KOINEU Logo
Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

์ด ๋…ผ๋ฌธ์€ ์ปจํฌ๋ฉ€ ์˜ˆ์ธก์ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ถ„ํฌ ๋ณ€๋™(distribution shift)โ€™์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ์ง€๋ฅผ ์ฝ”๋กœ๋‚˜19๋ผ๋Š” ์ „ ์„ธ๊ณ„์  ์ถฉ๊ฒฉ์„ ์ด์šฉํ•ด ์‹ค์ฆ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์—ฐ๊ตฌ์ž๋Š” 8๊ฐœ์˜ ๊ณต๊ธ‰๋ง ๊ด€๋ จ ํƒœ์Šคํฌ๋ฅผ ์„ ์ •ํ•˜๊ณ , ํŒฌ๋ฐ๋ฏน ์ด์ „๊ณผ ์ดํ›„์˜ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ Jaccard ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, Jaccard ์ง€์ˆ˜๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์›Œ ํŠน์ง• ์ž์ฒด๋Š” ๊ฑฐ์˜ ๋ณ€ํ•˜์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์˜ˆ์ธก ๊ตฌ๊ฐ„์˜ ์‹ค์ œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” 0 %์—์„œ 86.7 %๊นŒ์ง€ ๊ทน๋‹จ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ปจํฌ๋ฉ€ ๋ฐฉ๋ฒ•์ด ๋‹จ์ˆœํžˆ ํŠน์ง• ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ๊ฐ

Machine Learning Computer Science
Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S๋Š” ๊ธฐ์กด ๊ฐ€๋“œ๋ ˆ์ผ ๋ชจ๋ธ์ด ์ „์ฒด ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋‹ค์ค‘ํ„ด ๋Œ€ํ™”๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํ† ํฐ ์ˆ˜๊ฐ€ O(nยฒ) ์ˆ˜์ค€์œผ๋กœ ๊ธ‰์ฆํ•˜๋Š”๋ฐ, ์ด๋Š” ํŠนํžˆ 10ํ„ด ์ด์ƒ์œผ๋กœ ๊ธธ์–ด์ง€๋Š” ์‹ค์ œ ์„œ๋น„์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ GPU ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ์‹œ๊ฐ„์˜ ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Multiโ€‘turn to Singleโ€‘turn (M2S)โ€™ ์••์ถ•์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ๋ณ€ํ™˜ ๊ทœ์น™์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ํ„ด์˜ ํ•ต์‹ฌ ๋ฐœํ™”๋งŒ์„ ๋‚จ๊ธฐ๊ณ , ๋Œ€ํ™” ํ๋ฆ„์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ดํ”ˆ(โ€“),

Computer Science NLP Model
Device-Native Autonomous Agents for Privacy-Preserving Negotiations

Device-Native Autonomous Agents for Privacy-Preserving Negotiations

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด ํด๋ผ์šฐ๋“œโ€‘์ค‘์‹ฌ ํ˜‘์ƒ ํ”Œ๋žซํผ์ด ๊ฐ–๋Š” โ€œ๋ฐ์ดํ„ฐ ์ค‘์•™์ง‘์ค‘ โ†’ ๋ณด์•ˆ ์œ„ํ˜‘ โ†’ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ ์ €ํ•˜โ€๋ผ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ฐ”์ด์Šคโ€‘๋„ค์ดํ‹ฐ๋ธŒ( deviceโ€‘native ) ์•„ํ‚คํ…์ฒ˜๋Š” ๋ชจ๋“  ํ˜‘์ƒ ๋กœ์ง๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ์‚ฌ์šฉ์ž์˜ ๋กœ์ปฌ ํ™˜๊ฒฝ์— ๊ฒฉ๋ฆฌํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ํƒˆ์ทจ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ GDPRยทCCPA ๋“ฑ ๋ฐ์ดํ„ฐ ์ฃผ๊ถŒ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ํ˜„์žฌ ์ƒํ™ฉ์—์„œ ๋ฒ•์ ยท๊ทœ์ œ์  ์ปดํ”Œ๋ผ์ด์–ธ์Šค๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ถฉ์กฑํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ๋กœ ์ง€์‹ ์ฆ๋ช…(zeroโ€‘knowl

Computer Science Cryptography and Security
Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

judgeWEL ๋…ผ๋ฌธ์€ ์ €์ž์› ์–ธ์–ด์ธ ๋ฃฉ์…ˆ๋ถ€๋ฅดํฌ์–ด์— ๋Œ€ํ•œ NER ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด๋ผ๋Š” ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ๋‘ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์•ฝํ•œ ๊ฐ๋…์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฒซ์งธ, ์œ„ํ‚คํ”ผ๋””์•„ ๋‚ด๋ถ€ ๋งํฌ์™€ ์œ„ํ‚ค๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™”๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ์—”ํ„ฐํ‹ฐ ์œ ํ˜•์„ ์ž๋™์œผ๋กœ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์‚ฌ์ „ ๋งคํ•‘ ๋ฐฉ์‹๋ณด๋‹ค ํ™•์žฅ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„๋Š” ์ง€์†์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๋ฏ€๋กœ, ์ด ์ ‘๊ทผ๋ฒ•์€ ์ƒˆ๋กœ์šด ์—”ํ„ฐํ‹ฐ๊ฐ€ ๋“ฑ์žฅํ•ด๋„ ๋น„๊ต์  ์‰ฝ๊ฒŒ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ์ž๋™ ๋ผ๋ฒจ๋ง ๋‹จ

Computer Science NLP Data
No Image

FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems

FlashInferโ€‘Bench ๋…ผ๋ฌธ์€ โ€œAIโ€‘generated GPU kernelโ€์ด๋ผ๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ํ๋ฆ„์„ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜ ์„ค๊ณ„๋ผ๋Š” ๊ด€์ ์—์„œ ๋งค์šฐ ์˜๋ฏธ ์žˆ๋Š” ๊ธฐ์—ฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ FlashInfer Trace ๋ผ๋Š” ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์Šคํ‚ค๋งˆ์ด๋‹ค. ๊ธฐ์กด์— LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ๋กœ ์ €์žฅํ•˜๊ณ  ์ธ๊ฐ„์ด ์ˆ˜๋™์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ์‹์€ ํ™•์žฅ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. Trace๋Š” ์ปค๋„ ์ธํ„ฐํŽ˜์ด์Šค(์ž…์ถœ๋ ฅ ํ…์„œ ํ˜•ํƒœ, ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰), ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ(๋ฐฐ์น˜ ํฌ๊ธฐ, ์‹œํ€€์Šค ๊ธธ์ด), ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ(์–ธ์–ด, ์ปดํŒŒ์ผ ์˜ต์…˜)

Computer Science Artificial Intelligence System
No Image

Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations

Mixtureโ€‘ofโ€‘Experts(MoE) ๊ตฌ์กฐ๋Š” ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์ฒœ ๊ฐœ์˜ ์ „๋ฌธ๊ฐ€ ์ค‘ ์ผ๋ถ€๋งŒ์„ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๋ฌธ๊ฐ€๋“ค์ด ์‹ค์ œ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€œ์ „๋ฌธ๊ฐ€ ๋‹ค์–‘์„ฑโ€์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ์ด๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์–ด ์™”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์žฅ ์ง๊ด€์ ์ธ ์ ‘๊ทผ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ๊ฐ€์ค‘์น˜ ์ง๊ต ์†์‹ค์„ ์ ์šฉํ•˜์—ฌ ์ „๋ฌธ๊ฐ€ ๊ฐ„์˜ ๊ธฐํ•˜ํ•™์  ์ฐจ์ด๋ฅผ ๊ฐ•์ œํ•˜๊ณ , ๊ทธ ํšจ๊ณผ๋ฅผ ๋‹ค๊ฐ๋„๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์—์„œ๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„ ์ค‘๋ณต๋„(MSO, Mean Subspace

Machine Learning Computer Science
No Image

Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLM)์˜ ๊ธ‰๊ฒฉํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ์˜๋ฏธ๋ก  ์—ฐ๊ตฌ์— ๋ฏธ์น˜๋Š” ํ•จ์˜๋ฅผ ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋ˆ„์–ด ๊ณ ์ฐฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์€ ๋ฃจํŠธ๋น„ํžˆ ๋น„ํŠธ๊ฒ์Šˆํƒ€์ธ์˜ ํ›„๊ธฐ ์ฒ ํ•™์— ๊ธฐ๋ฐ˜ํ•œ ์‚ฌํšŒ๊ตฌ์„ฑ์ฃผ์˜์  โ€˜์–ธ์–ด๊ฒŒ์ž„โ€™ ์ ‘๊ทผ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ํ™”์ž ๊ฐ„์˜ ๊ด€์Šต์  ์ƒํ˜ธ์ž‘์šฉ๊ณผ ์‚ฌ์šฉ ์ƒํ™ฉ์— ์˜ํ•ด ํ˜•์„ฑ๋œ๋‹ค๊ณ  ๋ณด๋ฉฐ, ์–ด๋– ํ•œ ํ˜•์‹์  ๊ทœ์น™๋„ ์˜๋ฏธ๋ฅผ ์™„์ „ํžˆ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ถ•์€ ์ €์ž๊ฐ€ ์ œ์•ˆํ•œ โ€˜์˜๋ฏธ์žฅ ์ด๋ก (Semantic Field Theory)โ€™์œผ๋กœ, ์–ธ์–ด๋ฅผ ์—ฐ์†์ ์ธ ์˜๋ฏธ ๊ณต๊ฐ„ ์•ˆ์—์„œ ์„œ๋กœ ์–ฝํžŒ

Computer Science NLP
No Image

Latent Flow Matching for Expressive Singing Voice Synthesis

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ฐ€์ฐฝ ์Œ์„ฑ ํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์กฐ๊ฑด๋ถ€ ๋ณ€๋ถ„ ์˜คํ† ์ธ์ฝ”๋”(cVAE) ๊ตฌ์กฐ์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ์žˆ๋‹ค. cVAE๋Š” ํ•™์Šต ์‹œ์— ์‹ค์ œ ๋…น์Œ์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ •๋œ ํ›„๋ฐฉ(latent posterior) ๋ถ„ํฌ์™€, ํ•ฉ์„ฑ ์‹œ์— ์‚ฌ์ „(latent prior) ๋ถ„ํฌ๋ฅผ ๊ฐ๊ฐ ์ด์šฉํ•œ๋‹ค. ์ด ๋‘ ๋ถ„ํฌ๋Š” ์ด๋ก ์ ์œผ๋กœ๋Š” KL ๋ฐœ์‚ฐ์„ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•™์Šต๋˜์ง€๋งŒ, ์‹ค์ œ ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ, ํŠนํžˆ ๊ฐ€์ฐฝ ์Œ์„ฑ์˜ ๋ฏธ์„ธํ•œ ์ง„๋™(๋น„๋ธŒ๋ผํ† )์ด๋‚˜ ์–ต์–‘ ๋ณ€๋™(๋งˆ์ดํฌ๋กœ ํ”„๋กœ์†Œ๋””) ๊ฐ™์€ ๊ณ ์ฃผํŒŒ ๋ณ€๋™์„ ์™„์ „ํžˆ ํฌ์ฐฉํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์‚ฌ์ „ ์ƒ˜ํ”Œ์„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋ฉด ํ›„๋ฐฉ

No Image

Sparse Probabilistic Coalition Structure Generation: Bayesian Greedy Pursuit and $ell_1$ Relaxations

์ด ๋…ผ๋ฌธ์€ ์—ฐํ•ฉ ๊ตฌ์กฐ ์ƒ์„ฑ(CSG) ๋ฌธ์ œ์— โ€˜๊ฐ€์น˜๊ฐ€ ๊ด€์ธก์„ ํ†ตํ•ด ํ•™์Šต๋ผ์•ผ ํ•œ๋‹คโ€™๋Š” ์ƒˆ๋กœ์šด ์ „์ œ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ CSG๋Š” ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ์—ฐํ•ฉ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๊ฐ€์น˜ ํ•จ์ˆ˜๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , ๊ทธ ์œ„์—์„œ ์ตœ์ ์˜ ์—ฐํ•ฉ ๋ถ„ํ• ์„ ์ฐพ๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฌํšŒยท๊ฒฝ์ œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ฐœ๋ณ„ ์—ฐํ•ฉ์˜ ๊ฐ€์น˜๋ฅผ ์ง์ ‘ ์ธก์ •ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๋Œ€์‹  ์—ฌ๋Ÿฌ ์—ํ”ผ์†Œ๋“œ(์˜ˆ: ํ˜‘์ƒ ๋ผ์šด๋“œ, ํ”„๋กœ์ ํŠธ ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ)์—์„œ ์–ป์€ ์ด ๋ณด์ƒ๋งŒ ๊ด€์ฐฐ๋œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ โ€˜ํฌ์†Œ ์„ ํ˜• ํšŒ๊ท€โ€™ ๋ชจ๋ธ๋กœ ์ •ํ˜•ํ™”ํ•œ๋‹ค. ์ฆ‰, ํ•œ ์—ํ”ผ์†Œ๋“œ์˜ ์ด ๋ณด์ƒ Yโ‚œ๋Š” ์†Œ์ˆ˜(K)๊ฐœ

Computer Science Game Theory
VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet์€ ํ˜„์žฌ ์‚ฌ๋žŒ ์žฌ์‹๋ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ์ •ํ™•๋„์™€ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ResNetโ€‘50์˜ ๋„ค ๋‹จ๊ณ„(feature map)๋“ค์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋ฉด์„œ๋„ ๋ณ„๋„์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๋„์ž…ํ•˜์ง€ ์•Š์€ ์ ์ด๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ์ ‘๊ทผ๋ฒ•์ด ํ”ํžˆ ๊ฒช๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํญ์ฆ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ฆ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ์™„ํ™”ํ•œ๋‹ค. ์ž๋™ ์ฃผ์˜(attention) ๋ชจ๋“ˆ์ด ๊ฐ ์Šค์ผ€์ผ๋ณ„ ํŠน์ง•์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์ €ํ•ด์ƒ๋„์—์„œ ์ถ”์ถœ๋œ ์ „์—ญ์ ์ธ ํ˜•ํƒœ ์ •๋ณด์™€ ๊ณ ํ•ด์ƒ๋„์—์„œ ์–ป์–ด์ง€๋Š” ์„ธ

Computer Vision Computer Science Learning

< Category Statistics (Total: 5062) >

Electrical Engineering and Systems Science
102
General
4199
General Relativity
2
HEP-EX
3
HEP-PH
1
HEP-TH
3
MATH-PH
6
Nonlinear Sciences
1
Quantitative Finance
1
Quantum Physics
18

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut