최적 계약의 데이터 효율성
알고리즘 계약 이론에서 중앙 문제 중 하나는 그들의 특성이 알려지지 않은 대상에게 인센티브를 설계하는 것이다. 디지털 음악 플랫폼이 새로운 로열티 모델을 도입하려고 할 때, 각 독립 아티스트는 플랫폼에 대해 알려진 정보가 없는 개인 유형(private type)을 가지고 있다. 플랫폼은 작은 샘플 집합에서 시범 프로그램을 실행하여 여러 새로운 수익 공유 계약을 테스트하고 그 결과 다운로드 및 스트리밍 참여 데이터를 수집한다. 이 샘플을 기반으로 플랫폼은 전체 아티스트 커뮤니티의 동기를 부여하여 이윤을 최적화하는 개선된 로열티 모델을 학습하려고 한다. 이 시범 프로그램은 최근의 주요 연구에서 제시한 샘플 기반 학습 프레임워크의 예로, 이를 통해 유형이 완전히 파악된 대상들로부터 유한 데이터셋으로부터 최적 계약을 설계할 수 있다. 이 프레임워크는 다른 확립된 모델과 함께 다양한 시나리오에 적합하다. 더 공식적으로 말하면, 환경은 에이전트가 취할 수 있는 $`n`$ 개의 행동 집합과 $`m ge 2`$ 개의 가능한 결과로 구성된다. 각 결과 $`j`$에는 플랫폼이 받는 고정 보상 $`r_j ge 0`$이 있다. 에이전트는 개인 유형(private type) $` theta=(f,c)`$를 가지고 있는데, 이는 플랫폼에 알려지지 않은 정보이다. 플랫폼은 계약을 설계하여 최적의 기대 수익을 얻으려고 한다. 우리의 주요 결과는 선형 계약 클래스에 대한 학습 샘플 복잡도를 정확히 캐릭터라이즈하는 것이다.