹œ์ )์—์„œ ์ด๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ 24๊ฐœ์˜ ์ตœ์ฒจ๋‹จ LLM์„ ๋Œ€์ƒ์œผ๋กœ ์•”๋ฌต์  ์—ฐ๊ด€์„ฑ ๊ฒ€์‚ฌ(IAT), ๊ฐ•์ œ ์ด์ง„ ์„ ํƒ ์ž‘์—…, ์ž๊ธฐ ํ‰๊ฐ€ ์ฒ™๋„๋ฅผ ํ†ตํ•ด ํ…Œ์ŠคํŠธ๋ฅผ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์•”๋ฌต์  ์—ฐ๊ด€์„ฑ๊ณผ IAT ์•”๋ฌต์  ์—ฐ๊ด€์„ฑ์€ ๋ชจ๋ธ์ด ๊ธ์ •์ ์ธ ๊ฐœ๋…์„ ํƒ€์ธ์˜ ์ด์ต๊ณผ ์ž์‹ ์˜ ์ด์ต ์ค‘ ์–ด๋А ๊ฒƒ๊ณผ ์—ฐ๊ด€ ์ง“๋Š”์ง€๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ Self Other IAT(SOI IAT)๋ฅผ LLM์— ๋งž

Model
Engineering Attack Vectors and Detecting Anomalies in Additive Manufacturing

Engineering Attack Vectors and Detecting Anomalies in Additive Manufacturing

: ๋ณธ ์—ฐ๊ตฌ๋Š” 3D ํ”„๋ฆฐํŒ… ์‹œ์Šคํ…œ์˜ ๋ณด์•ˆ ์ทจ์•ฝ์ ์„ ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ํŠนํžˆ G ์ฝ”๋“œ ์กฐ์ž‘๊ณผ ๊ด€๋ จ๋œ ๊ณต๊ฒฉ ๋ฒกํ„ฐ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. Creality K1 Max์™€ Ender 3 ํ”„๋ฆฐํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ณต๊ฒฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ ๊ฐ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋น„๊ฐ๋…ํ˜• ์นจ์ž… ํƒ์ง€ ์‹œ์Šคํ…œ(IDS)์„ ์ œ์•ˆํ•œ๋‹ค. 1. ๊ณต๊ฒฉ ๋ฒกํ„ฐ ๋ถ„์„ Man in the Middle (MitM) ์นจ์ž… : ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ํ”„๋ฆฐํ„ฐ ํŽŒ์›จ์–ด๋กœ G ์ฝ”๋“œ ํŒŒ์ผ์ด ์—…๋กœ๋“œ๋˜๋Š” ๋™์•ˆ ์ด๋ฅผ ๊ฐ€๋กœ์ฑ„๊ณ  ์กฐ์ž‘ํ•œ๋‹ค. ์ง€์—ฐ๋œ ์ธ์‡„ ์ฐฉ์ทจ(Deferred Print Exploit) : G ์ฝ”๋“œ ์‹คํ–‰์„

Computer Science Cryptography and Security
No Image

Differentially Private Rankings via Outranking Methods and Performance Data Aggregation

MCDM์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์˜์‚ฌ ๊ฒฐ์ •์— ํ™œ์šฉ๋˜๋Š” ์ค‘์š”ํ•œ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ์ถ”์ฒœ ์‹œ์Šคํ…œ๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ์˜ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ๋Š” ๋ฏผ๊ฐํ•œ ๊ฐœ์ธ์ •๋ณด๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ํ†ตํ•ฉ ์ ‘๊ทผ๋ฒ•์€ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ณดํ˜ธ์™€ ๋žญํ‚น ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์•„์›ƒ๋žญํ‚น ๋ฐฉ๋ฒ•๊ณผ ์„ฑ๋Šฅ ๋ฐ์ดํ„ฐ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๊ฐœ์ธ์˜ ๊ธฐ์—ฌ๋„๋ฅผ ๋ณดํ˜ธํ•˜๋ฉด์„œ๋„ ์ •ํ™•ํ•œ ๋žญํ‚น ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋Š” ์ด ์ ‘๊ทผ๋ฒ•์˜ ํšจ๊ณผ์„ฑ๊ณผ ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ์— ๋Œ€ํ•œ ๊ฐ•๋ ฅํ•œ ๋ณด์žฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

Data
HEAR ๊ธฐ๋ฐ˜ ์Œ์•… ๋ฏธํ•™ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ

HEAR ๊ธฐ๋ฐ˜ ์Œ์•… ๋ฏธํ•™ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ

: ์Œ์•…์˜ ๋ฏธํ•™์  ํ‰๊ฐ€๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” ๊ฒƒ์€ ์Œ์•… ์ƒ์„ฑ ๋ชจ๋ธ์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ์ค‘์š”ํ•œ ๊ณผ์ œ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์€ ํ’๋ถ€ํ•œ ์Œ์•…์  ํŠน์„ฑ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. HEAR ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์ฐจ์›์ ์ธ ์Œ์•… ๋ฏธํ•™ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ๊ฒฌ๊ณ ํ•œ ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. HEAR์˜ ํ•ต์‹ฌ์€ ๋ณด์™„์ ์ธ ์ง€์—ญ ๋ฐ ์ „์—ญ ์ˆ˜์ค€์˜ ์Œ์•… ํ‘œํ˜„์„ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. Songformer์™€ MuQ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์Šค์ผ€์ผ์˜ ์Œ์•…์  ๋‹จ์„œ๋ฅผ ํฌ์ฐฉํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„์ , ์ŠคํŽ™ํŠธ๋Ÿผ, ์กฐํ™”, ์ฝ˜ํ…์ธ  ์ธก๋ฉด์—์„œ ๋ฏธํ•™ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต

No Image

Introducing Visual Scenes and Reasoning: A More Realistic Benchmark for Spoken Language Understanding

: ๊ตฌ์–ด ์–ธ์–ด ์ดํ•ด(SLU)๋Š” ๋‹ค์–‘ํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ํŠนํžˆ ์Šค๋งˆํŠธ ์Šคํ”ผ์ปค๋‚˜ ๊ฐ€์ƒ ๋น„์„œ์™€ ๊ฐ™์€ ์ž‘์—… ์ง€ํ–ฅ ๋Œ€ํ™” ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค. SLU ์—ฐ๊ตฌ๋Š” ์ „ํ†ต์ ์œผ๋กœ ๋ช…ํ™•ํ•˜๊ณ  ์• ๋งคํ•˜์ง€ ์•Š์€ ๋ฐœํ™”์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์‹ค์ œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์• ๋งคํ•œ ๋ฐœํ™”๊ฐ€ ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋„์ „์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœํ•„ ๊ธฐ๋ฐ˜ SLU(ProSLU)๊ฐ€ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ProSLU๋Š” CA, UP, KG๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๋ชจ๋ธ์ด ๋” ๋‚˜์€ ๋งฅ๋ฝ ์ดํ•ด์™€ ์ถ”๋ก ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ProSLU์—๋„ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ฒซ์งธ๋กœ, CA ํ‘œํ˜„์ด ์ง€๋‚˜์น˜

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

: ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์œ ํ˜• ๋‰ด๋Ÿด ์˜คํผ๋ ˆ์ดํ„ฐ(MCNO)๋Š” ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์˜ ํ•ด ์˜คํผ๋ ˆ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ทผ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ์•„ํ‚คํ…์ฒ˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ณ€ํ™˜์ด๋‚˜ ๊นŠ์€ ๊ณ„์ธต์  ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋Œ€์‹ , MCNO๋Š” ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์ƒ˜ํ”Œ๋ง์„ ํ†ตํ•ด ์ ๋ถ„์„ ๊ทผ์‚ฌํ•จ์œผ๋กœ์จ ๋‹จ์ˆœํ•˜๋ฉด์„œ๋„ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. MCNO์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ปค๋„ ์ ๋ถ„์„ ๊ณ ์ •๋œ ๋ฌด์ž‘์œ„ ์ƒ˜ํ”Œ๋ง ํฌ์ธํŠธ ์„ธํŠธ์— ๋Œ€ํ•ด ์ง์ ‘ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ํ›ˆ๋ จ ์ค‘ ๋ฐ˜๋ณต์ ์ธ ์ƒ˜ํ”Œ๋ง์ด ํ•„์š”ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ,

Learning
LLM ๊ธฐ๋ฐ˜ Git bisect๋กœ ์‹œ๋งจํ‹ฑ ๊ฒฐํ•จ ํƒ์ง€ ํ˜์‹ 

LLM ๊ธฐ๋ฐ˜ Git bisect๋กœ ์‹œ๋งจํ‹ฑ ๊ฒฐํ•จ ํƒ์ง€ ํ˜์‹ 

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: [LLM Git Bisect]: ์˜๋ฏธ๋ก ์  ๊ฒฐํ•จ ํƒ์ง€๋ฅผ ์œ„ํ•œ ํ˜์‹ ์ ์ธ AI ๋„์šฐ๋ฏธ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ์ด ๋…ผ๋ฌธ์—์„œ๋Š” Git bisect ๊ณผ์ •์— ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ†ตํ•ฉํ•˜์—ฌ ์˜๋ฏธ๋ก ์  ๊ฒฐํ•จ์„ ๋กœ์ปฌ๋ผ์ด์ฆˆํ•˜๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ bisect๋Š” ๊ฒฐ์ •๋ก ์ ์ด๊ณ  ์ด์ง„ ์‹คํŒจ ์ƒํƒœ๋ฅผ ๊ฐ€์ •ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๊ฐ€์ •์€ ํ˜„๋Œ€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์˜ ๋ณต์žกํ•œ ํ™˜๊ฒฝ์—์„œ ์ž์ฃผ ๊นจ์ง‘๋‹ˆ๋‹ค. ์ €ํฌ ์‹œ์Šคํ…œ์€ LLM์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌ์กฐํ™”๋œ ์‚ฌ๊ณ  ์—ฐ์‡„๋ฅผ ํ†ตํ•ด bisect ํƒ์ƒ‰์„ ๋ณด์™„ํ•˜๊ณ , ์ปค๋ฐ‹ ๋‹จ์œ„์˜ ๋ถ„์„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ

No Image

MultiBanAbs: A Comprehensive Multi-Domain Bangla Abstractive Text Summarization Dataset

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค์–‘์„ฑ ๊ฒฐํ• : ๊ธฐ์กด ๋ฐฉ๊ธ€๋ผ์–ด ์š”์•ฝ ๋ฐ์ดํ„ฐ์…‹(BWSD, MASBA ๋“ฑ)์€ ๋Œ€๋ถ€๋ถ„ ๋‰ด์Šค ๊ธฐ์‚ฌ์— ๊ตญํ•œ๋ผ ์žˆ์–ด ๋ฌธ์ฒดยท์–ดํœ˜๊ฐ€ ํš์ผ์ ์ด๋‹ค. ์‹ค์ œ ๋””์ง€ํ„ธ ํ™˜๊ฒฝ์—์„œ๋Š” ๋ธ”๋กœ๊ทธ, SNS, ๋น„์ฆˆ๋‹ˆ์Šค ๊ธฐ์‚ฌ ๋“ฑ ๋‹ค์–‘ํ•œ ์žฅ๋ฅด๊ฐ€ ๊ณต์กดํ•œ๋‹ค. ์ •๋ณด ๊ณผ๋ถ€ํ•˜ : ๋ฐฉ๊ธ€๋ผ์–ด ์ฝ˜ํ…์ธ ๊ฐ€ ๊ธ‰์ฆํ•จ์— ๋”ฐ๋ผ ์ž๋™ ์š”์•ฝ ๊ธฐ์ˆ ์ด ๋…์ž์˜ ์ •๋ณด ์†Œํ™”์— ํ•„์ˆ˜์ ์ด๋‹ค. 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• | ์ถœ์ฒ˜ | ๊ธฐ์‚ฌ ์ˆ˜ | ์ฃผ์š” ํŠน์„ฑ | | | | | | Samakal | 41,675 | ์ •ํ˜• ๋‰ด์Šค, ๊ณต์‹์ ์ธ ๋ฌธ์ฒด | | The Business Standard | 12,25

Data
No Image

Using Span Queries to Optimize for Cache and Attention Locality

: Span ์ฟผ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ ์‚ฌ๋ก€๋ฅผ ํฌ๊ด„ํ•˜๋Š” ์ผ๋ฐ˜ํ™”๋œ ์ธํ„ฐํŽ˜์ด์Šค๋กœ์„œ, ์ฑ„ํŒ…๋ถ€ํ„ฐ RAG, ์ถ”๋ก  ์‹œ ํ™•์žฅ ๋ฐ ์—์ด์ „ํŠธ ์›Œํฌ๋กœ๋“œ๊นŒ์ง€ ๋ชจ๋‘ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœ๋œ span ์ฟผ๋ฆฌ๋Š” ๊ตํ™˜๋ฒ•์น™ ์ œ์•ฝ๊ณผ ํ•จ๊ป˜ ์—ฐ๊ฒฐ๋œ ์ถ”๋ก  ํ˜ธ์ถœ์˜ ํ‘œํ˜„ ํŠธ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์บ์‹œ ์ง€์—ญ์„ฑ๊ณผ ์ฃผ์˜ ์ง‘์ค‘ ์ง€์—ญ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ vLLM์— ๋Œ€ํ•œ ์ž‘์€ ๋ณ€๊ฒฝ๋งŒ์œผ๋กœ๋„ span ์ฟผ๋ฆฌ์˜ ๊ณ ์„ฑ๋Šฅ ์‹คํ–‰์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด๋Š” ๋‘ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ๋น„์ฑ„ํŒ… ์‚ฌ์šฉ ์‚ฌ๋ก€์—์„œ 10~20๋ฐฐ์˜ TTFT ๊ฐ์†Œ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต

No Image

๊ธฐ๊ด€ ๋ฌด๊ด€ ์ข…์–‘ ๋ถ„ํ• ์„ ์œ„ํ•œ ๊ฐœ์ธํ™” ์—ฐํ•ฉ ํ•™์Šต

: ํŽ˜๋”๋ ˆ์ดํ‹ฐ๋“œ ๋Ÿฌ๋‹์€ ์—ฌ๋Ÿฌ ํด๋ผ์ด์–ธํŠธ๋กœ๋ถ€ํ„ฐ ๋ถ„์‚ฐ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ์˜๋ฃŒ ๋ถ„์•ผ์™€ ๊ฐ™์€ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ, ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ •์„ ์ค€์ˆ˜ํ•˜๋ฉด์„œ ํšจ๊ณผ์ ์ธ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•˜๊ฒŒ ๋ถ„ํฌ๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ(Non IID)๋Š” FL์˜ ์ฃผ์š” ๋„์ „ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด PFL ๋ฐฉ๋ฒ•๋“ค์€ ๊ฐ ํด๋ผ์ด์–ธํŠธ์˜ ๊ณ ์œ ํ•œ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ๋งž๊ฒŒ ๋กœ์ปฌ ๋ชจ๋ธ์„ ๊ฐœ์ธํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ์—ฌ๊ฒจ์กŒ์Šต๋‹ˆ๋‹ค. ํ•˜

๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ PํŒŒ ์ฒซ์šด๋™๊ทน์„ฑ ์ž๋™ ํŒ๋ณ„๋กœ ๋ณด๋Š” 2022 ๋ฃจ๋”ฉ ์ง€์ง„์—ด์˜ ์ดˆ์†Œํ˜• ์ง€์ง„ ๋ฉ”์ปค๋‹ˆ์ฆ˜

๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ PํŒŒ ์ฒซ์šด๋™๊ทน์„ฑ ์ž๋™ ํŒ๋ณ„๋กœ ๋ณด๋Š” 2022 ๋ฃจ๋”ฉ ์ง€์ง„์—ด์˜ ์ดˆ์†Œํ˜• ์ง€์ง„ ๋ฉ”์ปค๋‹ˆ์ฆ˜

๋ณธ ๋…ผ๋ฌธ์€ ๊ทœ๋ชจ๊ฐ€ ์ž‘๊ฑฐ๋‚˜ ์ค‘๊ฐ„์ธ ์ง€์ง„(M โ‰ค 4.5)์˜ ์ดˆ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํšจ์œจ์ ์œผ๋กœ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•ด, ์ „ํ†ต์ ์ธ ํŒŒํ˜•โ€‘์—ญ์ „ ๋ฐฉ์‹์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ž๋™ ํŒ๋ณ„๊ธฐ๋กœ ๋ณด์™„ํ•œ ์ ์ด ๊ฐ€์žฅ ํฐ ํŠน์ง•์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๊ฐ•์กฐ๋œ ๋ฐ”์™€ ๊ฐ™์ด, PํŒŒ ์ฒซโ€‘์šด๋™ ๊ทน์„ฑ์€ ์†๋„ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์˜์กด๋„๊ฐ€ ๋‚ฎ๊ณ  ๋ฌผ๋ฆฌ์  ์˜๋ฏธ๊ฐ€ ๋ช…ํ™•ํ•˜์—ฌ ์ดˆ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ๊ฐ•์ธํ•œ ๊ด€์ธก๊ฐ’์œผ๋กœ ํ™œ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ˆ˜๋™์œผ๋กœ ๊ทน์„ฑ์„ ์ฃผ์„ํ•˜๋Š” ์ž‘์—…์€ ์ธ๋ ฅ ์†Œ๋ชจ๊ฐ€ ํฌ๊ณ , ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์—์„œ๋Š” ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ์ €์ž๋“ค์€ ๋‘ ๋‹จ๊ณ„์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š”

No Image

ํ”„๋ก์‹œ ์—ฐ์‚ฐ์ž๋ฅผ ํ™œ์šฉํ•œ ํšจ์œจ์ ์ธ ํ…์ŠคํŠธโ€‘ํˆฌโ€‘์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ ProxT2I

: ์ตœ๊ทผ ์ƒ์„ฑ ์ธ๊ณต์ง€๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ฝ˜ํ…์ธ  ์ œ์ž‘ ๋ถ„์•ผ์—์„œ ํ˜์‹ ์ ์ธ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์™”๋‹ค. ํŠนํžˆ ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ๋ฐ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€(T2I) ์ƒ์„ฑ์— ์žˆ์–ด ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์„ฑ๊ณผ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณ ํ’ˆ์งˆ ์ƒ˜ํ”Œ์„ ํšจ์œจ์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ์ด๋‹ค. ๊ธฐ์กด์˜ ์ ์ˆ˜ ๊ธฐ๋ฐ˜ ์ƒ˜ํ”Œ๋Ÿฌ๋“ค์€ ์ „๋ฐฉ ์ด์‚ฐํ™” ์†”๋ฒ„๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ด๋Š” ์ƒ˜ํ”Œ๋ง ๋‹จ๊ณ„๋ฅผ ์ค„์ด๊ฑฐ๋‚˜ ์†๋„๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ์กฐ์ •์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์€ ์‹ค์ œ ๋ฐฐํฌ์— ์žˆ์–ด ํฐ ๊ฑธ๋ฆผ๋Œ์ด ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ›„๋ฐฉ ์ด์‚ฐํ™” ๊ธฐ๋ฐ˜์˜ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€ ํ™•์‚ฐ ๋ชจ๋ธ์ธ ProxT2I๋ฅผ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ์ด

No Image

A Convexity-dependent Two-Phase Training Algorithm for Deep Neural Networks

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ์†์‹ค ํ•จ์ˆ˜์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ ์„ ํ™œ์šฉํ•œ ์ตœ์ ํ™”๋Š” ์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜์—ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์€ ์ „์—ญ ๋น„๋ณผ๋ก์„ฑ ์„ ์ „์ œ๋กœ Adam, RMSProp ๋“ฑ 1์ฐจ ๋ฐฉ๋ฒ•์— ์˜์กดํ•œ๋‹ค. ์‹ค์ œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ(ํŠนํžˆ ๊ณผ๋Œ€ ํŒŒ๋ผ๋ฏธํ„ฐํ™”๋œ ๋„คํŠธ์›Œํฌ)์—์„œ๋Š” ํ•™์Šต ์ดˆ๊ธฐ์— ๊ธ‰๊ฒฉํžˆ ๋ณ€๋™ํ•˜๋Š” ๋น„๋ณผ๋ก ์ง€ํ˜• ์ด ์กด์žฌํ•˜์ง€๋งŒ, ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ตœ์ ์ ์— ์ ‘๊ทผํ•˜๋ฉด์„œ ์ง€์—ญ ๋ณผ๋ก์„ฑ์ด ๊ฐ•ํ™” ๋œ๋‹ค๋Š” ๊ด€์ฐฐ์ด ์—ฌ๋Ÿฌ ์‹คํ—˜์—์„œ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํฌ์ฐฉํ•˜๊ณ , ๋ณผ๋ก์„ฑ ์ „์ด๋ฅผ ์ž๋™์œผ๋กœ ๊ฐ์ง€ ํ•ด ์ตœ์ ํ™” ์ „๋žต์„ ์ „ํ™˜ํ•˜๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋œ

Network
No Image

Align to Misalign: Automatic LLM Jailbreak with Meta-Optimized LLM Judges

์ด ๋…ผ๋ฌธ์€ LLM์˜ ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ์˜ฅ ํƒˆ์ถœ ๊ณต๊ฒฉ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. AMIS ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ์˜ฅ ํƒˆ์ถœ ํ”„๋กฌํ”„ํŠธ์™€ ์ฑ„์  ํ…œํ”Œ๋ฆฟ์„ ํ•จ๊ป˜ ์ตœ์ ํ™”ํ•˜์—ฌ, ๋ณด๋‹ค ํšจ๊ณผ์ ์ด๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฒฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋‚ด๋ถ€ ๋ฃจํ”„์˜ ์„ธ๋ฐ€ํ•œ ํ”ผ๋“œ๋ฐฑ๊ณผ ์™ธ๋ถ€ ๋ฃจํ”„์˜ ASR ์ •๋ ฌ ์ ์ˆ˜ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๊ณต๊ฒฉ ์„ฑ๊ณต๋ฅ ์ด ํ–ฅ์ƒ๋˜๊ณ , ์ฑ„์  ๊ฒฐ๊ณผ์˜ ์ •ํ™•์„ฑ์ด ๋†’์•„์ง‘๋‹ˆ๋‹ค. ์ด๋Š” LLM์˜ ์ทจ์•ฝ์ ์„ ์‹๋ณ„ํ•˜๊ณ , ์ž ์žฌ์ ์ธ ์œ„ํ—˜์„ ์™„ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

No Image

Angular Steering: Behavior Control via Rotation in Activation Space

ํšŒ์ „ ๊ฐ๋„ ์กฐ์ ˆ์€ ํ–‰๋™ ์ œ์–ด๋ฅผ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์œผ๋กœ, ํ™œ์„ฑํ™” ๊ณต๊ฐ„ ๋‚ด์—์„œ ํšŒ์ „์„ ํ†ตํ•ด ํŠน์ • ํ–‰๋™์„ ๋ฏธ์„ธํ•˜๊ฒŒ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ์„ ํƒ๋œ ๋งค๊ฐœ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๋ฏผ๊ฐ์„ฑ์„ ์ค„์ด๋ฉฐ, ์˜๋„ํ•˜์ง€ ์•Š์€ ์ƒํ˜ธ์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ํ–‰๋™ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ๊ธฐํ•˜ํ•™์  ํšŒ์ „ ๊ฐœ๋…์„ ๋„์ž…ํ•˜์—ฌ ์—ฐ์†์ ์ธ ์ œ์–ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ๊ฑฐ๋ถ€์™€ ์ˆœ์‘๊ณผ ๊ฐ™์€ ๋ณต์žกํ•œ ํ–‰๋™์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ ์ ์‘ํ˜• ๋ณ€์ข…์„ ํ†ตํ•ด ํ‘œ์  ๊ธฐ๋Šฅ๊ณผ ์ •๋ ฌ๋œ ํ™œ์„ฑํ™”๋งŒ ์„ ํƒ์ ์œผ๋กœ ํšŒ์ „์‹œํ‚ด์œผ๋กœ์จ ์•ˆ์ •์„ฑ๊ณผ ์ผ๊ด€์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ ๊ธฐ์กด ๋ง์…ˆ

Arxiv 2512.23731

Arxiv 2512.23731

๋ณธ ๋…ผ๋ฌธ์€ ์ง€๊ตฌ ๋‚ด๋ถ€์˜ ํƒ„์„ฑ ์ง„๋™์ด ๋Œ€๊ธฐ์™€ ์ง์ ‘์ ์ธ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๋ฅผ ํ˜•์„ฑํ•œ๋‹ค๋Š” ํš๊ธฐ์ ์ธ ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๊ธฐํ›„ ๋ชจ๋ธ์€ ํƒœ์–‘ ๋ณต์‚ฌ, ํ•ด์–‘โ€‘๋Œ€๊ธฐ ์ƒํ˜ธ์ž‘์šฉ, ์˜จ์‹ค๊ฐ€์Šค ๋†๋„ ๋“ฑ์„ ์ค‘์‹ฌ์œผ๋กœ ์ „๊ฐœ๋ผ ์™”์œผ๋ฉฐ, ์ง€๊ตฌ ๋‚ด๋ถ€ ์—ญํ•™์€ ๋ณดํ†ต ์žฅ๊ธฐ ์ง€์งˆํ•™์  ์‹œ๊ฐ„์ฒ™๋„(์ˆ˜๋ฐฑ๋งŒ ๋…„)์—์„œ๋งŒ ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ž๋“ค์€ 2024โ€‘2025๋…„ ์‚ฌ์ด์— ๊ด€์ธก๋œ ๊ทน๋‹จ์ ์ธ ํ‰๊ท  ํ•ด์ˆ˜๋ฉด ๊ธฐ์••(์ตœ์ € 921 hPa, ์ตœ๊ณ  1 060 hPa)๊ณผ ์—ฐ์†์ ์ธ ๋Œ€๊ทœ๋ชจ ์ง€์ง„์„ ๋™์‹œ์— ๋ถ„์„ํ•จ์œผ๋กœ์จ, ๋‹จ๊ธฐ(์ˆ˜์ผโ€‘์ˆ˜์ฃผ) ๊ทœ๋ชจ์—์„œ๋„ ๋‚ด๋ถ€ ์ง„๋™์ด ๋Œ€๊ธฐ์•• ๋ณ€๋™์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹ค์ฆํ•œ๋‹ค. ํ•ต์‹ฌ

No Image

Assessing the Human-Likeness of LLM-Driven Digital Twins in Simulating Health Care System Trust

: ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด ๋””์ง€ํ„ธ ํŠธ์œˆ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‘๋‹ต์€ ๋” ์ง‘์ค‘์ ์ด๊ณ  ๋ถ„์‚ฐ์ด ๋‚ฎ์•˜์œผ๋ฉฐ ๊ทน๋‹จ์ ์ธ ์˜ต์…˜ ์„ ํƒ์ด ์ ์—ˆ์Šต๋‹ˆ๋‹ค(๋ชจ๋‘ p<0.001). ๋””์ง€ํ„ธ ํŠธ์œˆ์€ ์ „๋ฐ˜์ ์œผ๋กœ ์ฃผ์š” ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ํŒจํ„ด, ์ฆ‰ ์—ฐ๋ น๊ณผ ์„ฑ๋ณ„์„ ์žฌํ˜„ํ•˜์ง€๋งŒ ๊ต์œก ์ˆ˜์ค€๊ณผ ๊ฐ™์€ ์„ธ๋ถ€ ์‚ฌํ•ญ์—์„œ ์ธ๊ฐ„์„ ํฌ์ฐฉํ•˜๋Š” ๋ฏผ๊ฐ๋„๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์•˜์Šต๋‹ˆ๋‹ค. LLM ๊ธฐ๋ฐ˜ ๋””์ง€ํ„ธ ํŠธ์œˆ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ์ธ๊ตฌ ์ถ”์„ธ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์ง€๋งŒ, ์ธ๊ฐ„ ์ง‘๋‹จ์˜ ์„ธ๋ถ€์ ์ธ ์ฐจ์ด๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋ฐ๋Š” ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ LLM์œผ๋กœ ๊ตฌ๋™๋˜๋Š” ๋””์ง€ํ„ธ ํŠธ์œˆ์ด ๋ณต์žกํ•œ ์ธ๊ฐ„์˜ ํƒœ๋„๋ฅผ ๋ชจ๋ธ๋ง

System
No Image

Balancing Interpretability and Performance in Motor Imagery EEG Classification: A Comparative Study of ANFIS-FBCSP-PSO and EEGNet

๋ชจํ„ฐ ์ด๋ฏธ์ง• EEG ๋ถ„๋ฅ˜๋Š” BCI ์‹œ์Šคํ…œ์—์„œ ํ•ต์‹ฌ์ ์ธ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ANFIS FBCSP PSO์™€ ๊ฐ™์€ ํผ์ง€ ์ถ”๋ก  ์ ‘๊ทผ๋ฒ•์€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์žฅ์ ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ•„ํ„ฐ ๋ฑ…ํฌ ๊ณตํ†ต ๊ณต๊ฐ„ ํŒจํ„ด์„ ์‚ฌ์šฉํ•˜์—ฌ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๊ทœ์น™์„ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ ํˆฌ๋ช…ํ•œ ๋ถ„๋ฅ˜๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, EEGNet๊ณผ ๊ฐ™์€ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์›์‹œ EEG ๋ฐ์ดํ„ฐ์—์„œ ์ง์ ‘ ํ•™์Šตํ•˜์—ฌ ๋” ๋‚˜์€ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ์žฅ๋‹จ์ ์„ ๋น„๊ตํ•˜๊ณ , ๋‚ด๋ถ€ ์ฃผ์ฒด ๋ฐ ๊ต์ฐจ ์ฃผ์ฒด ์‹คํ—˜์„ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ,

No Image

Bayesian Network Fusion of Large Language Models for Sentiment Analysis

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ์ • ๋ถ„์„์„ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. BNLF ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ฒ ์ด์ฆˆ ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ LLM์˜ ์˜ˆ์ธก์„ ๊ฒฐํ•ฉํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋” ๋‚˜์€ ์„ฑ๋Šฅ๊ณผ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธˆ์œต ๋ถ„์•ผ์— ํŠนํ™”๋œ ์ฝ”ํผ์Šค์—์„œ์˜ ์‹คํ—˜์„ ํ†ตํ•ด BNLF๊ฐ€ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ผ๊ด€๋œ ์ •ํ™•๋„๋ฅผ ๋ณด์ž„์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ํ™•๋ฅ ์  ์œตํ•ฉ ๊ธฐ๋ฒ•์€ ๋ชจ๋ธ์˜ ํˆฌ๋ช…์„ฑ๊ณผ ์„ค๋ช… ๊ฐ€๋Šฅ์„ฑ์„ ํ–ฅ์ƒํ•˜์—ฌ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ์ • ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

Network Analysis Model
Benchmarking LLM Agents for Wealth-Management Workflows

Benchmarking LLM Agents for Wealth-Management Workflows

: ์ด ์—ฐ๊ตฌ๋Š” ์›ฐ์Šค ๋งค๋‹ˆ์ง€๋จผํŠธ ์–ด์‹œ์Šคํ„ดํŠธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋Š” LLM ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ์„ ํ…Œ์ŠคํŠธํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋œ ๋„์ „์ ์ธ ์ž‘์—… ์„ธํŠธ๋ฅผ ๊ฐœ๋ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ์„ธํŠธ๋Š” ์‹ค์ œ ๋ณด์กฐ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๋ฐ˜์˜ํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ ๊ฒ€์ƒ‰, ๋ถ„์„, ํ•ฉ์„ฑ/์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์ž‘์—…์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ช…ํ™•ํ•œ ์ž…๋ ฅ ๋ฐ ์ถœ๋ ฅ๊ณผ ํ•จ๊ป˜ ๊ฒฐ์ •๋ก ์  ํ‰๊ฐ€์ž๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.

No Image

Bridging Synthetic and Real Routing Problems via LLM-Guided Instance Generation and Progressive Adaptation

: ์ด ๋…ผ๋ฌธ์€ ํ•ฉ์„ฑ ๋ผ์šฐํŒ… ์ธ์Šคํ„ด์Šค์™€ ์‹ค์ œ ์„ธ๊ณ„ VRP ์‹œ๋‚˜๋ฆฌ์˜ค ๊ฐ„์˜ ์ผ๋ฐ˜ํ™” ๊ฒฉ์ฐจ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. EvoReal์ด๋ผ๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด, ์—ฐ๊ตฌ์ž๋“ค์€ LLM์˜ ์ง€๋„๋ฅผ ๋ฐ›๋Š” ์ง„ํ™” ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ˜„์‹ค์ ์ธ ๊ตฌ์กฐ ํŒจํ„ด์„ ๊ฐ€์ง„ ํ•ฉ์„ฑ ์ธ์Šคํ„ด์Šค๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•ฉ์„ฑ ์ธ์Šคํ„ด์Šค๋Š” ์‹ค์ œ ์„ธ๊ณ„ ์ธ์Šคํ„ด์Šค์˜ ํ†ต๊ณ„์  ์†์„ฑ์„ ๋ชจ๋ฐฉํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด ์‹ ๊ฒฝ ์†”๋ฒ„๊ฐ€ ์‹ค์ œ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋” ์ž˜ ์ ์‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ ์ง„์  ์ ์‘ ๋‹จ๊ณ„์—์„œ, ์‚ฌ์ „ ํ•™์Šต๋œ NCO ๋ชจ๋ธ์€ ๋จผ์ € ํ•ฉ์„ฑ ๋ถ„ํฌ์™€ ์ •๋ ฌ๋˜๊ณ  ๊ทธ ํ›„์— ์‹ค์ œ ๋ฒค์น˜๋งˆํฌ ์ธ์Šคํ„ด์Šค์— ์ง์ ‘ ๋ฏธ์„ธ ์กฐ์ •

Circuits, Features, and Heuristics in Molecular Transformers

Circuits, Features, and Heuristics in Molecular Transformers

๋ถ„์ž ๋ณ€ํ™˜๊ธฐ์˜ ํšŒ๋กœ, ๊ธฐ๋Šฅ ๋ฐ ๊ทœ์น™์— ๋Œ€ํ•œ ์‹ฌ์ธต ๋ถ„์„: ๊ตฌ๋ฌธ ํšŒ๋กœ: SMILES ๋ฌธ๋ฒ• ์š”์†Œ๋ฅผ ์ผ์น˜์‹œํ‚ค๋Š” ์ฃผ์˜ ํ—ค๋“œ๋ฅผ ์‹๋ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๊ณ ๋ฆฌ ํ์‡„๋ฅผ ์œ„ํ•œ ๋‹ค์ค‘ ํ—ค๋“œ ํšŒ๋กœ์™€ ์ „๋ฌธ์ ์ธ ๋ถ„๊ธฐ ๊ท ํ˜• ํ—ค๋“œ๊ฐ€ ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ์ผ๋ถ€ ํ—ค๋“œ๋Š” ์œ ํšจ์„ฑ ์ธก๋ฉด์—์„œ ๋ถ€ํ•˜๋ฅผ ์ง€ํƒฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค. ํ™”ํ•™: ์šฐ๋ฆฌ๋Š” ๋ถ„์ž ๋ณ€ํ™˜๊ธฐ์˜ ๋‚ด๋ถ€ ํ‘œํ˜„์„ ํ•™์Šตํ•œ ํฌ์†Œ ์ž๋™ ์ธ์ฝ”๋”(SAE)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ™”ํ•™์  ์˜๋ฏธ๊ฐ€ ์žˆ๋Š” ํ™œ์„ฑ ํŒจํ„ด๊ณผ ๊ด€๋ จ๋œ ๊ธฐ๋Šฅ ์‚ฌ์ „์„ ์ถ”์ถœํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋Šฅ์€ ๋ถ„์ž ์†์„ฑ ์˜ˆ์ธก์— ์œ ์šฉํ•œ ๊ธฐ๋Šฅ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค. ์‹ค์šฉ์  ์‘์šฉ: SAE์—์„œ ํŒŒ

No Image

CodeFuse-CommitEval: Towards Benchmarking LLM's Power on Commit Message and Code Change Inconsistency Detection

์ฝ”๋“œํ“จ์ฆˆ ์ปค๋ฐ‹์ด๋ฒŒ ๋ฒค์น˜๋งˆํฌ๋Š” MCI ๊ฐ์ง€ ๋Šฅ๋ ฅ์˜ ํ•œ๊ณ„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ LLM์ด ์ปค๋ฐ‹ ๋ฉ”์‹œ์ง€์™€ ์ฝ”๋“œ ๋ณ€๊ฒฝ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ์•„ํŒŒ์น˜CM ๋ฐ์ดํ„ฐ์…‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ณ ํ’ˆ์งˆ ์ƒ˜ํ”Œ์„ ์ˆ˜์ง‘ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” MCI ๊ฐ์ง€๋ฅผ ์œ„ํ•œ ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ธ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ, ์›๋ž˜ ์ผ๊ด€๋œ ์ปค๋ฐ‹์— ๋Œ€ํ•œ ๊ทœ์น™ ๊ธฐ๋ฐ˜์˜ ๋Œ์—ฐ๋ณ€์ด ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ 7๊ฐ€์ง€ ์œ ํ˜•์˜ ๋ถˆ์ผ์น˜ ๋ฉ”์‹œ์ง€๋ฅผ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๋ถˆ์ผ์น˜๋ฅผ ํฌ๊ด„์ ์œผ๋กœ ๋‹ค

Detection
No Image

Computational Foundations for Strategic Coopetition: Formalizing Trust and Reputation Dynamics

์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ˜‘๋ ฅ๊ณผ ๊ฒฝ์Ÿ์ด ๋™์‹œ์— ์ผ์–ด๋‚˜๋Š” ๋‹ค์ค‘ ์ดํ•ด๊ด€๊ณ„์ž ํ™˜๊ฒฝ์—์„œ ์ „๋žต์  ๊ณต์ƒ์„ ์œ„ํ•œ ๊ณ„์‚ฐ ๊ธฐ์ดˆ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๊ฐœ๋…์  ๋ชจ๋ธ๋ง ์–ธ์–ด๋Š” ์‹ ๋ขฐ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ํ•˜์ง€๋งŒ, ํ–‰๋™ ์ฆ๊ฑฐ์— ๋”ฐ๋ฅธ ์‹ ๋ขฐ ๋ณ€ํ™”์˜ ๋ถ„์„์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, ๊ณ„์‚ฐ ์‹ ๋ขฐ ๋ชจ๋ธ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์—…๋ฐ์ดํŠธ๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ๊ฐœ๋…์  ๋ชจ๋ธ๊ณผ์˜ ์—ฐ๊ฒฐ์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ๋ฐฐ์šฐ์ž๋“ค์˜ ๋ณต์žกํ•œ ๋™๊ธฐ๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฒŒ์ž„ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๊ณ„์‚ฐ ์‹ ๋ขฐ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰๊ฐ์ ์ธ ์‹ ๋ขฐ์™€ ์œ„๋ฐ˜ ์ด๋ ฅ์„ ์ถ”์ ํ•˜๋Š” ํ‰ํŒ์˜ ๋‘ ๊ณ„์ธต ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์‹ ๋ขฐ๋Š” ๋น„๋Œ€

No Image

Context-Aware Initialization for Reducing Generative Path Length in Diffusion Language Models

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ํ™•์‚ฐ ์–ธ์–ด ๋ชจ๋ธ์€ ๋งˆ์Šคํฌ๋œ ํ† ํฐ์„ ์ ์ง„์ ์œผ๋กœ ๋ณต์›ํ•˜๋ฉด์„œ ์™„์ „ ๋ณ‘๋ ฌ ๋””์ฝ”๋”ฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์ง€๋งŒ, ์ˆ˜๋ฐฑ ๋ฒˆ์— ๋‹ฌํ•˜๋Š” ๋””๋…ธ์ด์ง• ์Šคํ…์ด ํ•„์š”ํ•ด ์ถ”๋ก  ๋น„์šฉ์ด ํฌ๊ฒŒ ๋Š˜์–ด๋‚œ๋‹ค. ๊ธฐ์กด ๊ฐ€์†ํ™” ์—ฐ๊ตฌ๋Š” ์ƒ˜ํ”Œ๋ง ์Šค์ผ€์ค„ (e.g., DDIM, DPMSolver)์ด๋‚˜ ์ˆ˜์น˜ ํ•ด์„ ๊ฐœ์„  ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์ดˆ๊ธฐ ์ƒํƒœ ์ž์ฒด๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ์ ‘๊ทผ์€ ์ƒ๋Œ€์ ์œผ๋กœ ์ ์—ˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€œ ์ปจํ…์ŠคํŠธ ์ธ์‹ ์ดˆ๊ธฐํ™” โ€๋Š” ๋ชฉํ‘œ ํ…์ŠคํŠธ์™€ ๋” ๊ฐ€๊นŒ์šด ์ดˆ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์ „์ฒด ๋””๋…ธ์ด์ง• ๊ฒฝ๋กœ๋ฅผ ๋‹จ์ถ•ํ•œ๋‹ค๋Š” ์ง๊ด€์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ์ด ์•„์ด๋””์–ด๋Š” ํ•™์Šตโ€‘ํ”„๋ฆฌ ๋ผ๋Š” ์ 

Model
No Image

Continual Error Correction on Low-Resource Devices

: ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์€ ์„œ๋ฒ„ ์ธก์—์„œ ๊ธฐ์ดˆ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ทธ ์ง€์‹์„ ๊ธฐ๊ธฐ ์ธก์œผ๋กœ ์ „์ดํ•˜๋Š” ์ง€์‹ ์ฆ๋ฅ˜ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ž์› ์ œ์•ฝ์ด ์žˆ๋Š” ๊ธฐ๊ธฐ์—์„œ๋„ ํšจ์œจ์ ์ธ ์˜ค๋ฅ˜ ์ˆ˜์ •์ด ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๋Š” ๊ธฐ์กด ๋ชจ๋ธ ์žฌํ›ˆ๋ จ์— ๋น„ํ•ด ํ›จ์”ฌ ์ ์€ ๋ฆฌ์†Œ์Šค๋ฅผ ์š”๊ตฌํ•˜๋ฉฐ, ๋น ๋ฅธ ์ˆ˜์ •๊ณผ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์žฅํ•œ๋‹ค. ๋˜ํ•œ, ์„œ๋ฒ„ ์ธก ํŒŒ์ดํ”„๋ผ์ธ์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ดˆ ๋ชจ๋ธ์„ ์ง€์›ํ•˜์—ฌ ์œ ์—ฐ์„ฑ์„ ๋†’์ด๊ณ , ๊ธฐ๊ธฐ ์ธก ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

No Image

DAMBench: A Multi-Modal Benchmark for Deep Learning-based Atmospheric Data Assimilation

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ฐ์ดํ„ฐ ๋™ํ™”์˜ ์ค‘์š”์„ฑ : ๋Œ€๊ธฐ ์˜ˆ๋ณดยท๊ธฐํ›„ ๋ชจ๋ธ๋ง์—์„œ ๊ด€์ธก๊ณผ ๋ชจ๋ธ์˜ ๊ฒฐํ•ฉ์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ์ขŒ์šฐํ•œ๋‹ค. ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ๋ฌผ๋ฆฌโ€‘์ˆ˜ํ•™์  ๋ชจ๋ธ์— ํฌ๊ฒŒ ์˜์กดํ•˜์ง€๋งŒ, ๊ด€์ธก๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ณ  ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๊ฐ€ ๋‹ค์–‘ํ•ด์ง€๋ฉด์„œ ํ•œ๊ณ„๊ฐ€ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ DA์˜ ๋ถ€์ƒ : ์ž๋™ ํŠน์ง• ์ถ”์ถœ, ๋น„์„ ํ˜• ๊ด€๊ณ„ ํ•™์Šต, GPU ๊ฐ€์† ๋“ฑ์œผ๋กœ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ๊ฐ•์ ์„ ๋ณด์ธ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํ•ฉ์„ฑ ๊ด€์ธก (์˜ˆ: ๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ ์ถ”๊ฐ€)๋งŒ์„ ์‚ฌ์šฉํ•ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ๊ณผ ๊ดด๋ฆฌ๋„๊ฐ€ ํฌ๋‹ค. 2. DAMBench์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ | D

Data Learning
DGGAN: Degradation Guided Generative Adversarial Network for Real-time Endoscopic Video Enhancement

DGGAN: Degradation Guided Generative Adversarial Network for Real-time Endoscopic Video Enhancement

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‚ด์‹œ๊ฒฝ ์ˆ˜์ˆ ์—์„œ ์ค‘์š”ํ•œ ์š”์†Œ์ธ ์‹ค์‹œ๊ฐ„ ์˜์ƒ ํ’ˆ์งˆ ํ–ฅ์ƒ์„ ์œ„ํ•ด DGGAN(Degradation Guided Generative Adversarial Network)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. DGGAN์€ ํ‡ดํ™” ์ธ์‹ ๋ชจ๋“ˆ, ๋‹จ์ผ ํ”„๋ ˆ์ž„ ํ–ฅ์ƒ ๋ชจ๋ธ ๋ฐ ํ‡ดํ™” ํ‘œํ˜„ ํ“จ์ „ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ํ‡ดํ™” ์ธ์‹ ๋ชจ๋“ˆ์€ ๋Œ€์กฐ์  ํ•™์Šต ์ „๋žต์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํ‡ดํ™” ํ‘œํ˜„์„ ์ถ”์ถœํ•˜๊ณ , ์ด๋Ÿฌํ•œ ํ‘œํ˜„์€ ๋‹จ์ผ ํ”„๋ ˆ์ž„ ํ–ฅ์ƒ ๋ชจ๋ธ์˜ ๊ฐ€์ด๋“œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ˆœํ™˜ ์ผ๊ด€์„ฑ ์ œ์•ฝ ์กฐ๊ฑด๊ณผ ํ•จ๊ป˜ ํ›ˆ๋ จ๋˜์–ด ๋ณต์›๋œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ๋Š”

Network
Enhancing Decision-Making in Windows PE Malware Classification During Dataset Shifts with Uncertainty Estimation

Enhancing Decision-Making in Windows PE Malware Classification During Dataset Shifts with Uncertainty Estimation

: ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Windows PE ์•…์„ฑ์ฝ”๋“œ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๊ธฐ์กด LightGBM(LGBM) ๊ธฐ๋ฐ˜ ํƒ์ง€๊ธฐ๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Neural Networks(NN), PriorNet ๋ฐ Neural Network Ensembles๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์„ธ ๊ฐ€์ง€ ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹์—์„œ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. UCSB ๋ฐ์ดํ„ฐ์…‹์€ ์ฃผ๋กœ ํŒจํ‚น๋œ ์•…์„ฑ์ฝ”๋“œ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด EMBER ๋ฐ BODMAS์— ๋น„ํ•ด ์ƒ๋‹นํ•œ ๋ถ„ํฌ ์ด๋™์„ ์œ ๋ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋‚ด๊ตฌ์„ฑ ์ธก๋ฉด์—์„œ ๊นŒ๋‹ค๋กœ์šด ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ํ™•๋ฅ  ์ž„๊ณ„๊ฐ’ ์„ค์ •, PriorNet, ์•™์ƒ๋ธ” ๊ธฐ๋ฐ˜ ์ถ”

Data
No Image

EvoMem: Improving Multi-Agent Planning with Dual-Evolving Memory

์ด ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ด ๊ณ„ํš์— ์žˆ์–ด ๊ธฐ์–ต์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ๊ฐ€์„ค์„ ์„ธ์šฐ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. EvoMem ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ธ๊ฐ„๊ณผ ๊ฐ™์€ ๊ธฐ์–ต์„ ๋ชจ๋ฐฉํ•˜์—ฌ ์ œ์•ฝ ์‚ฌํ•ญ๊ณผ ํ”ผ๋“œ๋ฐฑ์„ ์ €์žฅํ•˜๊ณ  ์ถ”์ ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๊ธฐ์–ต ๋ชจ๋“ˆ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์—์ด์ „ํŠธ๋“ค์ด ๋ฐ˜๋ณต์ ์ธ ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ •์—์„œ ํšจ์œจ์ ์œผ๋กœ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, CMem์€ ์ž‘์—…์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  QMem์€ ์†”๋ฃจ์…˜์˜ ์ •์ œ๋ฅผ ์œ„ํ•œ ํ”ผ๋“œ๋ฐฑ์„ ์ถ•์ ํ•จ์œผ๋กœ์จ ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.

< Category Statistics (Total: 5502) >

Electrical Engineering and Systems Science
103
General
4467
General Relativity
6
HEP-EX
3
HEP-PH
4
HEP-TH
4
MATH-PH
6
Quantum Physics
20

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut