
수요 추정을 넘어 누적 경향 가중치를 통한 소비자 여유 평가
이 논문은 관찰 데이터를 활용하여 AI 기반의 결정, 특히 타겟팅 가격 설정과 알고리즘 대출에 대한 소비자 여유 효과를 심사하기 위한 실용적인 프레임워크를 개발합니다. 전통적 접근법에서는 먼저 수요 함수를 추정한 후 이를 통합하여 소비자 여유를 계산하지만, 이러한 방법은 모수적 수요 형태에서의 모형 사양 오류와 유연한 비모수적 또는 기계 학습 접근법에 따른 큰 데이터 요구사항과 느린 수렴으로 인해 실제 적용이 어려울 수 있습니다. 대신 우리는 현대 알고리즘 가격 설정에서 발생하는 탐색과 활용의 균형을 위해 본래 내재된 무작위성을 활용하고, 수요 함수의 명시적 추정 및 수치 적분을 피할 수 있는 추정자를 도입합니다. 무작위 가격에서 관찰된 각 구매 결과는 수요에 대한 편향 없는 추정치이며, 새로운 누적 경향 가중치(CPW)를 사용하여 구매 결과를 세심하게 재가중함으로써 적분을 재구성할 수 있습니다. 이러한 아이디어를 바탕으로 정확히 수요 모델이나 역사적인 가격 책정 정책 분포 중 하나만 올바르게 사양되어 있으면 되는 복수로 견고한 변형인 증강 누적 경향 가중치(ACPW) 추정자를 도입합니다. 또한 이 접근법은 소비자 여유를 추정할 때 기계 학습 방법의 활용을 용이하게 하며, 특히 기계 학습 추정값이 느린 수렴 속도를 보일 때조차도 수요 추정을 포함함으로써 빠른 수렴 속도를 달성합니다. 이러한 추정자는 목표 추정 대상인 소비자 여유가 관찰되지 않는다는 점에서 오프-폴리시 평가 기법의 표준적 응용이 아닙니다. 공평성을 고려하기 위해 이 프레임워크를 부등식 인식 여유 측정으로 확장하여 규제 당국과 기업들이 수익-공정성 트레이드오프를 정량화할 수 있도록 합니다. 마지막으로, 포괄적인 수치 연구를 통해 우리의 방법을 검증합니다.