Mathematics / Math.HO

All posts under category "Mathematics / Math.HO"

15 posts total
Sorted by date
A Brief Review of SIAM Review

A Brief Review of SIAM Review

๋ณธ ๋…ผ๋ฌธ์€ SIAM ๋ฆฌ๋ทฐ ์ €๋„์˜ ๋ณ€ํ™”์™€ ๊ทธ ์˜ํ–ฅ๋ ฅ์„ ๋ถ„์„ํ•˜๊ณ , ํ–ฅํ›„ ๊ฐœ์„  ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. 1999๋…„ ์žฌ์กฐ์ง ์ดํ›„, SIAM ๋ฆฌ๋ทฐ ๋Š” ์—ฌ๋Ÿฌ ์„น์…˜์œผ๋กœ ๊ตฌ๋ถ„๋˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ์ €๋„์˜ ๊ตฌ์„ฑ์ด ํฌ๊ฒŒ ๋ฐ”๋€Œ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๊ฐ€ ์ €๋„์˜ ์˜ํ–ฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค์ง€ ๋ชปํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 1. SIAM ๋ฆฌ๋ทฐ์˜ ๊ฐœ์š”์™€ ๋ณ€ํ™” SIAM ๋ฆฌ๋ทฐ๋Š” SIAM์—์„œ ๋ฐœํ–‰ํ•˜๋Š” 12๊ฐœ ์ด์ƒ์˜ ํ•™์ˆ  ์ €๋„ ์ค‘ ํ•˜๋‚˜๋กœ, ๋ชจ๋“  ํšŒ์›์—๊ฒŒ ๋ฐฐํฌ๋˜๋Š” ์„ ๋„์ ์ธ ์ €๋„์ด๋‹ค. 1999๋…„์— ์ด๋ฃจ์–ด์ง„ ์ฃผ์š” ๋ณ€๊ฒฝ ์‚ฌํ•ญ์€ ์ €๋„์˜ ํ”„๋กœํ•„์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด์—ˆ๋‹ค. ์ด ๋ณ€ํ™”๋Š” ์ปฌ๋Ÿฌ ์ธ์‡„ ๋„์ž…๊ณผ ํ•จ๊ป˜

Mathematics
No Image

The Art of Space Filling in Penrose Tilings and Fractals

1. ์—์…” ์Šคํƒ€์ผ ํƒ€์ผ๋ง์˜ ๋„์ „๊ณผ ๊ฐ€๋Šฅ์„ฑ MC ์—์…”๋Š” ๊ทธ์˜ ๋…ํŠนํ•œ ํƒ€์ผ ์•„ํŠธ๋กœ ์„ธ๊ณ„์ ์ธ ๋ช…์„ฑ์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ์˜ ์ž‘ํ’ˆ์€ ๋‹จ์ˆœํžˆ ์˜ˆ์ˆ ์  ๊ฐ€์น˜๋ฅผ ๋„˜์–ด์„œ, ์ˆ˜ํ•™์  ๊ฐœ๋…์„ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์—์…”์˜ ํƒ€์ผ๋ง ์ž‘์—…์€ ์ƒ๋ฌผ ํ˜•ํƒœ์™€ ๊ธฐํ•˜ํ•™์  ํŒจํ„ด์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฏธ์  ๊ฒฝํ—˜์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์—์…” ์Šคํƒ€์ผ ํƒ€์ผ๋ง์˜ ํ•ต์‹ฌ ๋„์ „์  ์ค‘ ํ•˜๋‚˜๋Š” ์ด๋ฏธ์ง€๊ฐ€ ํƒ€์ผ ๊ฒฝ๊ณ„๋ฅผ ๋„˜์–ด์„œ ์ผ๊ด€๋˜๊ฒŒ ์—ฐ๊ฒฐ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์—์…”๋Š” ์–‘๋Œ€์นญ์„ ํ™œ์šฉํ•ด ๊ฐ ๊ฐ€์žฅ์ž๋ฆฌ๊ฐ€ ๋ณด์™„์ ์ธ ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด์•ผ ํ•จ์„ ์ธ์‹ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋‹จ์ˆœํ•œ

Physics Mathematics
No Image

A Criticism on 'A Mathematicians Apology' by G. H. Hardy

: G.H. ํ•˜๋””์˜ ์ˆ˜ํ•™์ž์˜ ๋ณ€๋ช… ์€ 20์„ธ๊ธฐ ์ดˆ๋ฐ˜ ์ˆ˜ํ•™๊ณผ ๊ณผํ•™์— ๋Œ€ํ•œ ์ฒ ํ•™์  ์ ‘๊ทผ์„ ๋…ผํ•˜๋Š” ์ค‘์š”ํ•œ ๋ฌธํ—Œ์ด๋‹ค. ์ด ์ฑ…์—์„œ ํ•˜๋””๋Š” ์ˆ˜ํ•™์„ ์ˆœ์ˆ˜ํ•œ ์ง€์  ํ˜ธ๊ธฐ์‹ฌ์˜ ๊ฒฐ๊ณผ๋กœ ๋ณด๋ฉฐ, ์‘์šฉ ์ˆ˜ํ•™์— ๋Œ€ํ•ด ๋ถ€์ •์ ์ธ ํƒœ๋„๋ฅผ ์ทจํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ ์€ ๊ทธ๊ฐ€ ์ˆ˜ํ•™์ž๋กœ์„œ์˜ ์ž๋ถ€์‹ฌ๊ณผ ํ•จ๊ป˜ ๊ณผํ•™์˜ ๋ฐœ์ „์— ๋Œ€ํ•œ ์ฒ ํ•™์  ๊ฒฌํ•ด๋ฅผ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜๋””๋Š” ์ˆœ์ˆ˜ ์ˆ˜ํ•™์„ ๊ฐ€์žฅ ๋†’์ด ํ‰๊ฐ€ํ•˜๋ฉฐ, ์‘์šฉ ์ˆ˜ํ•™์„ ํŽธ๊ฒฌ์ ์œผ๋กœ ๋ฐ”๋ผ๋ณธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•„์ด๋Ÿฌ๋‹ˆํ•˜๊ฒŒ๋„, ๊ทธ ์ž์‹ ์˜ ์—ฐ๊ตฌ ์ค‘ ์ผ๋ถ€๋Š” ์ค‘์š”ํ•œ ์‘์šฉ ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ์•˜๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ํ•˜๋”” ์™€์ธ๋ฒ ๋ฅดํฌ ๋ฒ•์น™์€ ์œ ์ „ํ•™์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ,

Mathematics
Elementary trigonometry based on a first order differential equation

Elementary trigonometry based on a first order differential equation

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์‚ผ๊ฐํ•จ์ˆ˜ ์ •์˜๋ฅผ ๋„˜์–ด์„œ, 1์ฐจ ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ $f'(x) f(x + a)$๋ฅผ ํ†ตํ•ด ์‚ผ๊ฐํ•จ์ˆ˜์˜ ์„ฑ์งˆ์„ ์žฌํ•ด์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋Š” ์‚ผ๊ฐํ•จ์ˆ˜๊ฐ€ ์ฃผ๊ธฐ์ ์ด๊ณ  ์—ฌ๋Ÿฌ ์‹์ฆ์„ ๋งŒ์กฑํ•˜๋Š” ํ•จ์ˆ˜๋ผ๋Š” ๊ธฐ์กด์˜ ์ดํ•ด๋ฅผ ํ™•์žฅ์‹œํ‚ค๋ฉฐ, ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์‚ผ๊ฐํ•จ์ˆ˜์˜ ๋ณธ์งˆ์„ ํƒ๊ตฌํ•œ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ์‚ฌ์ธ๊ณผ ์ฝ”์‚ฌ์ธ ํ•จ์ˆ˜๊ฐ€ 2์ฐจ ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ $f'' f$์˜ ํ•ด๋กœ์„œ ์ •์˜๋œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Š” ์ฃผ๊ธฐ์„ฑ, ์ œํ•œ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์–‘ํ•œ ์‚ผ๊ฐํ•จ์ˆ˜ ์‹์ฆ์„ ๋งŒ์กฑํ•˜๋Š” ํ•จ์ˆ˜๋ผ๋Š” ์˜๋ฏธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์„ฑ์งˆ๋“ค์€ ๋‹ค๋ฅธ ์ •์˜๋“ค์—์„œ ๋„์ถœ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 1

Mathematics
Zum 200. Geburtstag von Evariste Galois

Zum 200. Geburtstag von Evariste Galois

: ๊ฐˆ๋ฃจ์•„์˜ ์‚ถ๊ณผ ์‹œ๋Œ€์  ๋ฐฐ๊ฒฝ ์—๋ฐ”๋ฆฌ์Šค ๊ฐˆ๋ฃจ์•„๋Š” ํ”„๋ž‘์Šค ํ˜๋ช… ์ดํ›„์˜ ๋ถˆ์•ˆ์ •ํ•œ ์ •์น˜ ํ™˜๊ฒฝ ์†์—์„œ ํƒœ์–ด๋‚ฌ๋‹ค. ๊ทธ์˜ ์ƒ์• ๋Š” 1820๋…„๋Œ€์™€ 30๋…„๋Œ€, ์ฆ‰ ๋‘ ๋ฒˆ์งธ ํ˜๋ช…์ด ์ผ์–ด๋‚œ ์‹œ๊ธฐ์™€ ๋งž๋ฌผ๋ ค ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋Œ€์  ๋ฐฐ๊ฒฝ์€ ๊ฐˆ๋ฃจ์•„์—๊ฒŒ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์ณค์œผ๋ฉฐ, ๊ทธ๋Š” ์ •์น˜์ ์œผ๋กœ ๋งค์šฐ ํ™œ๋™์ ์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋กœ ์ธํ•ด ํ•™๊ต์—์„œ ์ถ”๋ฐฉ๋‹นํ•˜๊ฑฐ๋‚˜ ์‚ฌํšŒ์  ์ œ์•ฝ์„ ๊ฒช๊ฒŒ ๋˜์—ˆ๋‹ค. ์ˆ˜ํ•™์  ์—…์  ๊ฐˆ๋ฃจ์•„์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ˆ˜ํ•™์  ์—…์  ์ค‘ ํ•˜๋‚˜๋Š” ๋ฐฉ์ •์‹์˜ ํ•ด๋ฒ•๊ณผ ๊ตฐ๋ก  ์‚ฌ์ด์˜ ๊นŠ์€ ์—ฐ๊ฒฐ์„ ํƒ๊ตฌํ•œ ๊ฒƒ์ด๋‹ค. ๊ทธ๋Š” ๋‹ค์„ฏ ์ฐจ์ˆ˜ ์ด์ƒ์˜ ๋ฐฉ์ •์‹์— ๋Œ€ํ•œ ์ผ๋ฐ˜์ ์ธ ํ•ด๋ฒ•์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ

Mathematics
The Unlucky Door

The Unlucky Door

๋ณธ ๋…ผ๋ฌธ์€ ๋ชฌํ‹ฐ ํ™€ ๋ฌธ์ œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฒŒ์ž„ ์ด๋ก ์  ์ ‘๊ทผ๋ฒ•๊ณผ ๋‹ค์–‘ํ•œ ๋ณ€ํ˜•์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์„ธ ๋ฌธ ๊ฒŒ์ž„์—์„œ ์ฝ˜์ด์™€ ๋ชฌํ…Œ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์กฐํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋ฉฐ, ๋„ค ๊ฐœ ์ด์ƒ์˜ ๋ฌธ์„ ํฌํ•จํ•œ ํ™•์žฅ๋œ ๋ฒ„์ „์—์„œ๋Š” ํ˜‘๋ ฅ์ ์ธ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. 1. ์„ธ ๋ฌธ ๊ฒŒ์ž„ ๋ถ„์„ ์„ธ ๋ฌธ ๊ฒŒ์ž„์€ ํ€ด์ฆˆ ํŒ€์ด ํ•œ ๋ฌธ ๋’ค์— ์ƒํ’ˆ์„ ์ˆจ๊ธฐ๊ณ , ์ฝ˜์ด๊ฐ€ ์ฒซ ๋ฒˆ์งธ ์„ ํƒ์œผ๋กœ ๋ฌธ ํ•˜๋‚˜๋ฅผ ๊ณ ๋ฅธ๋‹ค. ๋ชฌํ…Œ๋Š” ์ƒํ’ˆ์ด ์•„๋‹Œ ๋‹ค๋ฅธ ๋ฌธ์„ ๊ณต๊ฐœํ•˜๊ณ , ์ฝ˜์ด๋Š” ์ž์‹ ์˜ ์„ ํƒ์„ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ฒŒ์ž„์—์„œ ์ฝ˜์ด์˜ ์ „๋žต์€ ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋ฉฐ, ์˜ˆ๋ฅผ ๋“ค์–ด '1ss'์™€ ๊ฐ™

Game Theory Mathematics Computer Science
Centre for Mathematical Sciences India (CMS): Professor A.M. Mathais   75th Birthday

Centre for Mathematical Sciences India (CMS): Professor A.M. Mathais 75th Birthday

CMS๋Š” ์ธ๋„ ์ผ€๋ž„๋ผ์ฃผ์—์„œ ์ค‘์š”ํ•œ ์—ฐ๊ตฌ ๋ฐ ๊ต์œก ์„ผํ„ฐ๋กœ, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ๋ฐœํ•œ ํ™œ๋™์„ ํŽผ์น˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์„ผํ„ฐ๋Š” 1977๋…„ ์„ค๋ฆฝ๋˜์–ด ํ˜„์žฌ๊นŒ์ง€ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ์ง€์†์ ์œผ๋กœ ๋ฐœ์ „ํ•ด ์™”์Šต๋‹ˆ๋‹ค. CMS์˜ ์ฃผ์š” ํŠน์ง•๊ณผ ์—ญํ• ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐ ๊ต์œก ํ”„๋กœ๊ทธ๋žจ CMS๋Š” ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ•™๊ณ„์™€ ์‚ฐ์—…๊ณ„์— ๊ธฐ์—ฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ˆ˜ํ•™๊ณผ ํ†ต๊ณ„ํ•™ ๋ถ„์•ผ์—์„œ ๋งŽ์€ ์„ฑ๊ณผ๋ฅผ ๊ฑฐ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” CMS์˜ ์ถœํŒ๋ฌผ๊ณผ ๊ฐ•์—ฐ ์‹œ๋ฆฌ์ฆˆ๋ฅผ ํ†ตํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. CMS๋Š” ๋งค๋…„ 5์ฃผ๊ฐ„ ์ง„ํ–‰๋˜๋Š” SERC ํ•™๊ต๋ผ๋Š” ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ฑ ๊ณผ

Mathematics
Another elementary proof of $: sum_{n ge 1}{1/{n^2}} = pi^2/6,$ and   a recurrence formula for $,zeta{(2k)}$

Another elementary proof of $: sum_{n ge 1}{1/{n^2}} = pi^2/6,$ and a recurrence formula for $,zeta{(2k)}$

: ๋ณธ ๋…ผ๋ฌธ์€ ๋ฆฌ๋งŒ ์ œํƒ€ ํ•จ์ˆ˜ ฮถ(s)์˜ ํŠน๋ณ„ํ•œ ๊ฒฝ์šฐ์ธ ฮถ(2k)์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ฮถ(2) ฯ€ยฒ/6์ด๋ผ๋Š” ์ค‘์š”ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ฆ๋ช…ํ•˜๊ณ  ์žฌ๊ท€ ๊ณต์‹์„ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ Dancs์™€ He (2006)์˜ ์—ฐ๊ตฌ์—์„œ ์‹œ์ž‘ํ•˜์—ฌ, sin(nฯ€) ๋Œ€์‹  cos(nฯ€)๋ฅผ ์‚ฌ์šฉํ•œ ๊ธ‰์ˆ˜ ์ „๊ฐœ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ฮถ(2k)์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ฆ๋ช…๊ณผ ์žฌ๊ท€ ๊ณต์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. 1. ์‹ฌํ”Œํ•œ ์ฆ๋ช…๊ณผ ์žฌ๊ท€ ๊ณต์‹ ๋…ผ๋ฌธ์€ ๋จผ์ € s 1์ผ ๋•Œ ํ•ด๋ฐ€ํ„ด ๊ธ‰์ˆ˜๊ฐ€ ๋ฐœ์‚ฐํ•จ์„ ์–ธ๊ธ‰ํ•˜๊ณ , ์ œ๊ณฑ ะ‘ะตั€ะฝัƒะปะปะธ ์ˆ˜ Bk๋ฅผ z/e^z 1์˜ ํƒ€์ผ๋Ÿฌ ๊ธ‰์ˆ˜ ์ „๊ฐœ์—์„œ z

Mathematics
No Image

A Useful Property of the Finite Nonabelian Groups

: ์ด ๋…ผ๋ฌธ์€ ์œ ํ•œ ๋น„์•„๋ฒจ ๊ตฐ์˜ ๊ตฌ์กฐ์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ๊ทธ ์ค‘์‹ฌ๊ณผ ์ตœ๋Œ€ ์•„๋ฒจ ๋ถ€๋ถ„๊ตฐ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ตฐ๋ก ์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์ธ Z ์˜์กด์„ฑ์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๊ตฐ๋“ค์˜ ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค. 1. ์ •์˜์™€ ๊ธฐ๋ณธ ๊ฐœ๋… ๋…ผ๋ฌธ์€ ์œ ํ•œ ๋น„์•„๋ฒจ ๊ตฐ G์— ๋Œ€ํ•ด ์ค‘์‹ฌ Z์™€ ์ตœ๋Œ€ ์•„๋ฒจ ๋ถ€๋ถ„๊ตฐ H i (i 1,2,...,r)๋ฅผ ์ •์˜ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ H i๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ตœ๋Œ€ ์•„๋ฒจ ๋ถ€๋ถ„๊ตฐ์ด๋ฉฐ, ๋ชจ๋“  i, j์— ๋Œ€ํ•ด i j์ผ ๋•Œ๋งŒ H i H j๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค. ๋˜ํ•œ G๊ฐ€ Z ์˜์กด์ ์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋‘ ๋ถ€๋ถ„๊ตฐ H i์™€

Mathematics
Reproductive and non-reproductive solutions of the matrix equation AXB=C

Reproductive and non-reproductive solutions of the matrix equation AXB=C

Catchy Title KO: ์žฌ์ƒ์„ฑ๊ณผ ๋น„์žฌ์ƒ์„ฑ ํ•ด๋ฅผ ํ†ตํ•œ ํ–‰๋ ฌ ๋ฐฉ์ •์‹ AXB C์˜ ํ•ด๊ฒฐ Abstract KO: ๋ณธ ๋…ผ๋ฌธ์€ S. B. Preลกiฤ‡๊ฐ€ ๋„์ž…ํ•œ ์žฌ์ƒ์‹ ๋ฐฉ์ •์‹์˜ ๊ฐœ๋…์„ ๋ฐ”ํƒ•์œผ๋กœ, ํ–‰๋ ฌ ๋ฐฉ์ •์‹ AXB C์— ๋Œ€ํ•œ ํ•ด๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์žฌ์ƒ์„ฑ์  ํ•ด์™€ ๋น„์žฌ์ƒ์„ฑ์  ํ•ด์˜ ๊ตฌ๋ถ„๊ณผ ๊ทธ ํ•ด์˜ ์ผ๋ฐ˜์ ์ธ ํ˜•ํƒœ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. R. Penrose์˜ ์ •๋ฆฌ์— ๋”ฐ๋ผ, ์ผ๊ด€๋œ ํ–‰๋ ฌ ๋ฐฉ์ •์‹ AXB C์˜ ์ผ๋ฐ˜ ํ•ด๋Š” ํŠน์ • ์กฐ๊ฑด ํ•˜์—์„œ {1} ์—ญํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, Preลกiฤ‡์˜ ๊ฒฐ๊ณผ์™€ Haveriฤ‡์˜ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์žฌ์ƒ์„ฑ์  ํ•ด

Mathematics
No Image

Dominance in the Monty Hall Problem

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ๋ชฌํ‹ฐ ํ™€ ๋ฌธ์ œ์—์„œ ์ „๋žต์˜ ์ง€๋ฐฐ์„ฑ๊ณผ ์ตœ์ ์„ฑ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ๋ชฌํ‹ฐ ํ™€ ๋ฌธ์ œ๋Š” ์„ธ ๊ฐœ์˜ ๋ฌธ ์ค‘ ํ•˜๋‚˜๊ฐ€ ์ƒ์„ ์ˆจ๊ธฐ๊ณ , ๋‚˜๋จธ์ง€ ๋‘ ๋ฌธ์€ ํ—ˆ์šธ๋ฟ์ธ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๊ณ ์ „์ ์ธ ํ™•๋ฅ  ๋ฌธ์ œ๊ฐ€๋ฉฐ, ํ”Œ๋ ˆ์ด์–ด๋Š” ํ•œ ๋ฌธ์„ ์„ ํƒํ•˜๊ณ  ์ง„ํ–‰์ž๋Š” ์„ ํƒํ•˜์ง€ ์•Š์€ ๋ฌธ ์ค‘ ํ•˜๋‚˜๋ฅผ ์—ด์–ด ์ƒ์ด ์—†๋Š” ๊ฒƒ์„ ๋“œ๋Ÿฌ๋‚ด๋ฉฐ, ์ดํ›„ ํ”Œ๋ ˆ์ด์–ด์—๊ฒŒ ์„ ํƒํ•œ ๋ฌธ์„ ๊ณ ์ˆ˜ํ• ์ง€ ๋‹ค๋ฅธ ๋ฌธ์œผ๋กœ ์ „ํ™˜ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ์— ๋‚ด์žฌ๋œ ์ง€๋ฐฐ์„ฑ ๊ฐœ๋…์„ ๋ถ„์„ํ•˜๊ณ , ํ•ญ์ƒ ์ „ํ™˜ ์ „๋žต์˜ ์ตœ์ ์„ฑ์„ ์ฆ๋ช…ํ•˜๋ฉฐ, ๋ฒ ์ด์ฆˆ์•ˆ ๊ด€์ ์—์„œ ์ตœ์ ์˜ ์ „๋žต์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์‹ฌ๋„ ๋ถ„์„

Computer Science Mathematics Game Theory
An easily verifiable proof of the Brouwer fixed point theorem

An easily verifiable proof of the Brouwer fixed point theorem

: ๋ณธ ๋…ผ๋ฌธ์€ ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด ์ •๋ฆฌ๋Š” ์ˆ˜ํ•™์˜ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ทธ ์ฆ๋ช…์ด ์ƒ๋Œ€์ ์œผ๋กœ ์–ด๋ ต๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ ์•„๋ž˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณต์žกํ•œ ์ฆ๋ช… ๋Œ€์‹  ๊ฐ„๋‹จํ•˜๋ฉด์„œ๋„ ๋ช…ํ™•ํ•œ ์ฆ๋ช… ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ์™€ Sperner ์ •๋ฆฌ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. Sperner ์ •๋ฆฌ๋Š” ๊ทธ๋ž˜ํ”ฝ์Šค๋‚˜ ๊ฒฝ์ œํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๋ฉฐ, ์ด๋Š” ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ์™€ ์œ ์‚ฌํ•œ ์„ฑ์งˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‘ ์ •๋ฆฌ ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ฑ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ์ฆ๋ช… ๋ฐฉ๋ฒ•์„

Mathematics
A possible use of the Khas protractor

A possible use of the Khas protractor

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ๋Œ€ ์ด์ง‘ํŠธ ๊ฑด์ถ•๊ฐ€ ์นด์˜ ๋ฌด๋ค์—์„œ ๋ฐœ๊ฒฌ๋œ ๋ฌผ์ฒด๋ฅผ ์ž(protractor)๋กœ ๊ฐ„์ฃผํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ฒฝ์‚ฌ๋ฉด ๊ฐ๋„๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์„ค์€ ๊ณ ๋Œ€ ์ด์ง‘ํŠธ ์„๊ณต ๊ธฐ์ˆ ๊ณผ ๊ฑด์ถ•์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋„“ํžˆ๋Š” ๋ฐ ์ค‘์š”ํ•œ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. 1. ์นด์˜ ๋ฌด๋ค์—์„œ ๋ฐœ๊ฒฌ๋œ ๋ฌผ์ฒด ์นด์™€ ๊ทธ์˜ ์•„๋‚ด ๋ฉ”๋ฆฌํŠธ์˜ ๋ฌด๋ค์€ 18์™•์กฐ ์‹œ๋Œ€์˜ ์™„๋ฒฝํ•˜๊ฒŒ ๋ณด์กด๋œ ๋ฌด๋ค์œผ๋กœ, ์ด๊ณณ์—์„œ๋Š” ๊ฑด์ถ•๊ฐ€ ์นด๊ฐ€ ์ผ์ƒ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋˜ ์—ฌ๋Ÿฌ ๋„๊ตฌ๋“ค์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ํŠนํžˆ ๋ชฉ์žฌ๋กœ ๋งŒ๋“ค์–ด์ง„ ์ ‘์ด์‹ ๊ด€์ ˆ์„ ๊ฐ€์ง„ ์ž(cubit)์™€ ๊ธ€์“ฐ๊ธฐ ๋„๊ตฌ ๋“ฑ์ด ํฌํ•จ๋˜์–ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌผํ’ˆ๋“ค์€ ์นด์˜ ์ง

Physics Mathematics
Liber Mathematicae: A Web-Based Documentation and Collaboration Project   for Mathematics

Liber Mathematicae: A Web-Based Documentation and Collaboration Project for Mathematics

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ˆ˜ํ•™ ์ถœํŒ ๋ฐฉ์‹์— ๋Œ€ํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์ˆ˜ํ•™ ์ง€์‹์€ ์ฑ…์ด๋‚˜ ํ•™์ˆ ์ง€์— ์ธ์‡„ ๋งค์ฒด๋กœ ์ถœํŒ๋˜์–ด ์™”์ง€๋งŒ, ์ธํ„ฐ๋„ท์ด ๋“ฑ์žฅํ•จ์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ์ถœํŒ ๋ฐฉ์‹์˜ ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ ธ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋Œ€๋ถ€๋ถ„์˜ ์˜จ๋ผ์ธ ์ˆ˜ํ•™ ์ถœํŒ๋ฌผ์€ ์—ฌ์ „ํžˆ ๋ฏธ๋””์–ด์˜ ์ž ์žฌ๋ ฅ์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, arXiv๋Š” PDF ํ˜•์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์„œ๋ฅผ ํ˜ธ์ŠคํŒ…ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ธ์‡„์šฉ ๋ฌธ์„œ ์ „์†ก ๋ฐ ํ˜•์‹ ์œ ์ง€์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€๋งŒ, ์ˆ˜ํ•™์  ํ‘œํ˜„์„ ํ™•์žฅ ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ๋ณต์‚ฌ ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ํ‘œ์‹œํ•˜์ง€๋Š” ๋ชปํ•œ๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„์™€ ๊ฐ™

Digital Libraries Mathematics Computer Science
Upside Down Magic, Bimagic, Palindromic Squares and Pythagoras Theorem   on a Palindromic Day - 11.02.2011

Upside Down Magic, Bimagic, Palindromic Squares and Pythagoras Theorem on a Palindromic Day - 11.02.2011

๋ณธ ๋…ผ๋ฌธ์€ ์ˆ˜ํ•™์  ๊ตฌ์กฐ์™€ ์˜ˆ์ˆ ์  ๋””์ž์ธ ์‚ฌ์ด์˜ ํฅ๋ฏธ๋กœ์šด ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋งˆ์ˆ  ์ •์‚ฌ๊ฐํ˜•๊ณผ ํ”ผํƒ€๊ณ ๋ผ์Šค ์ •๋ฆฌ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” 2011๋…„ 2์›” 11์ผ(11.02.2011)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ, ์ด ๋‚ ์งœ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ˆซ์ž๋“ค(0, 1, 2)๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ๋งˆ์ˆ  ์ •์‚ฌ๊ฐํ˜•๊ณผ ๋น„๋งˆ์ˆ  ์ •์‚ฌ๊ฐํ˜•์„ ์ƒ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค. ํ”ผํƒ€๊ณ ๋ผ์Šค ์ •๋ฆฌ์™€์˜ ์—ฐ๊ด€์„ฑ ๋…ผ๋ฌธ์—์„œ๋Š” ํŠนํžˆ 3x3, 4x4, 5x5 ํฌ๊ธฐ์˜ ๋งˆ์ˆ  ์ •์‚ฌ๊ฐํ˜•์ด ํ”ผํƒ€๊ณ ๋ผ์Šค ์ •๋ฆฌ๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฐ ๋ธ”๋ก์˜ ํ•ฉ์€ S1 33 (3x3), S14ร—4 444

Mathematics

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut