KOINEU Logo
No Free Lunch in Language Model Bias Mitigation? Targeted Bias Reduction Can Exacerbate Unmitigated LLM Biases

No Free Lunch in Language Model Bias Mitigation? Targeted Bias Reduction Can Exacerbate Unmitigated LLM Biases

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ํŽธํ–ฅ ์™„ํ™”๊ฐ€ ๋‹จ์ผ ์ฐจ์›์—์„œ์˜ ์„ฑ๊ณต์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ , ๋‹ค๋ฅธ ์ฐจ์›์—์„œ ์ƒˆ๋กœ์šด ํŽธํ–ฅ์„ ์œ ๋ฐœํ•˜๊ฑฐ๋‚˜ ๊ธฐ์กด ํŽธํ–ฅ์„ ์‹ฌํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ค‘์š”ํ•œ ๊ต์ฐจ ํšจ๊ณผ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € 7๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋ธ ํŒจ๋ฐ€๋ฆฌ(์˜ˆ: GPT, BERT, T5 ๋“ฑ)์—์„œ ํŒŒ์ƒ๋œ 10๊ฐœ์˜ ๋ชจ๋ธ์„ ์„ ์ •ํ•˜๊ณ , ๊ฐ๊ฐ์— ๋Œ€ํ•ด ๋„ค ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ํŽธํ–ฅ ์™„ํ™” ๊ธฐ๋ฒ•(๋ฐ์ดํ„ฐ ์žฌ์ƒ˜ํ”Œ๋ง, ์†์‹ค ๊ฐ€์ค‘์น˜ ์กฐ์ •, ์‚ฌํ›„ ํ•„ํ„ฐ๋ง, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง)์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋•Œ ์ธ์ข…, ์ข…๊ต, ์ง์—…ยท์„ฑ๋ณ„์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ํŽธํ–ฅ ์ถ•์„ ์„ค์ •ํ•˜๊ณ , ๊ฐ ์ถ•์— ๋Œ€

Model
NystagmusNet: Explainable Deep Learning for Photosensitivity Risk Prediction

NystagmusNet: Explainable Deep Learning for Photosensitivity Risk Prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ˆˆ์ง„ํƒ• + ๊ด‘๋ฏผ๊ฐ์„ฑ ์€ ๋ฐ๊ธฐ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๋ˆˆ์˜ ์ง„๋™์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•ด ์‹œ์•ผ ์œ ์ง€ยท๊ท ํ˜• ์žก๊ธฐ์— ์–ด๋ ค์›€์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํ˜„์žฌ ์น˜๋ฃŒ๋ฒ•(์ƒ‰์•ˆ๊ฒฝ, ์•ฝ๋ฌผ)์€ ๋ฐ˜์‘ํ˜• ์ด๋ฉฐ, ์‚ฌ์ „ ์œ„ํ—˜ ์˜ˆ์ธกยท๊ฐœ์ธํ™”๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค. ๋”ฅ๋Ÿฌ๋‹์ด ์•ˆ๊ตฌ ์›€์ง์ž„ ์ถ”์ ยท์‹œ๊ฐ ํ™˜๊ฒฝ ๋ถ„์„์— ์„ฑ๊ณตํ•œ ์‚ฌ๋ก€๊ฐ€ ๋Š˜์–ด๋‚˜๋ฉด์„œ, ์˜ˆ์ธก ๊ธฐ๋ฐ˜ ๋ณด์กฐ๊ธฐ์ˆ  ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€๊ฐ€ ๋†’์•„์กŒ๋‹ค. 2. ์ฃผ์š” ๊ธฐ์—ฌ (Contributions) | ๋ฒˆํ˜ธ | ๋‚ด์šฉ | ์˜์˜ | | | | | | 1 | ์ด์ค‘โ€‘branch CNN ์„ค๊ณ„ โ€“ ๋ฐ๊ธฐ ์ด๋ฏธ์ง€์™€ ๋ˆˆ ์›€์ง์ž„ ๋ณ€๋™์„ฑ์„ ๋ณ„๋„ ์ฒ˜๋ฆฌ ํ›„ ์œตํ•ฉ | ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํŠน

Learning
ShareChat: A Dataset of Chatbot Conversations in the Wild

ShareChat: A Dataset of Chatbot Conversations in the Wild

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ƒ์šฉ ์ฑ—๋ด‡์˜ ๋‹ค์–‘์„ฑ : ChatGPT, Claude, Gemini ๋“ฑ์€ ๋™์ผํ•œ LLM ๊ธฐ๋ฐ˜์ด์ง€๋งŒ UIยท์ •์ฑ…ยท๋ณด์กฐ ๊ธฐ๋Šฅ(์˜ˆ: ์‹ค์‹œ๊ฐ„ ์ธ์šฉ, ์ฝ”๋“œ ์‹คํ–‰)์—์„œ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ์ด๋Š” ์‚ฌ์šฉ์ž ํ”„๋กฌํ”„ํŠธ์™€ ๋ชจ๋ธ ์‘๋‹ต์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹์˜ ํ•œ๊ณ„ : WildChat, LMSYSโ€‘Chatโ€‘1M, OpenAssistant ๋“ฑ์€ ๋‹จ์ผ ์ธํ„ฐํŽ˜์ด์Šค ํ˜น์€ ํ…์ŠคํŠธโ€‘์ „์šฉ ๋กœ๊ทธ์— ์˜์กดํ•ด ํ”Œ๋žซํผ ๊ณ ์œ  ๋ฉ”ํƒ€ ์ •๋ณด๋ฅผ ์†Œ์‹คํ•œ๋‹ค. ๋˜ํ•œ, ๋Œ€๋ถ€๋ถ„์ด ์‹คํ—˜์‹ค/์—ฐ๊ตฌ์ž ์ฃผ๋„ ์ˆ˜์ง‘์ด๋ผ ๊ด€์ฐฐ์ž ํšจ๊ณผ(Hawthorne effect)๋ฅผ

Data
Thucy: An LLM-based Multi-Agent System for Claim Verification across Relational Databases

Thucy: An LLM-based Multi-Agent System for Claim Verification across Relational Databases

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ฃผ์žฅ ๊ฒ€์ฆ์˜ ๋ฐ์ดํ„ฐ ๊ฒฉ์ฐจ : ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ˆ˜๋ฐฑ ํ–‰ ์ˆ˜์ค€์˜ ๋‹จ์ผ ํ…Œ์ด๋ธ”์— ๊ตญํ•œ๋ผ, ์‹ค์ œ ๊ณต๊ณต ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค(์ˆ˜์‹ญยท์ˆ˜๋ฐฑ ํ…Œ์ด๋ธ”, ์ˆ˜๋ฐฑ๋งŒ ํ–‰)์™€์˜ ์—ฐ๋™์ด ์–ด๋ ค์› ๋‹ค. ํˆฌ๋ช…์„ฑ ์š”๊ตฌ : ๊ฒ€์ฆ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ โ€œ๋ธ”๋ž™๋ฐ•์Šคโ€์‹ ์„ค๋ช…์ด ์•„๋‹ˆ๋ผ, ์ „๋ฌธ๊ฐ€๊ฐ€ ์ง์ ‘ ๊ฒ€์ฆ ๊ณผ์ •์„ ์žฌํ˜„ยท์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” SQL ์ฆ๊ฑฐ ์ œ๊ณต์ด ํ•„์ˆ˜์ ์ด๋‹ค. 2. ํ•ต์‹ฌ ๊ธฐ์—ฌ | ๊ตฌ๋ถ„ | ๊ธฐ์กด ์‹œ์Šคํ…œ | Thucy์˜ ์ฐจ๋ณ„์  | | | | | | ๋ฐ์ดํ„ฐ ๋ฒ”์œ„ | ๋‹จ์ผ ํ…Œ์ด๋ธ”, ์ž‘์€ ๊ทœ๋ชจ | ๋‹ค์ค‘ DBยท๋‹ค์ค‘ ํ…Œ์ด๋ธ” (ํฌ๋กœ์Šคโ€‘DB/ํฌ๋กœ์Šคโ€‘Table) | | ์Šคํ‚ค๋งˆ ์˜์กด์„ฑ

Data System
Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion

Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion

VisualSync๋Š” ๋ฉ€ํ‹ฐ๋ทฐ ๋น„๋””์˜ค ๋ถ„์„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ ์‹œ๊ฐ„ ์ •๋ ฌ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ํŒŒ๊ธ‰๋ ฅ์ด ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์˜ค๋””์˜ค ์‹ ํ˜ธ, ์ดฌ์˜ ์žฅ๋น„์˜ ํƒ€์ž„์ฝ”๋“œ, ํ˜น์€ ์™ธ๋ถ€ ์„ผ์„œ(์˜ˆ: GPS, IMU)๋ฅผ ํ™œ์šฉํ•ด ๋™๊ธฐํ™”๋ฅผ ์‹œ๋„ํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ถ”๊ฐ€ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ์ด๋‚˜ ์‚ฌ์ „ ์„ค์ •์ด ํ•„์š”ํ•˜๊ณ , ์‹ค์ œ ํ˜„์žฅ ์ดฌ์˜์—์„œ๋Š” ์ ์šฉ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. VisualSync๋Š” ์ˆœ์ˆ˜ํžˆ ์˜์ƒ ์ž์ฒด๋งŒ์„ ์ด์šฉํ•ด ์‹œ๊ฐ„ ์˜คํ”„์…‹์„ ์ถ”์ •ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ œํ•œ์กฐ๊ฑด์ด ์ตœ์†Œํ™”๋œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œ๋™์  ์žฅ๋ฉด์˜ ๊ณตํ†ต์ 

Wearable-informed generative digital avatars predict task-conditioned post-stroke locomotion

Wearable-informed generative digital avatars predict task-conditioned post-stroke locomotion

์ด ๋…ผ๋ฌธ์€ ๋‡Œ์กธ์ค‘ ํ™˜์ž์˜ ๋ณดํ–‰ ๋Šฅ๋ ฅ์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋” ํšจ๊ณผ์ ์ธ ์žฌํ™œ ์น˜๋ฃŒ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ํ‰๊ฐ€๋Š” ๋Œ€๋ถ€๋ถ„ ์ •์ ์ด๊ณ  ์ผ๋ฐ˜ํ™”๋œ ๊ฒฐ๊ณผ๋งŒ ์ œ๊ณตํ•˜๋Š” ๋ฐ˜๋ฉด, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์›จ์–ด๋Ÿฌ๋ธ” ์„ผ์„œ์™€ ๋ฌผ๋ฆฌํ•™ ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ํ™˜์ž์˜ ๊ฐœ๋ณ„์ ์ธ ๋ณดํ–‰ ๋Šฅ๋ ฅ์„ ๋™์ ์œผ๋กœ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ์‹œํ—˜์—์„œ ์–ป์€ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋„ ๊ฒฝ์‚ฌ๋ฉด ๊ฑท๊ธฐ๋‚˜ ๊ณ„๋‹จ ์˜ค๋ฅด๋‚ด๋ฆผ๊ณผ ๊ฐ™์€ ํŠน์ • ์ž‘์—… ์ˆ˜ํ–‰์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ์ฃผ๋ชฉ๋ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ํšจ๊ณผ๋Š” ๋‹ค์ค‘ ์„ผํ„ฐ ์ž„์ƒ ๋ฌด์ž‘์œ„ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ž…์ฆ๋˜์—ˆ์œผ๋ฉฐ, ํŠนํžˆ Fugl

When AI Bends Metal: AI-Assisted Optimization of Design Parameters in Sheet Metal Forming

When AI Bends Metal: AI-Assisted Optimization of Design Parameters in Sheet Metal Forming

: ๋ณธ ๋…ผ๋ฌธ์€ AI์™€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ…(HPC)์„ ํ™œ์šฉํ•˜์—ฌ ์‹œํŠธ ๊ธˆ์† ํ˜•์„ฑ ๊ณผ์ •์—์„œ ์„ค๊ณ„ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ตœ์ ํ™”๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์ „ํ†ต์ ์ธ ์ˆ˜์ž‘์—… ๋ฐฉ์‹์— ๋น„ํ•ด ์‹œ๊ฐ„๊ณผ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋‹ค. 1. AI ์ง€์› ์›Œํฌํ”Œ๋กœ์šฐ์˜ ๊ตฌ์„ฑ ์š”์†Œ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ AI ์ง€์› ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ํฌํ•จํ•œ๋‹ค: ์ „๋ฌธ๊ฐ€ ์ฐธ์—ฌ ๊ฐ์†Œ : ๋ฒ ์ด์ฆˆ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์ „๋ฌธ๊ฐ€์˜ ๊ฐœ์ž…์„ ์ค„์ด๊ณ , ์ดˆ๊ธฐ ์„ค๊ณ„ ์ถ”์ •๊ณผ ์ตœ์ ํ™” ๋ฃจํ”„์—์„œ ์ž๋™ํ™”๋ฅผ ๋„์ž…ํ•œ๋‹ค. ํšจ์œจ์ ์ธ ์„ค๊ณ„ ๋งค๊ฐœ๋ณ€์ˆ˜ ํƒ์ƒ‰ : ๊ฐ€์šฐ์Šค ํ”„๋กœ์„ธ์Šค ์ž ์žฌ ๋ณ€์ˆ˜ ๋ชจ๋ธ(GPL

Domain-Specific Foundation Model Improves AI-Based Analysis of Neuropathology

Domain-Specific Foundation Model Improves AI-Based Analysis of Neuropathology

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋„๋ฉ”์ธ ๋ถˆ์ผ์น˜ : ๊ธฐ์กด ๋Œ€ํ˜• ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ์€ ์ฃผ๋กœ ๋น„์‹ ๊ฒฝ ์กฐ์ง(๊ฐ„, ํ, ์œ ๋ฐฉ ๋“ฑ)๊ณผ ์ข…์–‘ยท์—ผ์ฆยท๋Œ€์‚ฌ ์งˆํ™˜์— ์ดˆ์ ์„ ๋งž์ถ˜ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต๋ผ, ์‹ ๊ฒฝ์„ธํฌยท๊ต์„ธํฌยทํŠน์ˆ˜ํ•œ ๋‡Œ ๊ตฌ์กฐ(์‹œ๋ƒ…์Šค, ์ธต๊ตฌ์กฐ ๋“ฑ)๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์‹ ๊ฒฝ๋ณ‘๋ฆฌํ•™์˜ ํŠน์ˆ˜์„ฑ : ์•Œ์ธ ํ•˜์ด๋จธ์˜ ์‹ ๊ฒฝ์„ฌ์œ  ์—‰ํ‚ด, ์•„๋ฐ€๋กœ์ด๋“œ ํ”Œ๋ผํฌ, ํŒŒํ‚จ์Šจ์˜ ๋ฃจ์ด์†Œ์ฒด, ์†Œ๋‡Œ ์œ„์ถ•์˜ ํŠน์ด์  ๋ณ‘๋ณ€ ๋“ฑ์€ ๋ฏธ์„ธํ•œ ํ˜•ํƒœํ•™์  ์ฐจ์ด๋ฅผ ๊ตฌ๋ถ„ํ•ด์•ผ ํ•˜๋Š” ๊ณ ๋‚œ์ด๋„ ๊ณผ์ œ๋‹ค. ์ผ๋ฐ˜ ๋ชจ๋ธ์€ ์ด๋Ÿฌํ•œ ๋ฏธ์„ธ ํŒจํ„ด์„ ๋†“์น  ์œ„ํ—˜์ด ์žˆ๋‹ค(๋ถ„ํฌ ์ด๋™, ํŠน์ง• ์†์‹ค). 2. ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• | ๊ตฌ๋ถ„ |

Analysis Model
NVIDIA Nemotron 3: Efficient and Open Intelligence

NVIDIA Nemotron 3: Efficient and Open Intelligence

1. ํ•ต์‹ฌ ๊ธฐ์ˆ  ์š”์•ฝ | ๊ธฐ์ˆ  | ์„ค๋ช… | ๊ธฐ๋Œ€ ํšจ๊ณผ | | | | | | Hybrid MoE + Mambaโ€‘Transformer | MoE ๋ ˆ์ด์–ด์™€ ๋น„์šฉ์ด ๋‚ฎ์€ Mambaโ€‘2 ๋ ˆ์ด์–ด๋ฅผ ๊ต์ฐจ ๋ฐฐ์น˜ํ•˜๊ณ , ํ•„์ˆ˜์ ์ธ Selfโ€‘Attention ๋ ˆ์ด์–ด๋Š” ์ตœ์†Œํ™” | ํ† ํฐ๋‹น ์—ฐ์‚ฐ๋Ÿ‰ยท๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ ๊ฐ์†Œ โ†’ 8k/16k ์ž…๋ ฅโ€‘์ถœ๋ ฅ ์‹œ 3.3๋ฐฐ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ | | LatentMoE | ํ† ํฐ์„ ์ˆจ๊น€ ์ฐจ์› d โ†’ ์ž‘์€ ์ž ์žฌ ์ฐจ์› โ„“ ๋กœ ํˆฌ์‚ฌ ํ›„ ์ „๋ฌธ๊ฐ€ ๋ผ์šฐํŒ…, ๋ผ์šฐํŒ… ์ฐจ์› ์ถ•์†Œ๋กœ ํ†ต์‹ ยท๋ฉ”๋ชจ๋ฆฌ ๋น„์šฉ ์ ˆ๊ฐ | ๋™์ผ ์—ฐ์‚ฐ ๋น„์šฉ์—์„œ ์ „๋ฌธ๊ฐ€ ์ˆ˜์™€ ํ™œ์„ฑ K๋ฅผ ํ™•๋Œ€

Connectivity-Preserving Cortical Surface Tetrahedralization

Connectivity-Preserving Cortical Surface Tetrahedralization

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ํ”ผ์งˆ ํ‘œ๋ฉด์˜ ๋ณต์žก์„ฑ : ์ธ๊ฐ„ ๋‡Œ๋Š” ์ˆ˜๋งŽ์€ ๊ณจ์ง€(sulci)์™€ ์œต์„ (gyri)์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ณ ๋„๋กœ ์ ‘ํžŒ ๊ตฌ์กฐ์ด๋ฉฐ, ํ‘œ๋ฉด์„ ์™ธ๋ถ€๋กœ โ€œ๋ฐ€์–ด๋‚ด๋Š”โ€ ๊ณผ์ •์—์„œ ์ž‘์€ ๊ฐ„๊ฒฉ์— ์ž๊ธฐ๊ต์ฐจ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ๋ฉ”์‰ฌ ๋ณต๊ตฌ ๋„๊ตฌ์˜ ํ•œ๊ณ„ : Attene(2014), Campen & Kobbelt(2010) ๋“ฑ์€ ๊ฒฐํ•จ์„ ์ œ๊ฑฐํ•˜๋ ค ํ•˜์ง€๋งŒ, ํฐ ์˜์—ญ์„ ์‚ญ์ œํ•˜๊ฑฐ๋‚˜ ์„œ๋กœ ๋‹ค๋ฅธ ํ•ด๋ถ€ํ•™์  ์˜์—ญ์„ ๋ณ‘ํ•ฉํ•ด ๋ฒ„๋ฆฌ๋Š” ๋ถ€์ž‘์šฉ์ด ์žˆ๋‹ค. ์ œ์•ฝ vs ๋น„์ œ์•ฝ ํ…ŒํŠธ๋ผํ—ค๋“œ๋ก ํ™” : TetGen, Gmsh ๋“ฑ์€ PLC(์กฐ๊ฐ์„ ํ˜• ๋ณตํ•ฉ์ฒด) ์ž…๋ ฅ์„ ์ „์ œ๋กœ ํ•˜์—ฌ ๊ฒฐํ•จ

Convergence of Outputs When Two Large Language Models Interact in a Multi-Agentic Setup

Convergence of Outputs When Two Large Language Models Interact in a Multi-Agentic Setup

: ๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด ์„œ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์„ค์ •์—์„œ์˜ ์ˆ˜๋ ด ํ˜„์ƒ์„ ํƒ๊ตฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฏธ์ŠคํŠธ๋ž„ ๋„ค๋ชจ ๋ฒ ์ด์Šค 2407๊ณผ ๋ผ๋งˆ 2 13B HF ๋‘ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ชจ๋ธ์€ ๋…๋ฆฝ์ ์œผ๋กœ ํ›ˆ๋ จ๋œ ๊ณ ์œ ํ•œ ๊ฐ€์ค‘์น˜์™€ ํ† ํฐ๋ผ์ด์ €๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ์ดˆ๊ธฐ ์งง์€ ๋ฌธ์žฅ์œผ๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋Œ€ํ™”์—์„œ ๋‘ ๋ชจ๋ธ์ด ์ƒ๋Œ€๋ฐฉ์˜ ์ถœ๋ ฅ์— ์‘๋‹ตํ•˜๋ฉฐ 25ํšŒ ๋ฐ˜๋ณต๋˜๋Š” ๊ณผ์ •์„ ๊ด€์ฐฐํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ˆ˜๋ ด ํ˜„์ƒ์˜ ํŠน์ง• ์ˆ˜๋ ด ํ˜„์ƒ์€ ๋Œ€ํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ผ๊ด€์„ฑ ์žˆ๋Š” ํŒจํ„ด์ด ๋‚˜ํƒ€๋‚˜

Model
Planning as Descent: Goal-Conditioned Latent Trajectory Synthesis in Learned Energy Landscapes

Planning as Descent: Goal-Conditioned Latent Trajectory Synthesis in Learned Energy Landscapes

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์˜คํ”„๋ผ์ธ ๋ชฉํ‘œโ€‘์กฐ๊ฑด๋ถ€ RL(GCRL) ์€ ๋ณด์ƒ ์—†์ด ์ˆ˜์ง‘๋œ ์ •์  ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ์ž„์˜์˜ ๋ชฉํ‘œ ์ƒํƒœ์— ๋„๋‹ฌํ•˜๋Š” ์ •์ฑ…์„ ํ•™์Šตํ•ด์•ผ ํ•˜๋Š” ์–ด๋ ค์šด ๋ฌธ์ œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ํฌ๊ฒŒ (i) ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ํ”Œ๋ž˜๋‹ (ํ•™์Šต๋œ ๋™์—ญํ•™ + MPC)์™€ (ii) ์‹œํ€€์Šค ๊ธฐ๋ฐ˜ ์ƒ์„ฑ ๋ชจ๋ธ (Decision Transformers, Diffusion ๋“ฑ)์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ ํ•™์Šตโ€‘์ถ”๋ก  ๋ถˆ์ผ์น˜ (modelโ€‘exploitation, ์ƒ˜ํ”Œ๋ง ํŽธํ–ฅ)์™€ ๋…ธ์ด์ฆˆยท๋น„์ตœ์  ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ทจ์•ฝ์„ฑ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. 2. ํ•ต์‹ฌ ์•„์ด๋””์–ด โ€“ โ€œPlanning

World Models for Autonomous Navigation of Terrestrial Robots from LIDAR Observations

World Models for Autonomous Navigation of Terrestrial Robots from LIDAR Observations

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๊ณ ์ฐจ์› LIDAR ์ž…๋ ฅ ๋ฌธ์ œ : 360๊ฐœ์˜ ๊ฑฐ๋ฆฌ๊ฐ’์„ ๊ทธ๋Œ€๋กœ ์ •์ฑ…๋ง์— ๋„ฃ์œผ๋ฉด ํ‘œํ˜„ ๋ณต์žก๋„๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ , ๋ณด์ƒ์ด ํฌ์†Œํ•ด์ ธ ํ•™์Šต์ด ๋ถˆ์•ˆ์ •ํ•ด์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” 20~30๊ฐœ์˜ ์ƒ˜ํ”Œ๋งŒ ์‚ฌ์šฉํ•ด ์ฐจ์›์„ ์ธ์œ„์ ์œผ๋กœ ์ถ•์†Œํ–ˆ์ง€๋งŒ, ์ด๋Š” ํ™˜๊ฒฝ ์ธ์‹ ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋ชจ๋ธโ€‘ํ”„๋ฆฌ RL์˜ ํ•œ๊ณ„ : SACยทDDPGยทTD3 ๋“ฑ์€ ์ง์ ‘ ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋ฏ€๋กœ ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ์ด ๋‚ฎ๊ณ , ํ›ˆ๋ จ ์‹œ๊ฐ„์ด ๊ธธ๋‹ค. ํŠนํžˆ ์—ฐ์† ์ œ์–ด ๋กœ๋ด‡์—์„  ์•ˆ์ „ํ•œ ํƒ์ƒ‰์ด ์–ด๋ ค์›Œ ์‹ค์ œ ์ ์šฉ์— ์ œ์•ฝ์ด ์žˆ๋‹ค. ๋ชจ๋ธโ€‘๋ฒ ์ด์Šค RL์˜ ๋ถ€์ƒ : DreamerV3

Model
Deep Research: A Systematic Survey

Deep Research: A Systematic Survey

1. ๋…ผ๋ฌธ์˜ ๊ตฌ์กฐ์™€ ํ•ต์‹ฌ ๋‚ด์šฉ | ์„น์…˜ | ํ•ต์‹ฌ ํฌ์ธํŠธ | ์˜์˜ | | | | | | 1. Introduction | LLM์˜ ํ•œ๊ณ„(๋‹จ์ผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ง€์‹)์™€ DR ํ•„์š”์„ฑ ๊ฐ•์กฐ | ์—ฐ๊ตฌ ๋™๊ธฐ์™€ ๋ชฉํ‘œ๋ฅผ ๋ช…ํ™•ํžˆ ์ œ์‹œ | | 2. Preliminary Concept | DR ์ •์˜, 3โ€‘๋‹จ๊ณ„ ๋กœ๋“œ๋งต(Agentic Search โ†’ Evidence Synthesis โ†’ Insight Generation) | DR์„ ๋‹จ๊ณ„๋ณ„๋กœ ๊ตฌ๋ถ„ํ•ด ๊ธฐ์ˆ ยท์—ฐ๊ตฌ ๋กœ๋“œ๋งต์„ ์ œ๊ณต | | 3. Key Components | โ‘  Query Planning (Parallel,

System
Proportional integral derivative booster for neural networks-based time-series prediction: Case of water demand prediction

Proportional integral derivative booster for neural networks-based time-series prediction: Case of water demand prediction

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋‹ค๋‹จ๊ณ„ ์˜ˆ์ธก์˜ ํ•ต์‹ฌ ๊ณผ์ œ : ๋ฐ˜๋ณต(iterative) ์ „๋žต์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ, ์ด์ „ ๋‹จ๊ณ„์˜ ์˜ˆ์ธก๊ฐ’์ด ๋‹ค์Œ ๋‹จ๊ณ„ ์ž…๋ ฅ์— ์‚ฌ์šฉ๋ผ ์˜ค์ฐจ ๋ˆ„์  ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ํ•ด๊ฒฐ์ฑ…์€ ๋ชจ๋ธ์„ ๋‹ค์ค‘์œผ๋กœ ๊ตฌ์„ฑํ•˜๊ฑฐ๋‚˜ ๋ณต์žกํ•œ ์‚ฌ์ „โ€‘ํ›„์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•ด ๋ณต์žก๋„๊ฐ€ ๊ธ‰์ฆํ•œ๋‹ค. PID ์ œ์–ด์˜ ์žฅ์  : ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ 3๊ฐœ(Kp, Ki, Kd)๋ฟ์ด๋ฉฐ, ์‹ค์‹œ๊ฐ„ ์ œ์–ด์— ๊ฒ€์ฆ๋œ ์•ˆ์ •์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์˜ˆ์ธก ์˜ค๋ฅ˜ ๋ณด์ •์— ์ ์šฉํ•˜๋ฉด ๋ณต์žก๋„ ์ฆ๊ฐ€ ์—†์ด ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋‹ค. 2. ์ œ์•ˆ ๋ฐฉ๋ฒ•(PID ๋ถ€์Šคํ„ฐ)์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด | ๋‹จ๊ณ„ | ๋‚ด์šฉ | | |

Network
Satisfiability Modulo Theory Meets Inductive Logic Programming

Satisfiability Modulo Theory Meets Inductive Logic Programming

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ILP์˜ ๊ฐ•์  : ๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ์—์„œ 1์ฐจ ๋…ผ๋ฆฌ ๊ทœ์น™์„ ํ•™์Šตํ•จ์œผ๋กœ์จ ๋†’์€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๊ฐ•๋ ฅํ•œ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ILP์˜ ํ•œ๊ณ„ : ์ˆ˜์น˜ ์ œ์•ฝ(์ž„๊ณ„๊ฐ’, ์„ ํ˜•/๋น„์„ ํ˜• ๊ด€๊ณ„ ๋“ฑ)์„ ์ง์ ‘ ์œ ๋„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ 1) ์ด์‚ฐํ™” (threshold discretisation) โ†’ ์ •๋ณด ์†์‹ค, 2) ์ˆ˜๋™ ์„ค๊ณ„ ์ˆ ์–ด โ†’ ๋„๋ฉ”์ธ ์˜์กด์„ฑ, 3) bottomโ€‘clause ๊ธฐ๋ฐ˜ โ†’ ๋‹จ์ผ ์˜ˆ์ œ์—๋งŒ ์˜์กด, ๋‹ค์ค‘ ์˜ˆ์ œ ๊ฐ„์˜ ์ „์—ญ ์ˆ˜์น˜ ํŒจํ„ด์„ ํฌ์ฐฉ ๋ชปํ•จ. 2. ์ œ์•ˆ ๋ฐฉ๋ฒ•๋ก  | ๋‹จ๊ณ„ | ๋‹ด๋‹น ์‹œ์Šคํ…œ | ์ฃผ์š” ์—ญํ•  | | | |

Catching UX Flaws in Code: Leveraging LLMs to Identify Usability Flaws at the Development Stage

Catching UX Flaws in Code: Leveraging LLMs to Identify Usability Flaws at the Development Stage

: ์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ธ GPT 4o๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์›น ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‚ฌ์šฉ์„ฑ ๊ฒฐํ•จ์„ ์ดˆ๊ธฐ ๊ฐœ๋ฐœ ๋‹จ๊ณ„์—์„œ ์ž๋™์œผ๋กœ ์‹๋ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์‚ฌ์šฉ์„ฑ ํ‰๊ฐ€๋Š” ์‹œ๊ฐ„๊ณผ ์ž์› ์†Œ๋ชจ๊ฐ€ ํฌ๊ณ  ์ฃผ๊ด€์ ์ผ ์ˆ˜ ์žˆ์–ด, ํŠนํžˆ ์†Œ๊ทœ๋ชจ ํŒ€์ด๋‚˜ ์ดˆ๊ธฐ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด ํ•œ๊ณ„๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ LLM์˜ ๋ฐœ์ „์€ ์‚ฌ์šฉ์„ฑ ๋ฌธ์ œ๋ฅผ ์ž๋™ํ™”๋œ ๋ฐฉ์‹์œผ๋กœ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  ๋…ผ๋ฌธ์€ Jakob Nielsen์˜ 10๊ฐ€์ง€ ์‚ฌ์šฉ์„ฑ ์ง๊ด€ ์ง€์นจ์„ ๊ธฐ๋ฐ˜์œผ๋กœ GPT 4o ๋ชจ๋ธ์ด ์›น์‚ฌ์ดํŠธ ์†Œ์Šค ์ฝ”๋“œ๋ฅผ

Efficient Kernel Mapping and Comprehensive System Evaluation of LLM Acceleration on a CGLA

Efficient Kernel Mapping and Comprehensive System Evaluation of LLM Acceleration on a CGLA

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ถ”๋ก  ๊ฐ€์†ํ™”์— ๋Œ€ํ•œ ์ข…ํ•ฉ์ ์ธ ํ‰๊ฐ€๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์„ ํ˜• ๋ฐฐ์—ด(CGLA) ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜์ธ IMAX๋ฅผ ์‚ฌ์šฉํ•œ ์„ฑ๋Šฅ ๋ถ„์„์„ ์ค‘์ ์œผ๋กœ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” LLM์ด ์š”๊ตฌํ•˜๋Š” ๋†’์€ ๊ณ„์‚ฐ ์ž์›๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„ ๋ฌธ์ œ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด, CGLA๊ฐ€ ์ œ๊ณตํ•˜๋Š” ํšจ์œจ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. 1. LLM ์ถ”๋ก  ๊ฐ€์†ํ™”์˜ ํ•„์š”์„ฑ LLM์€ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ, ์ฝ”๋“œ ์ƒ์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๋ฉฐ, ์ด์— ๋”ฐ๋ฅธ ๋†’์€ ๊ณ„์‚ฐ ์ž์› ์š”๊ตฌ์™€ ์—๋„ˆ์ง€ ์†Œ๋น„๋Š” ๋ฐ์ดํ„ฐ ์„ผํ„ฐ์˜ ์šด์˜ ๋น„์šฉ๊ณผ ํ™˜๊ฒฝ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค.

System
CRAFT-E: A Neuro-Symbolic Framework for Embodied Affordance Grounding

CRAFT-E: A Neuro-Symbolic Framework for Embodied Affordance Grounding

: ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋ชฉํ‘œ๋Š” ๋ณด์กฐ ๋กœ๋ด‡์ด ์ธ๊ฐ„ ํ™˜๊ฒฝ์—์„œ ์ž‘๋™ํ•  ๋•Œ, ์‚ฌ์šฉ์ž์˜ ์š”์ฒญ์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ๋ฌผ์ฒด๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ œ๋Š” ๋‹จ์ˆœํžˆ ๋ฌผ์ฒด๋ฅผ ์ธ์‹ํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, ๋ฌผ์ฒด๊ฐ€ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅํ•œ ํ–‰๋™์„ ์ถ”๋ก ํ•ด์•ผ ํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์„ ํ•„์š”๋กœ ํ•ฉ๋‹ˆ๋‹ค. 1. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํ•œ๊ณ„: ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)๊ณผ ๋น„์ „ ์–ธ์–ด ๋ชจ๋ธ(VLM) : ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋“ค์€ ๊ฐœ๋ฐฉ ์–ดํœ˜ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์ง€๋งŒ, ๋‚ด๋ถ€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์ด ๋ถˆํˆฌ๋ช…ํ•˜๊ณ  ์˜ˆ์ธก์„ฑ์ด ๋‚ฎ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์‚ฌ์šฉ์ž๊ฐ€ ๋กœ๋ด‡์˜ ๊ฒฐ์ • ์ด์œ ๋ฅผ ์ดํ•ดํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ๋ณด์กฐ

Framework
ELANA: A Simple Energy and Latency Analyzer for LLMs

ELANA: A Simple Energy and Latency Analyzer for LLMs

ELANA๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์„ฑ๋Šฅ ๋ถ„์„์„ ์œ„ํ•œ ๋„๊ตฌ๋กœ, ํŠนํžˆ ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ๋„๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ํ•˜๋“œ์›จ์–ด ํ”Œ๋žซํผ์—์„œ LLMs์˜ ์‹ค์ œ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ELANA์˜ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์€ ๋ชจ๋ธ ํฌ๊ธฐ, ํ‚ค ๊ฐ’(KV) ์บ์‹œ ํฌ๊ธฐ, ์‚ฌ์ „ ์ฑ„์šฐ๊ธฐ ์ง€์—ฐ ์‹œ๊ฐ„(TTFT), ์ƒ์„ฑ ์ง€์—ฐ ์‹œ๊ฐ„(TPOT), ๊ทธ๋ฆฌ๊ณ  ์—”๋“œํˆฌ์—”๋“œ ์ง€์—ฐ ์‹œ๊ฐ„(TTLT)์„ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” ๋ชจ๋ธ์˜ ์‹ค์ œ ์‚ฌ์šฉ์„ฑ๊ณผ ํšจ์œจ์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ELANA๋Š” Hugging F

Evolutionary Architecture Search through Grammar-Based Sequence Alignment

Evolutionary Architecture Search through Grammar-Based Sequence Alignment

: ๋ณธ ๋…ผ๋ฌธ์€ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜ ๊ฒ€์ƒ‰(NAS) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋„์ „ ๊ณผ์ œ์ธ ํšจ๊ณผ์ ์ธ ๊ต์ฐจ ๊ต๋ฐฐ ์—ฐ์‚ฐ์ž์˜ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. NAS๋Š” ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ตœ์ ์˜ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ์ž๋™์œผ๋กœ ์ฐพ๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณต์žกํ•˜๊ณ  ํ‘œํ˜„๋ ฅ์ด ๋†’์€ ๊ฒ€์ƒ‰ ๊ณต๊ฐ„์—์„œ ํšจ๊ณผ์ ์ธ ํƒ์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ํฐ ๋„์ „๊ณผ์ œ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํšจ์œจ์ ์ธ ๋ฌธ๋ฒ• ๊ธฐ๋ฐ˜ ๊ต์ฐจ ๊ต๋ฐฐ ์—ฐ์‚ฐ์ž ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ์‚ฐ์ž๋Š” ์ง€์—ญ ์„œ์—ด ์ •๋ ฌ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ํ‘œํ˜„๋ ฅ ๋†’์€ NAS ๊ณต๊ฐ„์—์„œ ๋น ๋ฅด๊ณ  ํšจ๊ณผ์ ์œผ๋กœ ์ตœ์ ์˜ ์•„ํ‚คํ…์ฒ˜

FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models

FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models

: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ณธ ๋…ผ๋ฌธ์€ ํ•€๋ž€๋“œ์–ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ ์Šค์œ„ํŠธ, FIN bench v2๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. LLM์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP) ๋ถ„์•ผ์—์„œ ํš๊ธฐ์ ์ธ ๋ฐœ์ „์„ ์ด๋Œ์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ์ €์ž์› ์–ธ์–ด์ธ ํ•€๋ž€๋“œ์–ด์—์„œ ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ํ•„์š”ํ•œ ํ‰๊ฐ€ ์ž์›์ด ๋ถ€์กฑํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 2. ๊ธฐ์กด ๋ฆฌ์†Œ์Šค์˜ ๋ฌธ์ œ์  ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ : ๊ธฐ๊ณ„ ๋ฒˆ์—ญ์œผ๋กœ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์…‹์€ ์ธ๊ฐ„ ๊ฒ€ํ†  ์—†์ด ์ œ๊ณต๋˜์–ด, ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ์ œํ•œํ•  ์ˆ˜ ์žˆ๋Š” ์š”์ธ์ด ๋ฉ๋‹ˆ๋‹ค. ์ž‘์—… ๊ตฌ์„ฑ : ์ž‘์—… ๊ตฌ์„ฑ์ด ๋‹จ์ˆœํ•˜๋ฉฐ ํ”„๋กฌํ”„ํŠธ ๊ฐ์ˆ˜์„ฑ์„ ๊ณ ๋ ค

Model
No Image

From Theory of Mind to Theory of Environment: Counterfactual Simulation of Latent Environmental Dynamics

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์šด๋™ ์ œ์–ด ์ด๋ก ๊ณผ ์‚ฌํšŒ์ธ์ง€ ์ด๋ก ์„ ์œตํ•ฉํ•˜์—ฌ โ€˜ํ™˜๊ฒฝ ์ด๋ก (Theory of Environment)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์ฒ™์ถ”๋™๋ฌผ์˜ ์šด๋™ ์‹œ์Šคํ…œ์€ ๊ณ ์ฐจ์› ์ž์œ ๋„๋ฅผ ์ €์ฐจ์› ์ œ์–ด ๋ณ€์ˆ˜๋กœ ์••์ถ•ํ•จ์œผ๋กœ์จ ์‹ ๊ฒฝ ์ž์›์˜ ํšจ์œจ์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค๋Š” ์ฐจ์› ์ถ•์†Œ(dimโ€‹ensionality reduction) ์›๋ฆฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค. ์ด๋Š” ๋‡Œ๊ฐ€ ๊ทผ์œก ํ™œ๋™์„ ์ง์ ‘ ์ œ์–ดํ•˜๊ธฐ๋ณด๋‹ค โ€˜์šด๋™ ํ”„๋ฆฌ๋ฏธํ‹ฐ๋ธŒโ€™๋ฅผ ์กฐํ•ฉํ•ด ๋ณต์žกํ•œ ํ–‰๋™์„ ์ƒ์„ฑํ•œ๋‹ค๋Š” ๋ชจ๋ธ๊ณผ ์ผ๋งฅ์ƒํ†ตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ํšจ์œจ์„ฑ์€ ํ™˜๊ฒฝ์ด ๋น„๊ต์  ์•ˆ์ •์ ์ด๊ณ , ํ–‰๋™โ€‘๊ฒฐ๊ณผ ๊ด€๊ณ„๊ฐ€ ๋ช…์‹œ์ ์ธ ๊ฒฝ์šฐ์—

Quantitative Biology
Improving VQA Reliability: A Dual-Assessment Approach with Self-Reflection and Cross-Model Verification

Improving VQA Reliability: A Dual-Assessment Approach with Self-Reflection and Cross-Model Verification

๋ณธ ๋…ผ๋ฌธ์€ ์‹œ๊ฐโ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์ด VQA ์ž‘์—…์—์„œ ๋ณด์—ฌ์ฃผ๋Š” ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ชจ๋ธ์ด ์ƒ์„ฑํ•˜๋Š” ๋‹ต๋ณ€์ด ์ข…์ข… ์‹ค์ œ ์ด๋ฏธ์ง€ ๋‚ด์šฉ๊ณผ ๋ถˆ์ผ์น˜ํ•˜๋Š” โ€˜ํ™˜๊ฐ(hallucination)โ€™ ๋ฌธ์ œ์— ์ง๋ฉดํ•˜๊ณ  ์žˆ์Œ์„ ์ง€์ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฐ์€ ํŠนํžˆ ๋ชจ๋ธ์ด ๋†’์€ ํ™•์‹ (confidence)์„ ๋ณด์ผ ๋•Œ ์‚ฌ์šฉ์ž๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ ์‹ ๋ขฐํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ์‹ค์šฉ์ ์ธ ์‹œ์Šคํ…œ์—์„œ ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๋กœ ์ด์–ด์งˆ ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ €์ž๋“ค์€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ์ƒ๋ณด์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฒฐํ•ฉํ•œ Dualโ€‘Assessment ํ”„๋ ˆ์ž„์›Œํฌ, ์ฆ‰ DAVR์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ

Model
Suzume-chan: Your Personal Navigator as an Embodied Information Hub

Suzume-chan: Your Personal Navigator as an Embodied Information Hub

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ๊ณ„์™€ ์ธ๊ฐ„ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐ•ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, 'Social Presence Theory'์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‹ค์ œ ๋Œ€๋ฉด ์˜์‚ฌ์†Œํ†ต์—์„œ ๋А๋ผ๋Š” ์—ฐ๊ฒฐ๊ฐ์„ ๋””์ง€ํ„ธ ๋„๊ตฌ๋ฅผ ํ†ตํ•ด ์žฌํ˜„ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค์ฆˆ๋ฉ”์งฑ์ด๋ผ๋Š” ์†Œํ”„ํŠธ AI ๋™๋ฐ˜์ž๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ์ด๋ฅผ ํ™œ์šฉํ•œ 'Embodied Information Hub' ๊ฐœ๋…์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋กœํ† ํƒ€์ž…์€ ์–ธ์–ด ๋ชจ๋ธ๊ณผ RAG ๊ธฐ์ˆ ์„ ํ†ตํ•ฉํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ๊ตฌ์–ด ์„ค๋ช…์„ ํ•™์Šตํ•˜๊ณ  ๋Œ€ํ™”๋ฅผ ํ†ตํ•ด ์‘๋‹ตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋‹จ์ˆœํžˆ ์ •๋ณด ์ œ๊ณต์— ๊ทธ์น˜๋Š” ๊ฒƒ์ด ์•„

The body is not there to compute: Comment on 'Informational embodiment: Computational role of information structure in codes and robots' by Pitti et al

The body is not there to compute: Comment on 'Informational embodiment: Computational role of information structure in codes and robots' by Pitti et al

๋ณธ ๋…ผํ‰์€ Pitti ๋“ฑ(2023)์ด ์ œ์‹œํ•œ โ€œ์ •๋ณด์  ๊ตฌํ˜„โ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋น„ํŒ์ ์œผ๋กœ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋ชธ์„ โ€˜์ •๋ณด ์ฒ˜๋ฆฌ ์žฅ์น˜โ€™ ํ˜น์€ โ€˜๊ณ„์‚ฐ๊ธฐโ€™๋กœ ๋ณด๋Š” ๊ด€์ ์„ ๋„˜์–ด์„œ, ๋ชธ ์ž์ฒด๊ฐ€ ํ™˜๊ฒฝ๊ณผ์˜ ์ง€์†์ ์ด๊ณ  ๋™์ ์ธ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ๊ธฐ๋Šฅ์„ ๊ตฌํ˜„ํ•œ๋‹ค๋Š” ์ƒ๋ฌผํ•™์ ยท๊ณตํ•™์  ๊ทผ๊ฑฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ์ง„ํ™”์ƒ๋ฌผํ•™์  ์ฆ๊ฑฐ๋Š” ์‹ ๊ฒฝ๊ณ„์™€ ๊ทผ์œก, ๊ณจ๊ฒฉ ๋“ฑ ๋ฌผ๋ฆฌ์  ๊ตฌ์กฐ๊ฐ€ ๋‹จ์ˆœํžˆ ์‹ ํ˜ธ๋ฅผ ์ „์†กํ•˜๊ณ  ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์กด์žฌํ•œ๋‹ค๊ธฐ๋ณด๋‹ค, ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ, ๊ตฌ์กฐ์  ์•ˆ์ •์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ™˜๊ฒฝ ์ ์‘์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ˜•์„ฑ๋˜์—ˆ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณค์ถฉ์˜ ๋ณตํ•ฉ ๋ˆˆ์€ ๊ณ ํ•ด์ƒ

The Erosion of LLM Signatures: Can We Still Distinguish Human and LLM-Generated Scientific Ideas After Iterative Paraphrasing?

The Erosion of LLM Signatures: Can We Still Distinguish Human and LLM-Generated Scientific Ideas After Iterative Paraphrasing?

: ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ƒ์„ฑํ•œ ๊ณผํ•™ ์•„์ด๋””์–ด์™€ ์ธ๊ฐ„์ด ์ž‘์„ฑํ•œ ์•„์ด๋””์–ด๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํŒจ๋Ÿฌํ”„๋ž˜์ง• ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์นœ ํ›„์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLM๊ณผ ์ธ๊ฐ„์˜ ์•„์ด๋””์–ด๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ์ œ๊ธฐํ•˜๋ฉฐ, ํŠนํžˆ ๋ฐ˜๋ณต์ ์ธ ํŒจ๋Ÿฌํ”„๋ ˆ์ด์ง•์ด ์–ด๋–ป๊ฒŒ LLM ์ƒ์„ฑ ์•„์ด๋””์–ด์˜ ๋ณธ์งˆ์  ํŠน์„ฑ์„ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ํƒ์ง€ ๋Šฅ๋ ฅ์„ ์ €ํ•˜์‹œํ‚ค๋Š”์ง€๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์ค‘์š”์„ฑ LLM ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ๋ณต์žกํ•œ ์ธ์ง€ ํ™œ๋™ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊นŒ์ง€ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋กœ ์ธํ•ด LLM์ด ๊ณผํ•™์  ์•„์ด๋””์–ด ์ƒ์„ฑ์— ์ฐธ์—ฌํ• 

The stationary focus of the Kiepert parabola over a special Poncelet triangle family

The stationary focus of the Kiepert parabola over a special Poncelet triangle family

ํ‚ค์—ํผํŠธ ๋‚ดํฌ๋ฌผ(Kiepert inโ€‘parabola)์€ ์‚ผ๊ฐํ˜•์˜ ๊ฐ ๊ผญ์ง“์ ์— ์ผ์ •ํ•œ ๊ฐ์„ ์ด๋ฃจ๋Š” ์ง์„ ์„ ๊ทธ๋ ค ๋งŒ๋“  Kiepert ์‚ผ๊ฐํ˜•๋“ค์˜ ์™ธ์ ‘์›์— ๋Œ€ํ•œ ํŠน์ˆ˜ํ•œ ํฌ๋ฌผ์„ ์ด๋‹ค. ์ด ํฌ๋ฌผ์„ ์˜ ์ดˆ์ ์€ ์›๋ž˜ ์‚ผ๊ฐํ˜•์˜ ๋ชจ์–‘์— ๋”ฐ๋ผ ์›€์ง์ด์ง€๋งŒ, ํŠน์ •ํ•œ ๋ณ€ํ™˜๊ตฐ ์•„๋ž˜์—์„œ๋Š” ๋ถˆ๋ณ€์„ฑ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํŠนํžˆ โ€œ์›์— ๋‚ด์ ‘ํ•˜๋Š” ํฌ๋„ค๋ ˆ ์‚ผ๊ฐํ˜•(Poncelet triangles)โ€์ด๋ผ๋Š” ๊ณ ์ „์ ์ธ ๊ธฐํ•˜ํ•™์  ๊ตฌ์„ฑ์— ์ฃผ๋ชฉํ•œ๋‹ค. ํฌ๋„ค๋ ˆ ์‚ผ๊ฐํ˜•์€ ๋‘ ์›(ํ•˜๋‚˜๋Š” ๋‚ด๋ถ€, ํ•˜๋‚˜๋Š” ์™ธ๋ถ€) ์‚ฌ์ด์—์„œ ํ•œ ์ ์„ ์‹œ์ž‘์œผ๋กœ ์ ‘์„ ๊ณผ ํ˜ธ๋ฅผ ๊ต๋Œ€๋กœ ๊ทธ๋ฆฌ๋ฉฐ ์ƒ์„ฑ๋˜๋Š” ์‚ผ๊ฐํ˜•๋“ค์˜ ๋ฌดํ•œ

A Linear Expectation Constraint for Selective Prediction and Routing with False-Discovery Control

A Linear Expectation Constraint for Selective Prediction and Routing with False-Discovery Control

: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)๊ณผ ๋น„์ „ ์–ธ์–ด ๋ชจ๋ธ(LVLM)์˜ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์˜ˆ์ธก์„ ์œ„ํ•œ ์„ ํ˜• ๊ธฐ๋Œ€๊ฐ’ ์ œ์•ฝ(LEC) ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด FDR(False Discovery Rate)์„ ์—„๊ฒฉํ•˜๊ฒŒ ์ œ์–ดํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LEC๊ฐ€ ๋‹ค์–‘ํ•œ ํ‰๊ฐ€ ์„ค์ •์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜๋ฉฐ, ํŠนํžˆ ์‹ ๋ขฐ ๊ตฌ๊ฐ„ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ๋งŽ์€ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ƒ˜ํ”Œ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ FDR ์ œ์–ด๋ฅผ ์—„๊ฒฉํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•œ๋‹ค. 1. LEC์˜ ๊ฐœ๋…๊ณผ ํ•„์š”์„ฑ LEC๋Š” ์„ ํƒ์  ์˜ˆ์ธก ๋ฌธ์ œ๋ฅผ ํ†ต๊ณ„์  ์ œ์•ฝ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ด๋‹ค.

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์œ„ํ—˜ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํ•„์ˆ˜์ ์ธ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์˜์‚ฌ๊ฒฐ์ • ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด, ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ํ•œ๊ณ„๋ฅผ ํƒ์ƒ‰ํ•˜๊ณ  ์ด๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. LLM์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ๋‹จ์ˆœ ์ถ”๋ก ์—์„œ๋Š” ์—ฌ์ „ํžˆ ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•˜๋ฉฐ, ์˜ฌ๋ฐ”๋ฅธ ์˜ˆ์ธก๊ณผ ์ž˜๋ชป๋œ ์„ค๋ช… ์‚ฌ์ด์˜ ๋ถˆ์ผ์น˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ตฌํ˜• ์‹ ๊ฒฝ๋ง(Sphere Neural Network)์„ ํ™œ์šฉํ•˜์—ฌ ์—ฐ์—ญ์  ์ถ”๋ก  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ตฌํ˜• ์‹ ๊ฒฝ๋ง์€ n์ฐจ์› ๊ตฌ๋ฉด์—์„œ ์›์„ ๊ตฌ์„ฑํ•˜์—ฌ ๋…ผ๋ฆฌ ์ถ”

Computer Science Network Artificial Intelligence
AncientBench: Towards Comprehensive Evaluation on Excavated and Transmitted Chinese Corpora

AncientBench: Towards Comprehensive Evaluation on Excavated and Transmitted Chinese Corpora

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ๋Œ€ ์ค‘๊ตญ์–ด ๋ฌธ์„œ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ์žˆ์–ด ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์—ญํ• ๊ณผ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ฐœ๊ตด๋œ ๊ณ ๋Œ€ ๋ฌธ์„œ๋Š” ์›์‹œ์ ์ด๊ณ  ์ง„์‹คํ•œ ์–ธ์–ด ์–‘์‹์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์–ด, ์ด๋“ค ๋ฌธ์„œ์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ์ฃผ๋กœ ํ˜„๋Œ€ ์ค‘๊ตญ์–ด์™€ ์ „์Šน๋œ ๊ณ ๋Œ€ ๋ฌธ์„œ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ์ง€๋งŒ, ๋ฐœ๊ตด๋œ ๋ฌธ์„œ์˜ ํŠน์„ฑ๊ณผ ๋ณต์žก์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ์–ด, ์ด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์ฒด๊ณ„์ธ AncientBench ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 2. AncientBench ๊ตฌ์„ฑ ๋ฐ ํŠน์ง• AncientBench๋Š”

Arc Spline Approximation of Envelopes of Evolving Planar Domains

Arc Spline Approximation of Envelopes of Evolving Planar Domains

: ๋ณธ ๋…ผ๋ฌธ์€ ํ‰๋ฉด ๋„๋ฉ”์ธ์ด ๋ฏธ๋ฆฌ ์ •์˜๋œ ๊ถค์ ์„ ๋”ฐ๋ผ ์Šค์œ•ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ๋„๋ฉ”์ธ ์ƒ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, ์ง„ํ™” ๋„๋ฉ”์ธ์˜ ๋ด‰์šฐ๋ฆฌ๋ฅผ ์•„ํฌ ์Šคํ”Œ๋ผ์ธ์œผ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ํ˜•ํƒœ ์„ค๊ณ„์— ์œ ์šฉํ•œ ๋„๊ตฌ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ์ง„ํ™” ๋„๋ฉ”์ธ์€ ํฌ๊ธฐ์™€ ๋ชจ์–‘์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ํ‰๋ฉด ๋„๋ฉ”์ธ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋„๋ฉ”์ธ์˜ ๋ด‰์šฐ๋ฆฌ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์€ ๋ณต์žกํ•œ ํ˜•ํƒœ ์„ค๊ณ„์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋กœ, ์ด๋Š” ์Šค์œ• ๋ณผ๋ฅจ๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ์—์„œ ์ฃผ์š” ๊ด€์‹ฌ์‚ฌ์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฉ”๋””์–ผ ์ถ• ๋ณ€ํ™˜(MAT)์„ ํ™œ์šฉํ•˜์—ฌ ์ง„ํ™”

Beyond Additivity: Sparse Isotonic Shapley Regression toward Nonlinear Explainability

Beyond Additivity: Sparse Isotonic Shapley Regression toward Nonlinear Explainability

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ƒคํ”Œ๋ฆฌ ๊ฐ€์น˜ ๋ถ„์„์„ ๋„˜์–ด, ๋น„์„ ํ˜•์ ์ธ ํŠน์ง•๊ณผ ํฌ์†Œ์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ SISR(Sparse Isotonic Shapley Regression)์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ธ๊ณต์ง€๋Šฅ(XAI) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์˜ ์ผํ™˜์ด๋‹ค. 1. ์ƒคํ”Œ๋ฆฌ ๊ฐ€์น˜์˜ ํ•œ๊ณ„์™€ ํ•„์š”์„ฑ ์ƒคํ”Œ๋ฆฌ ๊ฐ€์น˜๋Š” ๊ฒฝ์ œํ•™๊ณผ ํ˜‘๋ ฅ ๊ฒŒ์ž„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์œผ๋กœ, ๋ชจ๋ธ์˜ ํŠน์ง• ์ค‘์š”๋„๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ์„ ํ˜•์ ์ธ ๊ฐ€์ •์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜์—ฌ ๋ณต์žกํ•œ ๋น„๊ฐ€์šฐ์‹œ์•ˆ ๋ฐ์ดํ„ฐ์™€ ๋‹ค์–‘ํ•œ ๋ณด์ƒ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์„ค๋ช…๋ ฅ์„ ์ œ์•ฝํ•œ๋‹ค.

Dynamically Scaled Activation Steering

Dynamically Scaled Activation Steering

1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ ๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑ ๋ชจ๋ธ๋ง์˜ ํ•ต์‹ฌ ๊ณผ์ œ์ธ ์ธ๊ฐ„ ๊ธฐ๋Œ€์— ๋ถ€ํ•ฉํ•˜๋Š” ๋ชจ๋ธ ํ–‰๋™๊ณผ ํ•ด๋กญ๊ฑฐ๋‚˜ ํŽธํ–ฅ๋œ ์ถœ๋ ฅ์„ ์–ต์ œํ•˜๋ฉด์„œ ์ผ๋ฐ˜ ๋Šฅ๋ ฅ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ํ™œ์„ฑํ™” ์œ ๋„๋Š” ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ๋กœ, ๋‚ด๋ถ€ ํ‘œํ˜„์„ ์›ํ•˜๋Š” ํ–‰๋™์— ์ง์ ‘ ์กฐ์ž‘ํ•˜์—ฌ ์„ธ๋ถ„ํ™”๋œ ์ œ์–ด ๋ฐ ํ•ด์„์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ ๋ชจ๋ธ ๊ฐ€์ค‘์น˜๋ฅผ ์ˆ˜์ •ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. 2. DSAS์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด DSAS๋Š” ๊ฐœ์ž… ๊ฐ•๋„ ๋งค๊ฐœ๋ณ€์ˆ˜ ฮป๋ฅผ ๊ฐ ํ† ํฐ ๋˜๋Š” ๊ณต๊ฐ„ ํŠน์ง•๋ณ„๋กœ ์ ์‘์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ ํ˜• ํšŒ๊ท€๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์›์น˜ ์•Š๋Š” ์ž„๋ฒ ๋”ฉ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๊ณ ,

E3AD: An Emotion-Aware Vision-Language-Action Model for Human-Centric End-to-End Autonomous Driving

E3AD: An Emotion-Aware Vision-Language-Action Model for Human-Centric End-to-End Autonomous Driving

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰(AV)์—์„œ ์ธ๊ฐ„ ์ค‘์‹ฌ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฐ•์กฐํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๊ฐ์ • ์ธ์‹๊ณผ ๊ณต๊ฐ„ ์ถ”๋ก ์„ ํ†ตํ•ฉํ•œ End to End Vision Language Action (E3AD) ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ E2E ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์ด ์Šน๊ฐ์˜ ์‹ ๋ขฐ์™€ ์ˆ˜์šฉ์„ฑ์„ ์ €ํ•ดํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ์ • ์ธ์‹๊ณผ ๊ณต๊ฐ„ ์ถ”๋ก ์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ์ธ๊ฐ„ ์ค‘์‹ฌ์  ์ž์œจ์ฃผํ–‰์˜ ํ•„์š”์„ฑ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ ์€ ๋ชจ๋“ˆํ˜• ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ๋น„์ „ ์–ธ์–ด ํ–‰๋™(VLA) ์ „์ฒด ์‹œ์Šคํ…œ์œผ๋กœ ์ง„ํ™”ํ•ด์™”์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์  ๋ฐœ

Model
ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

: ๋ณธ ๋…ผ๋ฌธ์€ ElecTwit ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด LLM์ด ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‚ฌํšŒ ์‹œ์Šคํ…œ์—์„œ ์–ด๋–ป๊ฒŒ ์„ค๋“๋ ฅ์„ ๋ฐœํœ˜ํ•˜๋Š”์ง€ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœํ™”๋œ ๊ฒŒ์ž„ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋„˜์–ด, ์‹ค์ œ ์‚ฌํšŒ ์ƒํ˜ธ์ž‘์šฉ์— ๋” ๊ฐ€๊นŒ์šด ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•˜์—ฌ LLM์˜ ํ–‰๋™ ํŒจํ„ด๊ณผ ์„ค๋“ ์ „๋žต์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. 1. ElecTwit ํ”Œ๋žซํผ ๋ฐ ์‹คํ—˜ ์„ค๊ณ„ ElecTwit๋Š” ํŠธ์œ„ํ„ฐ(X)๋ฅผ ๋ชจ๋ฐฉํ•œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์œผ๋กœ, ํˆฌํ‘œ์ž์™€ ํ›„๋ณด์ž๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์ •์น˜ ์„ ๊ฑฐ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ์—์ด์ „ํŠธ๋Š” 280์ž ์ œํ•œ ๋‚ด์—์„œ ๊ฒŒ์‹œ๋ฌผ๊ณผ ๋Œ“๊ธ€์„ ์ž‘์„ฑํ•˜๊ณ , ์ข‹์•„์š”๋ฅผ ๋ˆ„

Computer Science Framework Artificial Intelligence System
Enhancing Cross Domain SAR Oil Spill Segmentation via Morphological Region Perturbation and Synthetic Label-to-SAR Generation

Enhancing Cross Domain SAR Oil Spill Segmentation via Morphological Region Perturbation and Synthetic Label-to-SAR Generation

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ํ•ด์–‘ ์œ ์ถœ ์‚ฌ๊ณ  ๊ฐ์ง€: ๋„๋ฉ”์ธ ๊ฐ„ ์ผ๋ฐ˜ํ™”๋ฅผ ์œ„ํ•œ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ• ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ํ•ด์–‘ ์œ ์ถœ ์‚ฌ๊ณ ๋Š” ํ•ด์–‘ ์ƒํƒœ๊ณ„์™€ ๊ฒฝ์ œ์— ์‹ฌ๊ฐํ•œ ํ”ผํ•ด๋ฅผ ์ž…ํžˆ๋ฉฐ, ์ด๋ฅผ ์‹ ์†ํ•˜๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ํ•ฉ์„ฑ ๊ฐœ๊ตฌ ๋ ˆ์ด๋”(SAR)๋Š” ์ด๋Ÿฌํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง์—์„œ ํšจ๊ณผ์ ์ด๋‚˜, SAR ์ด๋ฏธ์ง€๋ฅผ ํ•ด์„ํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ๋„์ „ ๊ณผ์ œ๋‹ค. ๋”ฅ ๋Ÿฌ๋‹์€ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ์œผ๋‚˜, ์ง€๋ฆฌ์  ๋„๋ฉ”์ธ ๊ฐ„์˜ ์ผ๋ฐ˜ํ™” ๋ฌธ์ œ๊ฐ€ ๋‚จ์•„ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋„์ „์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํŽ˜๋ฃจ ํ•ด์•ˆ์—์„œ

Evolving CNN Architectures: From Custom Designs to Deep Residual Models for Diverse Image Classification and Detection Tasks

Evolving CNN Architectures: From Custom Designs to Deep Residual Models for Diverse Image Classification and Detection Tasks

: ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋ฉฐ, ํŠนํžˆ ๋งž์ถคํ˜• CNN ์•„ํ‚คํ…์ฒ˜์™€ ํ‘œ์ค€ ๋”ฅ ํ•™์Šต ๋ชจ๋ธ ๊ฐ„์˜ ์ฐจ์ด์ ์„ ๋ถ„์„ํ•œ๋‹ค. ๋‹ค์„ฏ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ์…‹(๋„๋กœ ์†์ƒ ๊ฐ์ง€, ๋ณดํ–‰๋กœ ์นจ๋ฒ” ๊ฐ์ง€, ๋ง๊ณ  ํ’ˆ์ข… ์ธ์‹, ์Œ€ ์ข…๋ฅ˜ ๋ถ„๋ฅ˜, ์˜คํ† ๋ฆญ์ƒค ๊ฐ์ง€)์„ ์‚ฌ์šฉํ•˜์—ฌ CNN์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ , ํ‘œ์ค€ ๋”ฅ ํ•™์Šต ์•„ํ‚คํ…์ฒ˜์™€ ๋งž์ถคํ˜• CNN ์•„ํ‚คํ…์ฒ˜ ๊ฐ„์˜ ์ฐจ์ด์ ์„ ๋ถ„์„ํ•œ๋‹ค. 1. ๋ฐ์ดํ„ฐ์…‹ ๋ฐ ๋ฌธ์ œ ์ •์˜ ๋„๋กœ ์†์ƒ ๊ฐ์ง€ : ์ด์ง„ ๋ถ„๋ฅ˜ ์ž‘์—…์œผ๋กœ ๋„๋กœ์˜ ์†์ƒ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•œ๋‹ค. ๋ณดํ–‰๋กœ ์นจ๋ฒ” ๊ฐ์ง€ : ๋ณดํ–‰๋กœ๊ฐ€ ์นจ๋ฒ”๋˜์—ˆ๋Š”์ง€๋ฅผ ํŒ๋ณ„ํ•˜๋Š” ์ด

Computer Science Computer Vision Detection Model
From Compound Figures to Composite Understanding: Developing a Multi-Modal LLM from Biomedical Literature with Medical Multiple-Image Benchmarking and Validation

From Compound Figures to Composite Understanding: Developing a Multi-Modal LLM from Biomedical Literature with Medical Multiple-Image Benchmarking and Validation

: ๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MMLMs)์˜ ํ™œ์šฉ์„ ํ†ตํ•ด ๋ณตํ•ฉ ์ด๋ฏธ์ง€ ์ดํ•ด๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ์ƒ๋ฌผ์˜ํ•™ ๋ฌธํ—Œ์—์„œ ๊ณต๊ฐœ์ ์œผ๋กœ ์ ‘๊ทผ ๊ฐ€๋Šฅํ•œ ๋ณตํ•ฉ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•ด ์˜๋ฃŒ MLLM์ธ M3LLM์„ ๊ฐœ๋ฐœํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ๋ณตํ•ฉ ์ด๋ฏธ์ง€ ์ดํ•ด์˜ ์ค‘์š”์„ฑ: ์ž„์ƒ ์›Œํฌํ”Œ๋กœ์šฐ์—์„œ๋Š” ์งˆ๋ณ‘ ์ง„ํ–‰ ์ถ”์ ๊ณผ ํฌ๊ด„์ ์ธ ์˜๋ฃŒ ์‚ฌ๋ก€ ์ดํ•ด๋ฅผ ์œ„ํ•ด ๋‹ค์ค‘ ์ด๋ฏธ์ง€ ๋ถ„์„์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์žฅ๊ธฐ ๋ชจ๋‹ˆํ„ฐ๋ง์€ ๋‹ค์–‘ํ•œ ์‹œ๊ฐ„์ ์—์„œ ์ˆ˜์ง‘๋œ ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ๋น„๊ตํ•˜์—ฌ ์งˆ

From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?

From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?

: ๋ณธ ๋…ผ๋ฌธ์€ ์‹ ๊ฒฝ๋ง ๋‚ด์—์„œ ์›์ธ ๋ณ€์ˆ˜์™€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•˜๊ณ  ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ํŠนํžˆ, ํฌ์†Œ ์ž๊ฐ€ ์ธ์ฝ”๋”(SAE)์™€ ๊ฐ™์€ ํŠน์ง•ํ™” ๋ฐฉ๋ฒ•์ด ํ™œ์„ฑํ™” ๋ฒกํ„ฐ๋ฅผ ๋” ํฌ์†Œํ•œ ๊ณต๊ฐ„์œผ๋กœ ๋งคํ•‘ํ•˜์—ฌ ์ฐจ์›๊ณผ ๊ฐœ๋… ๊ฐ„์˜ ์ผ๋Œ€์ผ ๊ด€๊ณ„๋ฅผ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ์‹์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. 1. ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์›์ธ ๋ณ€์ˆ˜ ์ œ์–ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์€ ์‹ ๊ฒฝ๋ง์˜ ํ–‰๋™ ์ดํ•ด ๋ฐ ์ œ์–ด๋ฅผ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋ถ„์•ผ์ด๋‹ค. ์ด๋Š” ๊ธฐ๋ณธ์ ์ธ ์›์ธ ๋ณ€์ˆ˜์™€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํŒŒ์•…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ํฌํ•จํ•œ๋‹ค. ํฌ์†Œ ์ž๊ฐ€ ์ธ์ฝ”๋”(SAE)์™€ ๊ฐ™์€ ํŠน์ง•ํ™” ๋ฐฉ๋ฒ•์ด ํ™œ์„ฑํ™” ๋ฒกํ„ฐ๋ฅผ ๋” ํฌ์†Œํ•œ ๊ณต๊ฐ„์œผ๋กœ ๋งคํ•‘ํ•˜์—ฌ

GRC-Net: Gram Residual Co-attention Net for epilepsy prediction

GRC-Net: Gram Residual Co-attention Net for epilepsy prediction

: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ๊ณผ ํ•„์š”์„ฑ ๋‡Œ์ „๋„(EEG) ์‹ ํ˜ธ๋Š” ๋‡Œ ํ™œ๋™ ๋ถ„์„, ๋‡Œ ๊ธฐ๋Šฅ ์ดํ•ด ๋ฐ ์ธ์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํƒ๊ตฌ์— ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ๋ฐœ์ž‘ ์˜ˆ์ธก์€ ์ด๋Ÿฌํ•œ ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•œ ์ค‘์š”ํ•œ ์‘์šฉ ๋ถ„์•ผ ์ค‘ ํ•˜๋‚˜๋กœ, ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ†ตํ•ด ํ™˜์ž์˜ ์‚ถ์˜ ์งˆ ํ–ฅ์ƒ๊ณผ ์น˜๋ฃŒ ํšจ๊ณผ ๊ฐœ์„ ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ 1์ฐจ์› ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ EEG ์‹ ํ˜ธ์— ์ ์šฉํ•ด์™”์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ ๋‚ด ์ž ์žฌ์  ๊ด€๊ณ„์„ฑ์„ ์™„์ „ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•˜๊ณ , ์œ ์˜๋ฏธํ•œ ์‹ ํ˜ธ ์ •๋ณด์™€ ๊ฐ€์šฐ์‹œ์•ˆ ๋…ธ์ด์ฆˆ๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋ฐ ์‹คํŒจํ•˜๋ฉฐ, ์‹œ๊ฐ„ ์˜์กด์„ฑ์ด ์†์‹ค๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. 2. GRC

Gutenberg-Richter-like relations in physical systems

Gutenberg-Richter-like relations in physical systems

: ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚จ๋ถ€ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์™€ ์ผ๋ณธ์˜ ์ง€์ง„ ์นดํƒˆ๋กœ๊ทธ๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ง€์ง„๊ณผ ์œ ์‚ฌํ•œ ๋™์—ญํ•™์„ ๊ฐ€์ง„ ๋‹ค์–‘ํ•œ ์—๋„ˆ์ง€ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ตฌํ…๋ฒ ๋ฅดํฌ ๋ฆฌ์ฒ˜ํ„ฐ(Gutenberg Richter) ๋ฒ•์น™์€ ์ง€์ง„ ๊ทœ๋ชจ์™€ ๋ฐœ์ƒ ๋นˆ๋„ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์ค‘์š”ํ•œ ์ด๋ก ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฒ•์น™๊ณผ ์œ ์‚ฌํ•œ ์—๋„ˆ์ง€ ๋ถ„ํฌ ํŒจํ„ด์„ ํƒ๊ตฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. 1. ๊ตฌํ…๋ฒ ๋ฅดํฌ ๋ฆฌ์ฒ˜ํ„ฐ ๋ฒ•์น™๊ณผ ์—๋„ˆ์ง€ ๋ถ„ํฌ ๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„์˜ ์—๋„ˆ์ง€ ๋ฐฉ์ถœ ํŒจํ„ด์ด ๊ตฌํ…๋ฒ ๋ฅดํฌ ๋ฆฌ์ฒ˜ํ„ฐ(Gutenberg Richter) ๋ฒ•์น™๊ณผ ์œ ์‚ฌํ•œ ํ˜•ํƒœ๋ฅผ ๋ ๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ตฌํ…๋ฒ ๋ฅดํฌ ๋ฆฌ์ฒ˜ํ„ฐ ๋ฒ•์น™์€

System
HealthContradict: Evaluating Biomedical Knowledge Conflicts in Language Models

HealthContradict: Evaluating Biomedical Knowledge Conflicts in Language Models

) 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ •์˜ ์–ธ์–ด ๋ชจ๋ธ์ด ํ•ฉ๋ฆฌ์ ์ด๋ฉด์„œ๋„ ๋น„์‚ฌ์‹ค์ ์ธ ์ฝ˜ํ…์ธ ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ทจ์•ฝ์„ฑ์€ ํŠนํžˆ ์˜๋ฃŒ ์กฐ์–ธ ์ œ๊ณต ์‹œ ์‹ ๋ขฐ์„ฑ์„ ํฌ๊ฒŒ ์ €ํ•˜์‹œํ‚ค๋Š” ์š”์ธ์ด๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ง€์‹ ๊ฐˆ๋“ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹ HEALTHCONTRADICT ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. 2. HEALTHCONTRADICT ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ : ๊ฑด๊ฐ• ๊ด€๋ จ ์งˆ๋ฌธ๊ณผ ๋‘ ๊ฐœ์˜ ์ƒ๋ฐ˜๋œ ์ž…์žฅ์„ ๊ฐ€์ง„ ๋ฌธ์„œ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ ์ธ์Šคํ„ด์Šค๋Š” ๊ณผํ•™์  ์ฆ๊ฑฐ์— ๊ธฐ๋ฐ˜ํ•œ ์‚ฌ์‹ค์ ์ธ ๋‹ต๋ณ€์„ ํฌํ•จํ•œ๋‹ค. ์งˆ๋ฌธ ์ฃผ์ œ : ์งˆ๋ณ‘ ์น˜๋ฃŒ์™€ ๊ฑด๊ฐ• ๋ฌธ์ œ๋ฅผ ํฌํ•จํ•˜๋ฉฐ, 50๊ฐ€์ง€ ์ด์ƒ์˜ ์งˆ๋ณ‘

Model
Hybrid Stackelberg Game and Diffusion-based Auction for Two-tier Agentic AI Task Offloading in Internet of Agents

Hybrid Stackelberg Game and Diffusion-based Auction for Two-tier Agentic AI Task Offloading in Internet of Agents

: ๋ณธ ๋…ผ๋ฌธ์€ ์ธํ„ฐ๋„ท ์—์ด์ „ํŠธ(IoA) ํ™˜๊ฒฝ์—์„œ ๋ฌด์„  ์—์ด์ „ํŠธ(WA)์˜ ์ปดํ“จํŒ… ์ง‘์•ฝ์ ์ธ AI ์ž‘์—… ๋ถ„์‚ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํŠนํžˆ ์ž์› ์ œ์•ฝ์ด ์žˆ๋Š” WA๊ฐ€ ๊ทผ์ฒ˜ ์„œ๋ฒ„์— ์ž‘์—…์„ ๋ถ„์‚ฐ์‹œํ‚ค๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ์ธํ„ฐ๋„ท ์—์ด์ „ํŠธ(IoA)๋Š” ๋‹ค์–‘ํ•œ ์ง€๋Šฅํ˜• ์—์ด์ „ํŠธ์˜ ์›ํ™œํ•œ ์—ฐ๊ฒฐ๊ณผ ํ˜‘์—… ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋„คํŠธ์›Œํ‚น ํŒจ๋Ÿฌ๋‹ค์ž„์ด๋‹ค. ํŠนํžˆ, ์ž์œจ์ฃผํ–‰์ฐจ(AV)์™€ ๊ฐ™์€ ๋ฌด์„  ์—์ด์ „ํŠธ(WA)๋Š” ์ฃผ๋ณ€ ํ™˜๊ฒฝ ์ธ์‹ ๋ฐ ๋ฌผ๋ฆฌ์  ํ–‰๋™ ์‹คํ–‰์— ํ•„์š”ํ•œ ๊ณ„์‚ฐ ์ง‘์•ฝ์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜์ง€

Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN

Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN

: ๋ณธ ๋…ผ๋ฌธ์€ ์‹๋ฌผ ์žŽ ์งˆ๋ณ‘ ๊ฐ์ง€ ๋ถ„์•ผ์—์„œ ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ๋”ฅ๋Ÿฌ๋‹ ์ ‘๊ทผ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋†์—… ์‚ฐ์—…์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ : ๋†์—… ๋ถ„์•ผ์—์„œ ์‹๋ฌผ ์งˆ๋ณ‘์€ ๊ทน๋‹จ์ ์ธ ๊ธฐํ›„ ๋ณ€ํ™”, ๋ฏธ์ƒ๋ฌผ ๊ฐ์—ผ ๋“ฑ ๋‹ค์–‘ํ•œ ์š”์ธ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ์ž‘๋ฌผ์˜ ์ƒ์‚ฐ์„ฑ์ด ํฌ๊ฒŒ ์ €ํ•˜๋ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์ธ๊ฐ„ ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•ด ์งˆ๋ณ‘์„ ํ™•์ธํ–ˆ์ง€๋งŒ, ์ด๋Š” ์‹œ๊ฐ„๊ณผ ๋…ธ๋™๋ ฅ์ด ๋งŽ์ด ์†Œ์š”๋˜๋ฉฐ ๋Œ€๊ทœ๋ชจ ๋†์žฅ์—์„œ๋Š” ํšจ๊ณผ์ ์ด์ง€ ์•Š์Šต๋‹ˆ๋‹ค. 2. ๊ธฐ์กด ์—ฐ๊ตฌ ๋ฐ ๋ฌธ์ œ์  : ์ตœ๊ทผ์—๋Š” CN

Detection
Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes

Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes

) Lang3D XL์€ ๋Œ€๊ทœ๋ชจ ์žฅ๋ฉด์˜ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ํƒ์ƒ‰์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, 3D ๊ฐ€์šฐ์‹œ์•ˆ ํ‘œํ˜„์— ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์˜๋ฏธ์  ๋ณ‘๋ชฉ ์ง€์ ์„ ๋„์ž…ํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ์ •์  ์ธํ„ฐ๋„ท ์žฅ๋ฉด์—์„œ์˜ ์ƒํ˜ธ์ž‘์šฉ์ ์ธ ๊ฐ€์ƒ ํƒ์ƒ‰์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ์ฆ๋ฅ˜ ๋ฐฉ๋ฒ•์ด ๋Œ€๊ทœ๋ชจ ์ธํ„ฐ๋„ท ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 1. ์˜๋ฏธ์  ๋ณ‘๋ชฉ ํŠน์„ฑ์˜ ๋„์ž… Lang3D XL์€ ์ €์ฐจ์› ์˜๋ฏธ์  ๋ณ‘๋ชฉ ํŠน์„ฑ์„ 3D ๊ฐ€์šฐ์‹œ์•ˆ ํ‘œํ˜„์˜ ๊ธฐ๋ณธ ๊ตฌ์„ฑ ์š”์†Œ๋กœ ์ถ”๊ฐ€ํ•˜์—ฌ, ๋ Œ๋”๋ง ํ›„ ๋‹ค์ค‘ ํ•ด์ƒ๋„ ๋ฐ

Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

๋ณธ ๋…ผ๋ฌธ์€ ๋ณ€๋™ ๊ธธ์ด์˜ ๊ถค์  ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์‡ผํ•‘๋ชฐ์—์„œ ์ˆ˜์ง‘๋œ ์ต๋ช… ๋ฐœ๊ฑธ์Œ ๊ถค์  ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ๊ตฌ์ถ•ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค(์˜ˆ: ์•ต์ปค ๋งค์žฅ ํ์‡„, ํ…Œ๋„ŒํŠธ ํ˜ผํ•ฉ ๋ณ€๊ฒฝ ๋“ฑ)์— ๋Œ€ํ•œ ๋Œ€์•ˆ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ํ™•๋ฅ ์  ๋ฏธ๋‹ˆ ๋ฐฐ์น˜ ํ›ˆ๋ จ ๋ฐฉ๋ฒ•์ด ๊ธธ์ด ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•ด ์ฐจ๋ณ„์ž/๋น„ํŒ์ž๊ฐ€ ๊ธธ์ด ๊ด€๋ จ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•˜๊ฒŒ ๋˜์–ด ๊ถค์  ์œ ๋ž˜ ๋ณ€์ˆ˜(์˜ˆ: ์ „์ฒด ์ง€์† ์‹œ๊ฐ„, ๋‹จ๊ณ„๋‹น ํ‰๊ท  ์‹œ๊ฐ„) ๋ถ„ํฌ ์ผ์น˜์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆํ•˜๋Š” ๊ธธ์ด ์ธ์‹ ์ƒ˜

Computer Science Machine Learning
Log Anomaly Detection with Large Language Models via Knowledge-Enriched Fusion

Log Anomaly Detection with Large Language Models via Knowledge-Enriched Fusion

: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ๊ณผ ๋ฌธ์ œ ์ธ์‹ ์‹œ์Šคํ…œ ๋กœ๊ทธ๋Š” ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์˜ ์ง„๋‹จ, ์„ฑ๋Šฅ ์ €ํ•˜ ์‹๋ณ„ ๋ฐ ๋ณด์•ˆ ์‚ฌ๊ณ  ํƒ์ง€์— ์ค‘์š”ํ•œ ์ •๋ณด์›์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋กœ๊ทธ์˜ ๋ฐ˜๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ ๋‹ค์–‘ํ•œ ํ˜•์‹์œผ๋กœ ์ธํ•ด ์ •ํ™•ํ•œ ์ด์ƒ ํƒ์ง€๋ฅผ ์–ด๋ ต๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ๋˜๋Š” ์‹œํ€€์Šค ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์€ ์›์‹œ ๋กœ๊ทธ์—์„œ ์˜๋ฏธ ์ •๋ณด๋ฅผ ๋†“์น˜๊ฑฐ๋‚˜ ์• ๋งคํ•œ ํŒจํ„ด์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. 2. EnrichLog ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ ๊ฐœ๋… EnrichLog๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•˜์—ฌ ์›์‹œ ๋กœ๊ทธ ํ•ญ๋ชฉ์— ์ฝ”ํผ์Šค ๋ฐ ์ƒ˜ํ”Œ ํŠน์ • ์ง€์‹์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ์ด์ƒ ํƒ์ง€๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค

Detection Model
MAR-FL: A Communication Efficient Peer-to-Peer Federated Learning System

MAR-FL: A Communication Efficient Peer-to-Peer Federated Learning System

: ๋ณธ ๋…ผ๋ฌธ์€ AI์™€ ์ฐจ์„ธ๋Œ€ ๋ฌด์„  ๋„คํŠธ์›Œํฌ์˜ ์œตํ•ฉ์ด ๋ถ„์‚ฐ ์ปดํ“จํŒ…๊ณผ ํ˜‘์—… ํ•™์Šต์— ๊ฐ€์ ธ์˜ค๋Š” ๋ณ€ํ™”๋ฅผ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ์ค‘์•™ํ™”๋œ ๋จธ์‹  ๋Ÿฌ๋‹(ML)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๋ฐฉ ํ•™์Šต(Federated Learning, FL)์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ณดํ˜ธ์™€ ๋ฌด์„  ํ™˜๊ฒฝ์˜ ๋Œ€์—ญํญ ์ œ์•ฝ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค. P2P(Peer to Peer) FL ์‹œ์Šคํ…œ์€ ์ค‘์•™ ์„œ๋ฒ„ ์—†์ด๋„ ํšจ์œจ์ ์ธ ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ํŠนํžˆ MAR FL(Moshpit All Reduce Federated Learning)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด P2P FL ์‹œ์Šคํ…œ์„

System Learning

< Category Statistics (Total: 5502) >

Electrical Engineering and Systems Science
103
General
4467
General Relativity
6
HEP-EX
3
HEP-PH
4
HEP-TH
4
MATH-PH
6
Quantum Physics
20

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut