A Security Based Data Mining Approach in Data Grid

Reading time: 5 minute
...

📝 Original Info

  • Title: A Security Based Data Mining Approach in Data Grid
  • ArXiv ID: 1003.4066
  • Date: 2010-03-23
  • Authors: Researchers from original ArXiv paper

📝 Abstract

Grid computing is the next logical step to distributed computing. Main objective of grid computing is an innovative approach to share resources such as CPU usage; memory sharing and software sharing. Data Grids provide transparent access to semantically related data resources in a heterogeneous system. The system incorporates both data mining and grid computing techniques where Grid application reduces the time for sending results to several clients at the same time and Data mining application on computational grids gives fast and sophisticated results to users. In this work, grid based data mining technique is used to do automatic allocation based on probabilistic mining frequent sequence algorithm. It finds frequent sequences for many users at a time with accurate result. It also includes the trust management architecture for trust enhanced security.

💡 Deep Analysis

Deep Dive into A Security Based Data Mining Approach in Data Grid.

Grid computing is the next logical step to distributed computing. Main objective of grid computing is an innovative approach to share resources such as CPU usage; memory sharing and software sharing. Data Grids provide transparent access to semantically related data resources in a heterogeneous system. The system incorporates both data mining and grid computing techniques where Grid application reduces the time for sending results to several clients at the same time and Data mining application on computational grids gives fast and sophisticated results to users. In this work, grid based data mining technique is used to do automatic allocation based on probabilistic mining frequent sequence algorithm. It finds frequent sequences for many users at a time with accurate result. It also includes the trust management architecture for trust enhanced security.

📄 Full Content

JOURNAL OF COMPUTING, VOLUME 2, ISSUE 3, MARCH 2010, ISSN 2151-9617 HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

© 2010 Journal of Computing http://sites.google.com/site/journalofcomputing/

45 A SECURITY BASED DATA MINING APPROACH IN DATA GRID

S.Vidhya, S.Karthikeyan

Abstract - Grid computing is the next logical step to distributed computing. Main objective of grid computing is an innovative approach to share resources such as CPU usage; memory sharing and software sharing. Data Grids provide transparent access to semantically related data resources in a heterogeneous system. The system incorporates both data mining and grid computing techniques where Grid application reduces the time for sending results to several clients at the same time and Data mining application on computational grids gives fast and sophisticated results to users. In this work, grid based data mining technique is used to do automatic allocation based on probabilistic mining frequent sequence algorithm. It finds frequent sequences for many users at a time with accurate result. It also includes the trust management architecture for trust enhanced security.
Keywords: trust enhanced security, Data Grids, computational grids.


  1. INTRODUCTION 1.1. Grid Computing A  parallel  processing  architecture  in  which  CPU  resources  are  shared  across  a  network,  and  all  machines  function  as  one  large  supercomputer,  it  allows  unused  CPU  capacity  in  all  participating  machines  to  be  allocated  to  one  application  that  is  extremely  computation  intensive  and  programmed  for  parallel  processing.  Grid  computing  is  also  called  ʺpeer  to  peer  computingʺ  and  ʺdistributed computing.ʺ  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   S.Karthikeyan  is  with  Department  of  Computer  Science, SNS College of Technology, Coimbatore, India   S.Vidhya is with Department of Computer Science,           SNS College of Technology, Coimbatore, India          The  grid  computing  gives  us  yet  another way of sharing the computer resource  and yields us the maximum benefit at the time  and speed efficiency. Grid computing enables  multiple  applications  to  share  computing  infrastructure,  resulting  in  much  greater  flexibility, cost, power efficiency, performance,  scalability and availability at the same time.   1.2. Data Grid A  data  grid  is  a  grid  computing  system  that  deals  with  the  data  controlled  sharing  and  management  of  large  amount  of  distributed  data.  A  Data  Grid  can  include  and  provide  transparent access to semantically related data  resources  that  are  different  managed  by  different  software  systems  and  are  accessible  through different protocols and interfaces. 

JOURNAL OF COMPUTING, VOLUME 2, ISSUE 3, MARCH 2010, ISSN 2151-9617 HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

© 2010 Journal of Computing http://sites.google.com/site/journalofcomputing/

46 1.3. Distributed Data Mining Distributed  data  mining  deals  with  the problem of data analysis in environments  of  distributed  computing  nodes,  and  users  peer to peer computing is emerging as a new  distributed  computing  for  many  novel  applications  that  involve  exchange  of  information  among  a  large  n  umber  of  peers  with little centralized coordination. 1.4. Data Mining Rule SPRINT  algorithm  for  searching  the  data.  Finally  it  finds  result  and  sends  to  the  server.  In  this  work,  a  unified  view  is  provided  in  which  it  allows  user  to  use  a  single  query  to  retrieve  all  the  information  transparently from different data sources. The  technologies  used  in  this  work  includes  standard for data access over grid, high level  data  access  and  semantic  data  integration  Where  the  high  level  data  access  is  provided  by  OGSA‐DQP  system  and  semantic  data  integration by XMAP framework.    Integrating  OGSADQP  system  and  XMAP  framework  has  developed  the  prototype shown in this work. 

  1. DESIGN GOAL The proposed grid based data mining  technique  is  used  to  do  automatic  allocation  based  on  the  algorithm  Probabilistic  mining  frequent sequences. This algorithm is used to  find frequent sequences in complex databases.  It finds frequent sequences for many users at a  time with accurate result. Grid application for  this  application  reduces  the  time  for  sending  results to several clients at the same time. Data  mining  application  on  computational  grids  gives fast and sophisticated results to users.  In  this  system,  data  integration  architecture needs to combine both the query  reformulation  and  the  query  processing  services.  This  system  offers  a  wrapper/mediator‐based approach to integrate  data  sources,  and  adopts  the  XMAP  decentralized  mediator  approach  to  handle  semantic  heterogeneity  over  data 

…(Full text truncated)…

Reference

This content is AI-processed based on ArXiv data.

Start searching

Enter keywords to search articles

↑↓
ESC
⌘K Shortcut