Statistics / Computation

'Statistics / Computation' 카테고리의 모든 글

총 2개의 글
시간순 정렬
시간변화 매개변수 회귀 모델의 빠르고 유연한 베이지안 추론

시간변화 매개변수 회귀 모델의 빠르고 유연한 베이지안 추론

이 논문에서는 K개의 설명 변수와 T개의 관측치를 포함하는 시간 가변 매개변수(TVP) 회귀 모델을 K x T개의 설명 변수를 갖는 상수 계수 회귀 모델로 작성합니다. 기존 문헌 대부분은 계수가 랜덤 워크에 따라 변화한다고 가정하지만, 이 논문에서는 TVP에 대한 계층적 혼합 모델을 도입합니다. 결과적으로 생성된 모델은 여러 가지 제도로 TVP를 그룹화하는 랜덤 계수 사양에 매우 유사하게 작동합니다. 이러한 유연한 혼합은 적은 수, 중간 수 또는 큰 수의 구조적 변화를 특징으로 하는 TVP를 허용합니다. 우리는 K x T 회귀 변수의 특이값 분해에 기반한 계산 효율적인 베이지안 경제계량 방법을 개발했습니다. 인공 데이터에서 우리의 방법은 정확하고 표준 접근 방식보다 계산 시간 측면에서 훨씬 빠르다는 것을 발견했습니다. 많은 예측자를 사용하여 인플레이션 예측에 대한 실증적 연구에서는 우리의 모델이 대안적인 접근 방식보다 더 잘 예측하고, 매개변수 변화의 다른 패턴을 문서화함으로써 랜덤 워크 발전 가정과는 다른 결과를 보여주었습니다.

paper AI 요약
전력망 복구를 위한 자동화된 의사결정

전력망 복구를 위한 자동화된 의사결정

중요 인프라 시스템인 전력 네트워크, 수자원 네트워크 및 교통 체계 등은 어떤 커뮤니티의 복지에 중요한 역할을 합니다. 재난 후 이러한 인프라 시스템들의 회복이 무엇보다 중요합니다; 효율적이고 차질 없이 회복하기 위해서는 제한된 자원(인력과 기계를 조합한 리소스)을 손상된 인프라 요소의 수리에 할당해야 합니다. 의사결정자는 또한 리소스 할당 행동의 결과에 대한 불확실성과 맞서야 합니다. 전문가의 역량에도 불구하고, 많은 선택지와 순차적인 결정들의 결과에 대한 불확실성을 다루는 것은 자원을 수동으로 할당하는 것이 거의 최적일 경우가 드뭅니다. 이와 같은 불확실성이 있는 조합 문제는 mbox{NP-난해}로 알려져 있습니다. 우리는 대규모 실제 문제의 방대한 의사결정 선택을 다루는 새로운 의사결정 기법을 제안합니다; 또한 우리의 방법은 성능이 우수한 몇 가지 선택 사항에 따라 계산 리소스를 적응적으로 결정하는 체험 학습 컴포넌트를 포함하고 있습니다. 우리의 프레임워크는 폐쇄 루프이며, 이러한 의사결정 시스템의 모든 유익한 특성을 자연스럽게 통합합니다. 단기적인 접근 방식과 달리, 현재 선택에 따른 장래 효과를 고려하지 않는 것과는 반대로, 우리의 방법론은 해결책에 emph{예지안}을 효과적으로 통합하는 예측 학습 컴포넌트를 가지고 있습니다. 이를 위해 우리는 회귀 분석 이론, Markov 의사결정 과정(MDPs), 다중 팔 기계 및 자연 재해로 인한 커뮤니티 손상의 확률 모델을 활용하여 위험에 노출된 커뮤니티의 회복을 위한 최적 해법 방법을 개발했습니다. 우리의 방법론은 거대한 행동 공간을 가진 MDPs의 일반적인 문제에 적용되는 공헌을 제공합니다.

paper AI 요약

< 분야별 논문 현황 (Total: 566) >

Quantum Physics
5

검색 시작

검색어를 입력하세요

↑↓
ESC
⌘K 단축키